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Radiative Correction to High-Energy Electron Scattering*
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The one-photon radiative correction to the high-energy electron scattering by a nuclear field is analyzed to
all orders of Born approximation for the nuclear potential. The leading term of the fractional decrease of the
elastic scattering cross section is shown to be exactly the same as that given by the first Born approximation.
A detailed analysis of the effect of the long Coulomb tail on the infrared divergence is made. Also, an analysis
is made on the origin of the logm term which appears in the radiative correction.

I. INTRODUCTION AND SUMMARY

HE radiative correction to electron scattering by
a nuclear 6eld was calculated by Schwinger' in the

first Born approximation for the nuclear potential, and
to the lowest order in the coupling between the electron
and the radiation field. (The phrase "Born approxima-
tion" will refer here to the interaction between the
electron and the nuclear potential. ) In view of 'recent
experiments' on the scattering of high-energy electrons
by heavy nuclei, it is the purpose of this paper to in-
vestigate higher Born approximations of the radiative
correction, still including only one-photon processes.
According to A, the contribution to the cross section
from the radiative correction, o.„d, is proportional to the
first Born elastic scattering cross section, o-,i, so that to
order (Zn)' we have

O rad ~&eiy

with the fractional decrease 8 being given asymptotically
in the high-energy limit by

(4ot/sr) logL(2po sin0/2)/ntj log(po/DE), (2)

Here, the notation is as follows: n is the fine structure
constant, nt the electron mass, pe the electron energy, 8

the scattering angle, and AE is the energy resolution
associated with the experiment. We use units such that
ttt=c=1 throughout. The expression (2) is the leading
term of 8 in the sense that it is the product of the two
logarithms with the large arguments Pe/nt and Po/f3E,
the neglected terms being either linear in these loga-
rithms or constants of order unity depending only on the
scattering angle 8. We shall use the symbol for this
meaning. We show in this paper that, in the same sense
as above, the expression (2) represents the leading term
of 5 to al/ orders of the Born approximation, so that o.,i

in Eq. (1) now stands for the exact elastic scattering
cross section. Since the expression (2) is apparently con-
nected with the infrared divergence, we shall prove the
above statement in two steps. First we shall show that
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the coeKcient of the infrared divergence, namely, the
coefficient of log(d, E), is exactly given by the same ex-
pression as (2) to all orders of Born approximation in the
high-energy limit. The second step is to show that no
(logrrt)" with re~2 appears in the radiative correction.
This will exclude such large terms as t log(pe/nt)$' and
at the same time will 6x the argument of the second
logarithm in (2) as pe/f3E, since 8 should be a function
of the three parameters nt/Po, DE/Po and f3E/rrt in the
case of the point Coulomb potential. (We consider large
angle scattering, so that sin8/2 is of order unity, and we
can omit it from consideration in our discussion of the
leading term. ) If the nuclear charge has an extension of
order 1/a, Eq. (2) will be still true. This is because no
term such as log(u/p) appears in the cross section. If it
did, the differential cross section would diverge in the
point charge limit a~~.

Concerning the first step, the same conclusion has
been reached by Newton' and also by Jauch and
Rohrlich. 4 The essential point of the argument of these
authors is that in the inelastic scattering of an electron
with emission of a soft photon, the infrared divergence
occurs only when the photon is emitted either before or
after the potential scatterings (see diagrams A and C of
Fig. 1). This follows from a simple inspection of the
energy denominators appearing in the integrand of the
various processes. It is also physically acceptable, since
the electron confined in the scattering region would be
more likely to emit hard photons of wavelength shorter
than the atomic dimension, rather than soft ones.

However, such an argument applies only for low-

energy electrons in a screened potential. ' For electrons
of energy as high as a few hundred Mev the large-angle
scattering takes place almost inside the nucleus, and
since the energy resolution also increases, we have to
deal with relatively high energy "soft photons. "In such
a case the screening plays no role at all. In the un-
screened potential, the electron could emit soft photons
in the course of the gradual deflection by the long tail of
the Coulomb potential. Therefore, we should expect an
infrared divergence also in the processes omitted in the

e R. G. Newton, Phys. Rev. 94, 1773 (1954).
4 J. M. Janch and F. Rohrlich, Helv. Phys. Acta 27, 613 (1954).' The importance of the screening was noticed by Mittleman in

his paper which also reached to Eq. (1) for the nonrelativistic
electron in a screened potential. M. H, Mittleman, Phys. Rev. 93,
453 (1954).
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foregoing discussion. Mathematically, this is reQected in
the fact that the elastic scattering matrix element be-
tween the two virtual states (ofi-energy-shell matrix
element) has a discontinuity on the energy shell, as was
noticed by Dalitz. ' This means that we cannot always
neglect the photon momentum in the internal electron
propagators between the successive potential scatterings,
as was done in references 3 and 4.

