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The Schwinger variational method, for the approximate determination of scattering amplitude, is tested
for accuracy in the case of the elastic scattering of electrons from the static potential V (r)= —e2Ve™"/r,
by using eight different forms of trial wave functions. The results are compared by checking the closeness of
fit of the associated scattering amplitude with an exact solution to the problem. In the course of the calcula-
tion a number of expressions, of use in more complicated problems, were obtained and are here recorded.
The parameter values used in the test were aoA=8/3, k2= (0.72\)2, V,=7.8, where a, is the first Bohr orbit

radius for hydrogen.

1. INTRODUCTION

N the application of variational methods to scattering
problems the algebraic and numerical computations
have been directed mainly toward the determination of
either the first few phase shifts or the total scattering
cross section.! However, for a given trial function the
determination of the scattering amplitude imposes a
stricter test on the reliability of the trial wave function
than does the determination of the first few phase
shifts or the total scattering amplitude.

We apply here the Schwinger variational method for
the approximate determination of the scattering ampli-
tude for the elastic scattering of electrons from a static
potential.? Several different trial wave functions are
compared for possible application to similar problems;
the criterion used for “best form” consists in the close-
ness of fit of the associated scattering amplitude with a
numerical solution to the problem.

For reference we include a brief description of the
Schwinger variational method as applied to scattering
problems.

2. PRELIMINARY REMARKS

The scattering of an electron by a potential V(r) is
described by a solution to the integral equation®

\P‘(r)zeikiA,__z_’ffG(r,r’)
z - 4
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V(c)Wu(rar', (1)

where
G(r:r,):eikR/Ry R= [r_rll> (2)

is the free space Green function for the Helmholtz
equation, E=#%2%?/2m is the energy of the incident
electron, m is its mass, and % is Plank’s constant divided
by 2x. The vector k,=kn;, where the unit vector n;
specifies the direction of incidence; the vector r=7n
is the radius vector which specifies the position of the
electron. Substituting into (1) the asymptotic form of
the Green function,?

G(r,t') — exp(tkr—ikn-t")/r, r>7, 3)
we obtain
Yi(r) — ekt f(nn)e*/r, r>>r', 4)

where
fmn)=—— [ it enam o
n)=——— exp(—ikn-v)V(r'):(r")dr
’ 2wh? P

is the scattering amplitude and is the quantity which
we wish to characterize by a variational method. The
quantity |f(n,n;)|? represents the density of the cur-
rent scattered by the potential V' (r) in the direction n
for a stream of particles of unit current density incident
in the direction n;.

Using the integral equation (1) and the defini-
tion of the scattering amplitude (5), we may rewrite the
expression for the scattering amplitude as*

[f(ns,m)]=—ﬁ[ [emrvwma

_l_feiki.rU(r)‘l/_s(r)dr— flj/_s(r)U(r)xh(r)dr

_Zl;f f ¢"3(r)U(r)G(r:Y')U(r’)%(r’)drdr'}’ (6)

where U(r)=2mV (r)/#?, and where the wave function

4 See reference 2, and P. M. Morse and H. Feshbach, Methods of
Theoretical Physics (McGraw-Hill Book Company, Inc., New
York, 1953), p. 804.
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¥_.(r) represents a solution to (1) for a plane wave
incident in the direction (—n,), where k,=kn,. We
note that [f(m,,n;)] is an exact expression for the
scattering amplitude f(n,,n;).

For the approximate determination of the scattering
amplitude, the procedure followed is to substitute into
the functional [ f(n,,n;)] a set of functions ¢ which
satisfy or nearly satisfy the integral equation (1).
These functions are termed trial functions. Then those
trial functions which differ from the exact value of ¥
to the first order in & yield values of the func-
tional [ f(n,,n;)] which differ from the exact value of
[f(nsn,)], ie., the scattering amplitude, by terms
proportional to (6¢)%. Hence, the difference between
the scattering amplitude and the above value of the
functional is small to the second order in (6¢).

