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Behavior of a Bose System

G. V. CHEsTER
Yale University, Ne'er Haven, Connectzcut*

(Received March 25, 19SS)

It is shown that a weakly interacting system of Bose particles undergoes a second-order transition both
under conditions of constant volume and under conditions of constant pressure. This type of behavior is
qualitatively identical with that exhibited by liquid helium.

' 'T is now well established' ' that a system composed
~ ~ of noninteracting particles obeying Bose-Einstein
statistics undergoes a phase transition. If the density
of the system is taken to be equal to that of liquid
helium and if the mass of the particles is taken to be
that of a helium atom, then the transition takes place at
about 3'K. This fact has led to many attempts to relate
the X transition that occurs in liquid helium, at about
2'K, to the transition exhibited by a system of non-
interacting Bose particles. While it is quite clear that
such a system cannot accurately account for the proper-
ties of a liquid, it is, nevertheless, true that theories
based on it have had some success in correlating the
experimental properties of liquid helium. In this note
we shall compare the transition in the liquid with the
transition that occurs in a system of weakly ieteracH~sg
Bose particles. It must be emphasized that in this type
of system we can only take into account weak attractive
and repulsive forces between the particles; we are
quite unable to deal with the very strong repulsive
forces that ultimately come into play when the helium
atoms approach sufficiently close to one another. How-
ever, this type of system has the advantage that it can
be given a fairly rigorous treatment by means of per-
turbation theory. '

The transition in liquid helium appears to be a second-
order transition whether we study it under conditions
of constant vo/ume or under conditions of constant
pressure. For instance, the specific heat curves at
constant pressure and constant volume are very similar
in shape and both exhibit the same type of discon-
tinuity at the X point. The transition that occurs in a
system of noninteracting Bose particles is, however, a
first-order transition if we study the system under
conditions of constant pressure, and a third-order
transition if we study it under conditions of constant
volume. Thus, although such a system does exhibit a
transition, the details of it are very different from those
of the A. transition in the liquid. This fact has been
emphasized by Rice4 and London. '
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In I the author discussed some of the properties of
a system of weakly interacting Bose particles. It was
shown that such a system undergoes a second-order
transition under conditions of constant volume. We
shall now show that it undergoes a second-order transi-
tion under conditions of constant pressure. The free
energy of the system is, to the accuracy of first-order
perturbation theory,

F= Fp+g(Fi+Fi'),

where Ii 0 is the free energy of the noninteracting system,
g is the coupling constant between the particles, F~ and
F&' are given by'

Fi p 2 2 rikrik'Ikk k'+&p 2 nk+k, p

k&0
Fi'=-,'N(N —1)Ep, p.

(2)

These equations follow at once from Eqs. (2.15) and
(1.2) of I. It is easily seen from Eq. (2.14) of I that
Ek, k is proportional to V ', for all k and k'. Since each
summation over the wave vectors k introduces a factor
proportional to V the first term in Iii is proportional to
V. On the other hand, Fop is equal to N(1 C(T) Vj, —
where C(T) is a function of T alone. The second term
in Ii~ therefore consists of a term that is proportional
to V and a term that is independent of V. Equation
(2.27) of I shows in fact that Fi is of the form

(3)Fi=NLa(T) p '+&(T)j
while from Eq. (2.14) of I we see that Fi' is given by

Fi' —2+Np w(r)r'dr, —

where a(T) and b(T) are functions of the temperature
alone, zv(r) is the interaction potential between the
particles and rp is a cut-off parameter. We first note
that (O'Fp/&U')r =0, T( Tk, next, —from Eqs. (3) and
(4) we see that (O'Fi/BU)r= 0, while (O'F / lUi')cr)—0
provided that

(5)w(r)r'dr) 0.
2TP

If we take the same Lennard-Jones (6, 12) potential
that we used in I, vis. Eq. (4.1) of I, then we find that
the inequality (5) will be satisfied as long as rp(1.14 A.

062



8 EHA VI OR OF BOSE SYSTE M 1063

The value of rp used in I was 1.09 A, so the inequality
is easily satisled. Consequently (ctp/8 V)r (0, for
TgTq, and the system is stable below the ) tem-
perature. If we bear in mind that (r)p/i)V)z is dis-
continuous at Tq then this implies that the system
undergoes a second-order transition under conditions
of constant pressure. The inequality (5) has a simple
physical interpretation. It can only be satisfied if the
potential is positive for some range of values of r.
This simply means that it is the positive or "repulsive"
part of the potential the, t prevents the particles from
"condensing" into zero volume and exhibiting a 6rst-
order transition.

We can therefore conclude that a system of weakly
interacting Bose particles undergoes a second-order
transition both under conditions of constant pressure
and constant volume. This behavior is qualitatively
identical with that shown by liquid helium. These con-
clusions are, however, based on a treatment of a weakly
interacting system and it remains to be shown that they
carry over to the physically interesting case of a strongly
interacting one.
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An electron beam shot through a transverse rf 6eld may suffer a directional spread. If experimental
conditions are suitably chosen, the directional spread may be due only to the quantum dispersion of energy
exchange between free electrons and rf field. A simple collector electrode system might allow not only the
detection of the directional spread of the electrons, but the presence of a quantum effect might be checked
by plotting the collector current versus rf 6eld amplitude, the plot for the quantum effect being different
from those for classical effects. The results of various theoretical treatments of the effect are briefly com-
pared, both from the point of view of their principal foundations and of the possibility of their experimental
veri6cation.

' 'N recent years several papers' 4 have been published
~ ~ dealing with that part of the dispersion in energy
exchange between free electrons and rf fields which the
classical theory cannot predict. The problem has been
treated from various points of view and differing results
were obtained for the energy spread due to the quantum
nature of the interaction.

One method' ' consists essentially in the assumption
of the independence of the elementary emission and
absorption processes, so that statistical methods can be
applied in treating them. In this case the magnitude of
quantum dispersion of the velocity of the electrons can
be estimated by taking the classical energy gain 8"+
and energy loss S' during the accelerating and de-
celerating periods and interpreting them as the aver-
age absorption and emission of S+——W~/Ato and
E =W' /Ato photons. respectively, with a standard
deviation of

EW=Aco($~+E )&.

Shulman' reports that he has found this effect by
measuring the energy distribution of electrons shot
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through a longitudinal rf field in a wave guide. The
difFiculty of any experiment of this kind lies in the fact
that the expected effect of quantum-mechanical origin
and the classical energy spread resulting from the
emission velocity distribution and from the dependence
of transit time on the entrance phase angle of the
electrons are of the same order of magnitude. The
classical effects, however, can be made negligible in
comparison with the quantum effect, if the electrons
are shot through a transverse rf 6eld and the transit
angle of the electrons is properly chosen. In this case
there should be a dispersion in the direction of the
electron velocities caused only by the quantum nature
of the energy exchange.

For the sake of simplicity we considered' a rectan-
gular cavity excited in its TEp12 mode. The only com-
ponent of the electric field is, in this case:

E =Ep sin(2srx/a) sin(2sry/b) .singlet,

the symbols having their usual meaning. For a given
resonance frequency one can always find such a cavity
that an electron entering along the x-direction with a
given velocity vp spends an integral number of periods
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