In Sec. II, we shall perform the potential integrations
of the second Born approximation in the soft photon
limit, and separate out the discontinuity term which
contributes to the additional infrared divergences. It
will be shown that this discontinuity term actually
comes from the small momentum transfer by the
electron to the external field, either just before or after
the emission of the photon, which indicates the effect of
the long Coulomb tail. However, these additional
infrared divergences cancel out completely, when
the contributions from all the possible processes of
Bremsstrahlung are added. The same cancellation occurs
also for the virtual radiative processes. This cancellation
of the additional infrared divergences resulting from the
Coulomb tail is quite general, and can be shown to hold
to any order of Born approximation and also for any
number of soft photons emitted. ' Thus, we are justified
to take only such diagrams as (A) and (C) of Fig. 1 and

(A) of Fig. 3, and to set 0=0 in the internal electron line
AB in the consideration of the infrared divergence.

The second step, namely to prove the nonexistence of
a term (logm)', needs an analysis of the origin. of logzzz, s

which appears in the first Born approximation. This will

be done in Sec. III by a careful examination of the
photon momentum integration. It develops that logos
originates from each of the "outer" electron propagators
such as XA and BV of diagram (A) of Fig. 3, when the
photon momentum is parallel to the incident or outgoing
electron momentum. Since for a large-angle scattering
the incident and scattered electron momenta are not

parallel, and since the poles of the internal electron lines
between the potential scatterings do not generally
coincide with those of the outer electron lines, we can
infer the nonexistence of the higher powers of logm. '

A remark will be necessary about the fact that some
methods for treating the infrared divergence, for in-
stance, the method employed in A and the method of
assuming a small photon mass, actually give (logzzz)' in
some integrals even in the calculation of the first Born
approximation. However, such (logzzz)' terms are of a
quite fictitious character, since they are shown to
originate from the contribution of the soft photon, and
hence are bound to cancel in the final expression. The
method employed in the present paper, namely, to
restrict the photon momentum space by the condition
E~E;„, has the advantage of giving no fictitious
(logzrz)' of the above kind" and is suited for the present
purpose. The noncovariant character of the method
leads to no trouble at all as is seen by the facts that all
the methods give the same value for the noninfrared
divergent integrals and that we get a unique answer for
the radiative correction in the first Born approximation
by any method.

A more important point to examine is the effect of the
long tail of the Coulomb potential, which has the
possibility of giving rise to higher powers of logm by
overlapping the poles of the internal electron lines with
those of the outer. This is also checked and the answer is
negative.

II. INFRARED DIVERGENCE IN A COULOMB FIELD

For the three possible diagrams of the inelastic
scattering in the second order (Fig. 1) we have the
following matrix elements in momentum representation:

Mg = Lzep/(2E) l) dl(izl") —'u, y tpiy (P Iz l)+—zzz—$

&&ypLzy (p —k)+zzzJ
—'zy eu„ (3)
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Ms [ieF/(2K) lj dl(1——'I") 'u, yppiy (p —k —.l)+zrz$ '

&(iy e$iy (p —t)+mJ-'ypzz„, (4)

where the momenta 1, l', and 0 satisfy the conditions

tl —P+I+I'+k=0, qp
—Pp+kp ——0, and k'=0.

tC)

Fro. 1, I'eynman diagrams for second order inelastic processes.
electron line; -------, photon line; X, external

field.

p R. H. Dalitz, Proc. Roy. Soc. (London) A206, 509 (1951).
7 Such a Coulomb anomaly has been investigated independently

by Newton in his paper on the second Born calculation of the
radiative correction to the electron scattering. R. G. Newton,
Phys. Rev. 97, 1162 {1955).His result is essentially the same as
that of the present paper, although his calculation is limited to the
second order, and the anomaly is treated not as an additional
infrared divergence but as a Coulomb divergence.