By introducing trial functions of the form

$()=Z Coxa) ")

into (6), where the C, are unknown constants and the
X« (1) are known functions of r, the functional [ f(n,,n;)]
becomes a function of the C,. Thus the necessary con-
ditition that [ f(n,,n;)] be stationary with respect to
small variations of ¢;(r) and ¢_,(r) about ¢,(r) and
Y_,(r) is that

o[ f(1,0,)]/8Ca=0, n=0,1, ---N. ®)

The foregoing equations consist of a set of V41 simulta-
neous, linear equations sufficient to determine uniquely
the set of N+1 unknowns. By assuming a trial function
of the form (7), the resultant expression for the scatter-
ing amplitude [f(n,,n;)] is independent of the nor-
malization of the trial wave function ¢ ().

Clearly the method is only as good as the choice of
the trial function. If we know the exact function, then
we obtain the extremum value of [ f(n,,n;)], ie., the
scattering amplitude, exactly. However, if we make a
bad choice in the trial function, then the error in the
functional will be correspondingly augmented.

We note that inasmuch as the Green function (2) is
not definite, the extremum point of the function
[f(ns,n,)] may be either a maximum, a minimum, or a
saddle point.5

U(r)=—(Ua\/r)e™,

MOWER
3. APPLICATION OF THE VARIATIONAL METHOD

For the trial wave functions
pir(r) = Coe*ir,
Gi2(1) =Coesi-14-C etki-rMr)
$is(1) =Coe’ss TCre ™,

¢ (1) =Coe*i'74Cre™>+iCorhe2(n;- n),
¢is(1)=Coe i *4-C1jo(kr),
&6 (1) =Coe i *+C17o(kr)+iC271(kr) (n;- n),
$ir(1) = Coe’ks T+ Creikicr,
¢is(r) =Coe’ci " Cre= it Cyjo (kr),

¢ (r)=¢ys(r) [see paragraph below Eq. (18)],

©)

where 7,(x) is the nth order spherical Bessel function,
and for the potential
V(t)=—eVe ™/, (10)
approximate expressions for the scattering amplitude
were calculated using the stationary form (6). We note
that the trial wave functions ¢_,(r) are obtained from
the ¢;(r) by replacing the vector k; by (—k,); for
simplification, we have introduced the notation
[f(ﬁ):|= [f(nsxni)])

6=arccos(n;-n,),

x=2k/X\,

c=sin(0/2).

As an illustration of the procedure we calculate
[f(®)] for the trial wave function ¢y [see (9)]; thus,
upon performing the indicated integrations, we obtain
[f20)1=f(0){2Co+2C1a— (C+C2)[1—To(6)]

—2CoCra[1—To(r—06)1},

(11)

(12)

where? .
ol0)=—— [ewroru oyin
= (U/N @+ (13)

is the first Born approximation for the potential con-
sidered, and

Uo=2Vo/do>\

a= fp(r—0)/fs(0) = (x?+1)/ (4*—&%c+-1),

To(e) =

U\ {__1— f dn }
feO) 22V (= E)[ (n—k:)*+N [ (n—k:)*+N*]

(14)

2 xc 1 D%
=Uo(1+2%?) [—B[arctan (~—) +-In ] },

Xc.
D?=4+-4x24-x4c2,
5 See reference 4, p. 1149.
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where ao=7%2/mc? is the first Bohr radius for hydrogen.
Upon applying (8) to (12) and solving the resultant
equations for Cy and Cy, we find

Co={[1—To(0)]—2[1—Tos(x—0)1}/
{{1~To(0) F—a[1—To(r—0) T},
Cr=a{[1=To(0)]—-[1~Tos(x—0) 1}/
{{1=To(0) P—o’[1=To(z—0) "}

Hence, upon substitution of these expressions into (12),
we find that the scattering amplitude is given by

(15)

1

1-70(6)

d[1—To(0) ]—2do(do— T1)+ (d1—T) }
[1—To(@®)J(dr—T)— (do—T2)* 1’

o[ 1—To(6) ]+ (ds— T's) — 2d2(d2—T') }
[1—To(@)(as—T)— (aa= TV

Ao 1—To(6) 1+ (ds— T'3) — 2ds(da— T's)
[1—T0(0)1(ds— Ts)— (ds—T5)?

de? (1—de)?
de— T7ir[1— To(60)]— (ds— T) ]

dir: f5(6)

di2: f5(6)

bis: f5(6)

diw: f5(0)

dis: f5(0)

de? 3d;? cosf
dis: f5(0) ' 1

] +/5(6)
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7(0
0] (@4 1)[1—=To(8)]—2e*[1—To(r—0)]
=/5(0) , (16)
[1=To@) P—a1—To(x—0) P
which at §=m/2 reduces to .
Lfa(x/2)1=fo(r/2)——— (17

