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"Virial Theorem" for the Flow of Energy
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Expressions are obtained for the Qow of energy and momentum in assemblies of densely packed molecules,
using a generalized virial theorem. They diRer to some extent from expressions put forward by previous
authors who had only derived the divergence of the Qow vectors. Classical results are shown to be valid
also in quantum mechanics.

INTRODUCTION

' ' 'I'SES of the virial theorem in modern physics were
recently published by Parker'; in the present

paper, the theorem is applied to the molecular theory
of irreversible processes.

Applying the conservation laws of mechanics, Born
and Green' and Irving and Kirkwood' obtained expres-
sions for the divergence of the Qow of energy and mo-
mentum in Quids; their results remain valid in quantum
theory as shown by Irvirig and Zwanzig. 4

The same authors also gave expressions for the Qow

of energy which, however, do not agree with each
other. They are, in fact, plausible but arbitrary con-
jectures, the Qow being not uniquely determined by
its divergence. Their expressions for the Qow of momen-
tum do agree and are in accordance with previous
work by Falkenhagen. '

As these Qow vectors are significant in many contexts,
to quote only the Qow properties of liquid helium and
the sound absorption in dense gases, the subject is con-
sidered in the present paper again and from an alter-
native point of view. Instead of attempting to derive
the Quxes by the way of their divergence they are ob-
tained by applying a generalized virial theorem that is
due to Rayleigh'; he (like Clausius before him) ob-

tained the virial theorem in the form of a relation

' K. ¹ Parker, Phys. Rev. 96, 1686 (1954).
s M. Born and H. S. Green, Proc. Roy. Soc. (London) A190,

455 (1947).' J. H. Irving and J. G. Kirkwood, J. Chem. Phys. 18, 817
{1950).' J. H. Irving and W. Zwanzig, J. Chem. Phys. 19, 1173 (1951).' H. Falkenhagen, Physik. Z. 32, 745 (1931).

W. J. Rayleigh, Phil. Mag. 50, 210 (1900}.

between time averages. Its validity is then restricted
to periodic movement; in quantum mechanics the cor-
responding theorem applies only to steady pure states.
In the present paper, results are freed from these re-
strictions by obtaining relations between ensemble
averages.

PREMISES

The macroscopic properties of an assembly of mole-
cules in a container are assumed to be determined by
a probability distribution in phase space which, if not
independent of the time, has a stationary projection
on two-molecule subspaces.

Forces between molecules are derived from a poten-
tial energy depending on the distances between the
mole cules

X=s REX',
where x;~ is the familiar potential energy of interaction
between isolated molecules (j, k=1, 2. . . 1V). Forces
arising from the interaction of molecules with the wall
of the container are derived from a potential energy

(2)

which depends partly on dynamical variables appro-
priate to the wall, such as the position of the molecules
of the container.

Movement of the liquid molecules is determined by
equations of motion

' dr;/dt=p;/m,

dp;/dt=P f;s+F;,
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where F, and f,i,
—— —fi,; are the forces on the molecule

j arising from the potentials X and 0, respectively, and
r, is its position; m is the molecular mass.

The change in time of the "wall variables" is not
speci6ed in detail. It is postulated that certain averages
of functions of these variables are stationary and can
be expressed in terms of macroscopic quantities. In
particular, the average of the forces F; is supposed to
balance external forces applied at the surface in form
of stresses also the average work done by these forces
is assumed to be equal to the energy as supplied from
external sources through the unity of surface area per
unity of time (denoted by —8'). In quantitative terms

(g,F;6(r,—r))= —n PdS, (4)

(1/m) (Q~F,"p, 5(r,—r)) = —n QdS (5)

where 8 is the delta function, P the stress tensor, dS and
n the surface element and —normal, Q the flow of
energy (W= n Q) and r the position vector in 3-dimen-
sional space. It follows that

(P;r,F;)= — rn QdS,

lations between physically important ensemble averages
are obtained.

Let

so that

FLOW OF MOMENTUM

A=ZirtuJ,

~AI«= ZL(pili/m)+r F,+2 rtf, ~].
(12)

The last term may be written as

Let
FLOW OF ENERGY

The average of the second term is, for constant P,
according to Eq. (8), equal to —VP. By averaging
Eq. (12) over the ensemble of systems it follows that

P=(1l'/Vm)(P I )+P'/2V)((r —r )f ), (13)

where S is the total number of molecules and the
subscripts j, k refer to a representative pair. Equation
(13) agrees with the results obtained by previous
authors.

(1/m)(P;r, F; y;)= — rn QdS so that
8= (1/2m)g, p,'r, , (14)

The surface integrals are evaluated by means of
the Gaussian theorem

( rn jdS= i jdV,

dB/«=p, (p p, /2m')+(r~p, "F,/m)

+(1/m) g re; f;„. (15)
I&i

The last term may be written as

where j is a vector or tensor subject to the condition
div j=0 and V is the volume. If P and Q are constant
it follows that or

(1/2m) E P (r;p, —r p ) f;

~
rn PdS= VP,

rn QdS= VQ. (9)

Q g (1/4 )Lm(r, +r )(pi;—pi)+(r, —ri) (p, +pi)) f.i.
i &~i

The average of the second term is, for constant Q,
according to Eq. (9), equal to —VQ.