The pure elastic scattering cross section can be expanded in
powers of m. Yennie, Ravenhall, and Wj.lson, Phys. Rev. 95, 500
(1954),

Mq is similar to Mg and will not be mentioned here.
Here, light-face letters p, q, and k denote the four mo-
menta of the incident electron, the scattered electron

'The aforementioned paper of Newton gave (logra)' in the
second Born approximation. However, after the completion of the
present work, his result was corrected and it no longer gives a
(logm)s term. Hence, his result con6rms the validity of the general
argument presented in this paper. Roger G. Newton, Phys. Rev.
98, 1514 (1955). See also, Max Chretien, Phys. Rev. 98, 1515
(1955).

'0 The invariant minimum momentum method employed in A,
has some mathematical difficulty as pointed out by Elton and
Robertson. A close analysis shows that the method in A is almost
equivalent to assuming a small photon mass. L. R. B. Elton and
H. H;. Robertson, Proc. Phys. Soc. (London) A65, 144 (1952).
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M, i iF)——d1(1'1")-'uoyp[iy (p—/)+m] 'yoii„(5)
with

q —y+I+ 1'=0, and gp
—pp=0.

Rationalizing the denominators and neglecting k in the
numerator, we get

ieF ( p e)

(2E)l ( p k) ~

2io(2'yPPP —2'7 /)B&
X (3')

[(/1+/) ' 2p (0+—/) ]1'(1—Ay+ k) '

ieF
Ms ——

~
dl

(2E)' ~

[2e (p —/)]u, (2yppp —iy /)ii„
X (4')

[(&+/)' —2p (&+/)]
X (/2 —2/ P) 1'(1—Ay+k) 2

212(2yp Pp
—1'7 /)Q&

M.i= iF dl
(/2 —2/ p)12(1—ay)2

with

Dy=y —q, ~Ay~ =DP=2P sin(0/2) for M, i.

(5')

In Eq. (4'), we have neglected a noninfrared divergent
term

'tl~tg eS„
dl

[(k+/) 2—2p (k+/)]12(1—Ay+k) 2

which is discontinuous but finite in the limit k—+0, as
will be seen from Eqs. (6), (9), and (10) below. The
potential integrations in (3') and (5') are all reduced to
the first two of the following integrals by the change of
the integration variable according to y —k —I—+I for (3')
and y —1~1 in (5')

(Io., I;; I;;)= dl(1; /, ; l;/, )

and the emitted photon, respectively. / and l' are the
momentum transfers at A and 8, respectively; bold-face
letters will be used for the spatial vectors, and capital
letters for their magnitude. Thus, for instance,

p=(y;p, ), lyl=p; l=(1;0),
e denotes the polarization vector of the photon. F
represents F= (22r)'( —Ze'/22r )'. The other notations
will be evident. The second Born elastic scattering
matrix element is given by

[In (5), the pole of the denominator P—R2 is defined by
adding a small negative imaginary part, according to
Feynman's prescription. "$ The integrals (6) can be
integrated exactly. Although the quantities p', q' and E,
defined by (7) for M&, approach the corresponding
quantities for M, &, (8), in the soft photon limit k—+0, the
corresponding values of the integrals do not. In order to
see that there is this discontinuity on the energy shell,
the integration was made by employing the Yukawa
potential e "&/y instead of the Coulomb potential. The
value of the integral (6) as well as its value near the
energy shell (8) in the limit X~O are listed in the
Appendix. The integrals assume the following form near
the energy shell:

where Io" I;"and I "denote the value of the integrals
(6) on the energy shell (8), while h(f) is the discon-
tinuity term defined by

f 2XP
A(f)=lim

~
tan ' +ilog (10)"~' PAP' ( 2XP (f'+4h'P')2)

Here f and g represent the measure of the distance from
the energy shell,

f P&2 g2 —
g
—Q&2 g2

It is seen from (10) that the value of d, (f) depends
critically on the relative magnitude of f, g, and 7i, which
is the origin of the discontinuity. The condition on the
magnitude of E for Eq. (9) to hold is

E&&aI',

which is necessary and suflicient to replace Ap' = ty' —q' t,
P', and Q' by the corresponding quantities AP, P, and

Q, on the energy shell (8) respectively, everywhere
except in f and g.

From (7) and (11), and remembering gp+E= pp, we
have

f= —2p k)0, g=O for M&.