1=To(r/2)

The following stationary values of the scattering
amplitude [f(8)] for the various trial wave functions
listed in (9) were obtained:

cosf [

i (=T T BB T }
ds—Te

U= To(6)](da—Ta)— (do— Ty

(18)

a?+1)[1—To(6) ]—202[ 1~ To(r—8
bt 1al0) (e*+1)[1—=To(6) ]—20°[1— To( )]],

[1=To(@0) P—a’[1—To(r—6)
2(a—ds)(1—ds)
[1=To(0) 1H+o[1—To(r—0)]—2(ds—T%)

dis: fB(G)

(1—ds—3d; cosh)? ]
de—Tr di—Ts  [1—To(6)]— (do—T:)—3(ds—Ts) cosh )’

| (1=a?){ (do—T)~[1~To(®)]} Lo ]
T {aEI_TO(W_G)]_[l_To(o):]}{[l_TO(G)]+a[1—To(ﬂ—e)]_z(dﬁ*T7)} T de— T7 ’

(@)1= To(6)]—2a2[1— To(r—0)]
[1 - To(o)_—_F—aZ[l - Tu(ﬂ'—@)]z

puo: fB<o>{

The definitions of the symbols used are included in the
Appendix. For two of the trial wave functions (¢ and
¢sx) we have determined the value of the constant C,
by (8) while taking for the values of Cy and C, those of
the previous wave functions (¢:3 and ¢:). To denote
this procedure, we insert a prime next to the number
of the trial wave function.

Numerical calculations were performed for the dif-
ferential scattering cross section |[f(8)]]% for each of
the algebraic expressions listed in (18); these were then

50 @-1]

14a }2

de—T7 1—To(®)+a[1—To(r—0)]

compared with a numerical solution obtained by phase
shift analysis. The values of the parameters U, X, and
x were taken as

Uy=3V/4=5.85,
A=28/3a,,
x=1.44,

(19)

where @, designates the first Bohr radius for the hy-
drogen atom. (These values were chosen for future



1068 LYMAN
reference for the elastic scattering of electrons from
neon.) By numerical solution of the appropriate radial
wave equation,® the following phase shifts were obtained :

o 01 02 03
188.0° 50.9° 6.3° 1.2°

(The phase shift §; was calculated by a first Born
approximation.”)

Inasmuch as | f(8)|? was expected to be a relatively
smooth function of 4, numerical expressions for each
of the functions listed in (18) were calculated for only
three values of 8: 0, 37, and 7. The following numerical
values were obtained for the differential scattering cross
section, [[f(0)]]|%/a?, for the various trial wave func-
tions listed :

Num.
‘] soln. é1 P2 @3 Gar @5 13 13 @3 11
0 241 2.58 092 531 449 212 214 239 245 242
3= 0005 0.17 0.03 013 0.13 028 028 0.17 028 0.17
r 1.05 0.04 0.15 005 028 029 033 1.01 047 099

From and inspection of the above table we see that
the values of |[f(6)]|? at x=1.44 associated with ¢;
and ¢y are comparable and, for the trial wave func-
tions chosen, have the “best form.” We note that ¢ is
the simpler of these two trial wave functions.
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APPENDIX. TABULATION OF VARIOUS INTEGRALS

The definitions of the functions d,, @, and f5(8)
which arise from the first three integrals in (6) are as
follows:

1 ¥%-1
=— fei(ki—ks) e MU (r)dr= ,
4rfp(0) a4
1 22?41
— f eiki=ke) 1= [T (r)dr= ,
47rfB (0) x262+9
4(x%c*+1)
= feiki"e""U(r)dr=——-———,
47 fp(0) %2416
A
= -—-——~—~feik“e“)"’2U(r) (ng-r)dr
47 f5(0) cosd :
16x(x%c241)
T 9+
1 %241
= — f U (H)dr= ,
4 fp(0) 9

6 See reference 3, p. 129.
7 See reference 3, pp. 28 and 119.
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A2 w21
ds= ———fe""U(r)f'?dr:— ,
127 f5(6) 8
de=— feik“U(r)jo(kr)dr
47rf3 (6)
w1