By averaging Eq. (15) over the ensemble of systems
it follows that

(dA/dt) = (dB/«) = =0. (10)

By choosing appropriate expressions for 2, 8. . . re-

The above assumptions regarding the forces between
the molecules and the wall must be valid unless the
stress is balanced by any alternative forces or if the
work done by these forces is maintained by an energy
supply alternative to that which is taken into account.

I et 2, 8. . . be functions of the dynaInical variables
in the form of a sum, each term of which depends on
the coordinates and momenta of not more than two
molecules. Then, defining dA/dt in accordance with
Eqs. (3), on account of the assumption of stationary
conditions:

Q = (1V/2Um2) (pt2y;)

+(&'/4Vm)(L(r+r )(I —p )
+ (r~—r.) (1 i+V.)] f '), (15a)

where the subscripts j and k refer to a representative
pair of molecules. This expression will be transformed
in order to make it comparable with the expressions
obtained by previous authors. Let

C=Z 2 (r;+r,)x;,.
(16)

md', /«= (8g; /Br, ) y;+(ax;i,/Br, ) pi.
= —f ~ (fii—fi~),
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it follows that

dC/«= (1/~) 2 2 Lx '(p +p~)

—(r,+rg)f;g (p, —p„)$. (17)

By taking the average of Eq. (17) over the ensemble of
systems, the relation

((r,+r.)4 (p,—p.))= (X,'(p +p.))
is obtained; the subscripts j and k refer to a representa-
tive pair of molecules. This relation is used for trans-
forming the second term of Eq. (15a). Hence,

Formulas given by previous authors do not fully agree
with Eq. (18). Born and Green2 Lin their Eqs. (2.17)
and (4.15)j give an expression in which the term de-
pending on y, q in (18) is missing. Irving and Kirkwood
(in their Eqs. (6.21) and (6.24)) give an expression in
which the factor (p,+p&) of Eq. (18) is replaced by
2p, which is equal to (p;+pI, )+(p;—p&). Unless the
terms by which the various expressions for Q differ
make no appreciable contribution to the statistical
average, the Qow of energy, in particular the heat Qow
in a steady temperature gradient, should be derived
from (18) rather than from the older equations.

QUANTUM THEORY

Macroscopic properties of the assembly are now
determined by a probability distribution for the occur-
rence of pure states in a mixture. The states are chosen
in such a way that they are steady with respect to E-2
molecules. The distribution, in general time dependent,
is in the present case assumed to permit averaging with
respect to the states of $-2 molecules and to yield an
average that is independent of the time.

Equations (3) and (10) remain valid, differentiations
with respect to the time being expressed in terms of the
appropriate Poisson bracket, such as (i/k)(Hri, —rI,H)
for drl/dt. The Hamilton function II is defined as

H=g, p /2m+0+X.

Equations (4) and (5) must not be used explicitly
since they apply to a molecule that is localized at some
point near the wall. Equations (6) and (7) which are
in classical theory consequences of (4) and (5) should
now be valid on their own merit expressing the balance

The functions A, 8 are defined also in a symmetric
way

A = 2Z~(r~p~+ p~r~),

B= (1/2m)P, (r,p +p,'r, ),

or, alternatively,

(20)

(21a)

B= (1/2~)Z (p" —r;—p, ), (21b)

the dots and hyphens signifying scalar multiplication
of the erst and third factor.

In calculating dA/dt, etc. , the following commutation
rules are used:

uG(x) —G(x)u= (5/i) (dG/dx),

G (u) x xG (—u) = (It/i) (dG/du),

u'G(x) G(x—)u'= (It/i) $(dG/dx)u+u(dG/dx)5

Here x and I denote a Cartesian coordinate and the
conjugate component of momentum. G(x) and G(u)
are functions of these variables.

By averaging the time derivatives dA/dt, dB/dt,
dC/dt over the ensemble of systems expressions for
P and Q are found which are identical with those
presented in Eqs. (13) and (18), respectively. These
expressions do not contain any noncommuting factors.
Equation (13) applies equally to normal and tangential
stress components. Equation (18) is arrived at whether
B is defined according to (21a) or according to (21b).
The. noncommuting factors in 8 do not give rise to
any ambiguity. Averages that are indicated in (13)
or (18) can be evaluated by the method of Irving and
Zwanzig' or by means of the density matrix.

CONCLUSION

Results obtained in this paper do not depend on any
arbitrary assumption. They apply to steady conditions;
application to time dependent processes is possible
if the left-hand sides of Eqs. (12), (15), and (17) are
taken into account. In periodic processes, such as the
absorption of sound, a time average of the ensemble
averages may be taken; if this reduces the mean time
derivatives (dA/dt, dB/dt, dC/dt) to zero, Eqs. (13)
and (18) remain valid in their present form.

of forces and energy; Eq. (7) will, however, have to be
made symmetric with respect to commutations and,
accordingly replaced by

(1/2m)(P, (r;F; p;+p,"F;r,))=—
~

rn QdS. (19)