Using these values in (9) and (10), we get from (3')
and (5')

ie ( p e)

(2E)'* ( p k)

X[—iM, i+F(& 2Pogoii„)d (—2P k)]. (13)

In just the same way, we have also that

with
X[(12—~2) (1—y')'(1 —«')'] ', (6)

P =P) q'= q, R2= Q'= P' for M„. (8)

y'= y —k, q'= q, Z2= Q'= P' —2poE+E2
for M~, (7)

ie (q eq

(2E)* Eq k)

X[—iM.,+F(~,2povo~, )&(2q ~)].
"R, P. Feynman, Phys. Rev. 76, 749 (1949).

(14)
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Since the real parts of 6(—2p k) and A(2q k) are
+~'/2PAP', respectively, these terms do actually give
the additional infrared divergence.

The evaluation of M~ can be performed as follows.
Introducing an auxiliary variable x, we combine the two
propagators of (4') into

~l
dxt P—21 (p —xk) —2xp k] '

Jp

If we change the integration variable by y —I—xk~i,
we get integrals of the form

which is equivalent to what we would obtain if we were
to take only 3E~ and 3fq and neglect k in the potential
integration from the beginning. The same procedure
applied to the higher Born approximations is readily
shown to give the same expression as above, so that Eq.
(18) is the exact expression, so long as the cancellation
of the additional infrared divergences always occur, as
shown later. The inelastic cross section for the emission
of a photon of energy smaller than certain energy hE
such that AE(&AI' is then

~h, E
0 j~ei=. Le /(2ir) ]P dk(1/2E)

1

t dx(8/BR')I; and
f

dx (8/BR') I;,,
"o

~ &min

X(p p/p k qp/q —k)'O. i. (20)

with
R'= P' 2xpoK+—x'K'

y'= p —xk and il'= il+ (1—x)k,

which give from (11)

f= —2xp k and g=2(1—x)q k. (15)

At x=0 and x=1, we have f=0 and g=0, respectively,
and the discontinuity at these points gives an infinite
integrand when differentiated by R'. Therefore, only the
discontinuity factors h(f) and A(g) in I, and I;;
contribute terms of order 1/E. Thus, the foregoing
integrals reduce to the evaluation of

dx(8/8R') 6 (f) and dx (pj/pjR') 6 (g).
0 Jp

From (11), (15), and (A-8), we have

dx(a/BR')6 (f)
Jo

dx((3/8 f)D(f)
U p

~l
dx(2P k) i(8/pjx)6( —2xp k)

Jp

Performing the polarization sum and rearranging the
terms, we have

f AE

~;.,i
——(n/2~') dk(1/K)

&min

XLP'/(P k)' —P q/(P k)(q k))~ i. (21)

Ke shall next show that the second term of 3f&, Eq.
(13), stems actually from the small momentum transfer
at the point A. This means that in (3'), small 1 con-
tributes to 6(—2p k) term, or that in Ip, I; and I,;
defined by (6) the small region around I= p gives D(f).
In order to see this, we take the difference M~, (3'), and
M, i, (5'), and show that this gives 5(—2p k) when
integrated over a small region of 1 around the origin.

For small 1, we may approximate the integrands of
(3') and (5') as follows:

f dl~ ' d12poyo/{L —2p' (k+1)—ip)

X(1'+X')~p'l (~ p—4), ( )

dl~ "d12poyo/I (—2p i—ip)

X (1'+li') d,p'] (X &~0). (23)

In the same way, we get

= (2p k) '6(—2p k). (16) Taking the difference and performing the angle integra-
tion first, we have

f fdl- dl
dx(i7/BR')&(g) = —(2q k)

—'h(2q k). (17)

Equations (16) and (17), together with (6), enable us to
write (4') as

Mii fieF/(2E) '*)(u, 2p——pypu„)-
X[(P p/P k)A( —2P. k) —(q p/q k)h(2q k)]. (18)

Adding (13), (14), and (18), we get

M;„,i =Mg+3IIe+M e
= —Le/(2K)')(p p/p k —q. o/q k)M, i, (19)

J ej.