; In(1+4?),

®
i

4 f5(8) cosd

feiki"U(r)jl(kr)(ns~r)dr

2(x%c2+1) 2
=_____Q1(1+_)’
x2 x?
1 . Us 1
1o(0)=—— [U@esrmir="
4 A x%c24-1
fa(r—0) 2%c+1
RO 2l-o+1
U(r)=—Uo(\/r)e™>", x=2k/\, c=sin(9/2),

z+1
0:1(2)=3z ln<——)— 1, z>1.
z—1

The evaluation of the double integral which occurs
in (6) is simplified by a transformation to momentum
space; thus, the Green function is replaced by its
Fourier transform

eikl r—r’|

4

Gler)=—=
S Gy

dn explin- (r—1)]
Il . (A1)

.n2_ k?

where the path of integration is defined to be over the
pole at n=—% and under that at +%. Hence, double
integrals of the form

fffl(r, —k)G(1,t") T2 (v k)drdr  (A.2)

are reduced to integrals of the form

dn
to [ K0 k),
(A.3)

K(n,k)= (2r) f T (e k)eiredr.

In several of the double integrals the resultant alge-
braic expressions are simplified if, prior to integration,
a coordinate transformation is carried out® or Feyn-
man’s method? of grouping factors is used.

Thus, the definitions of the functions 7',(f), which

8 G. Kdllén, Arkiv Fysik 2, 33 (1950).
9 R. H. Dalitz, Proc. Roy. Soc. (London) A206, 509 (1950).
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arise from the double integral in (6) are as follows:
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o) U\ f dn =( Ug? ) 2 [ x—c+i nD—|—x2c]
T ) Lk —k) 0] \Na@)/xDL T D2 Dot
_ U2\? f dn _ ( Uy —}—{[tan_l xby ot xby ]
2nfp(0)Y (P—R)[(n—k)*+AN I (n—ko)*+N]  \Nfp(6)/ xb: 3—a%c 2(3+x%?)
'i 1 16622+x2(b3+b1)2 4b22+x2(b4+b1)2
2 n[16b22+x2(bs—b1)2}‘[4b22+x2(b4—b1)2]}
T (0)=——0-C~2—C2+—1T 6,2/2)
’ 2(x%*+-4) I
U®\? d 3
T3(0)= A f ! ( ) an~lx—2 taxn—‘f—l—i ln(1+x2)J,
2xf ()Y (n*—EH[(n—k)* N[ +4N*]  \\fz(6) x(x2+16)l 6 2
U@?\? dyn Uy 16— x2+18x
T4 0)= = y
() 27r2f3(0)f (n*— k) (n*+4N%)? (Rfs(ﬁ))[ (16+x2)2]
MLy S
T 4rf5(6) cosd (7 B) (N4 (kim )N
3 Uy 4 ) 2+ x2 2(15— x2)l (2+x2)r . o
= ()\fB(O))x(x2+9)2{1[x ] 25pat f {2 tan™'(x/5)—tan x]},
To(@)= Ut f (ns-m) (n;-n)dy ( Ug 1 " (x6+81x4—729x2—729)]
S 8 a(0) costd (ni— B2 (N /At \Nf5(6) 3(9+x2)4l 54 ’
of dn (RN U
(0) = = 1 2\ 2
0= [ n2(n2—k2)[1 - k)zﬂz} (UB@)xB{ in(144)]
© sin(2n tan™x) « sin(2n tan—lx)
+ (3r—tanx) In(1+422)+>_ },
n=1  p2(1-4-a2)" n—l 7
3 U02 dn I— (x2+k2+n2 ]2———( [ 2+x2 ]
Ts<0)_27r2x2f3(0)f evpr A e ) \/5(6) x3{ (

4
+— ln(1+—)
x3

x2+2
) tan‘l(

x
2+x2)

2422\ /7 © sin(2%z tan~'x) o« sin(2n tan—x)
+( ) [(~—tan‘1x) In(14-22)4+3> — -”,
&2 2 n=t n?(1+a?)™ =1 n?
c=sin(8/2), bi2= (a2c2+5)2+16¢2—
x=2k/\, be=3— %,

D?=4+4-4x?+ x4,

O1(z)=3z ln(—zj——l) -1,
z2—1

b3=ux2?—8¢—3,

by=x%*+2¢+3.