= 2y pp p (ir/PAP')

X ~dL(1/L) log(p k PI.)/(p k+PL)—

+i dLLL/(L'+X')]

Xt tan '(2p k+2PL)/p tan '2PL/p)—
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But the difference of the two inverse tangents in the
second term has the value —~ for PL &—p k()0), and
vanishes for PL,)—p k. Hence the second term gives,
when integrated over [0, —p k/P],

(im'/P~P') log["P/( —p k)]&

which is just equal to the imaginary part of 6(—2p k).
The first integrand becomes infinite at L= —p k/P, and
decreases as 1/L' for large L. Therefore, the main
contribution comes from L= —p k/P. Extending the
integration limit to infinity, we get the real part of
6(—2p k):

7r'/(2PAP')

This result at the same time justifies the use of ap-
proximations (22) and (23). In the same way, we can
show that the anomalous term of M ~ comes from the
small momentum transfer l' at 8, and that those of M~
come from small I at A and small I' at B.

Once we know that the Coulomb anomalies come from
the small momentum transfer just before or after the
emission of the photon as in the foregoing, the cancella-
tion can be shown quite generally as follows. For
instance, suppose I is small. By the same approximation
made in (22) and (23) the integrand of (3') and (4')
become

M~: 2P»p(2'P)/{[ —2P (k+i)](—2P k)1'~P'),

Me: 2ppvp(2'P)/([ —2P (k+i)7(—2p. i)i'~P')

Combining these two, we have

2poyo( 4'p/p k)[(—2p /)I'dp ]
which is simply equal to what is obtained by neglecting
k in the internal electron line AB of M~ and assuming I
is small.

For the third Born approximation we have four
diagrams shown in Fig. 2. Call the momentum transfer
at A, B, and C as li, lo, and lo, respectively. The anoma-
lous terms occur in the following way:

Ii is small: (A) and (B) have anomalous terms.
li and Io is small: (A), (B), and (C) have anomalous

terms.
lo and Ip is small: (B), (C), and (D) have anomalous

terms.
lp is small: (C) and (D) have anomalous terms.

The first and the last cases are just the same as those of
the second Born approximation discussed above. In the

p
X

ar W WQ
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tA)

p
X

aa %LQ P as

8 A

/

X
Q

Y

p
r 40

X Y A
(C)

-"~Q PI A
QB, X Y

(C')

p 44

A X Y
lO)

FIG. 3, Virtual photon processes for the second
Born approximation.

second case, after making the approximation analogous
to (22) in the matrix elements, we combine (A) and (B).
It is obvious that we get what is equivalent to neglect
of k in the electron line AB of (A). Then, we combine
the resulting term with (C). We then get a term which
is equivalent to neglect of k in the two electron lines AB
and BC of (A).

A similar discussion can readily be made for many
photon emissions as well. Thus, we conclude that the
cancellation of the additional infrared divergences holds
to any order of the Born approximation and also to any
number of photons emitted.

Next we shall examine the virtual photon processes.
Here we have such processes as are given in Fig. 3. We
omit from our consideration the diagrams containing
bm and also the vacuum polarization diagrams, because
they contain neither an infrared divergence nor (logm)'.
The matrix elements are, for instance,

M n, ———[e'P/(2m)4] d4k/k' dl(I'I")—'

jM(p„) ———[e'P/(2~)4] d4k/k'j dl(1'I")—'

xa,&„[i&(q k)™7—~,[i~(p k i)™-]—
Xyp[iy(p —k)™]—'y„u„(24)

JM,s, ———[e~F/(2m)'] t'd'k/k' "d1(1'I")-'

x —,~.['v(p-i)+ ]-'v,[,(p-k-i)+ ]-'

X&,[i~(p k)™]—- V„"„, (25)

K/
I

/
/

/

X A B
4A)

as ~Q
C A

K
/

/
/

/

X 9
(8)

xg,~ [i~p(p t)+m]—
x [ip(p —k—l)™]'p„[ip(p —i)™7'ppQ„, (26)

with

q
—p+i+i'=0.

p
A

K/
/

/
/

/

B X
to)

Q p
C A

tO)

K/
/II «

X

I'lG. 2. The third Born approximation for the inelastic scattering. (27)

We are interested at the moment only in the contribu-
tion of the soft photon, so that we integrate over the
momentum space defined by

E-;„&E&E(«~P).
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Ke shall examine these integrals without doing the
separation of the ultraviolet divergent term, although
they are infrared divergent at the same time. "This is
justified because the ultraviolet divergent terms of the
vertex and self-energy part in diagrams (B), (B'), (C),
(C') and (D) are known to cancel with each other from
the renormalization theory as a result of Z& ——Z2.""
Then, diagrams (B), (B') and (D), without separation
of the ultraviolet divergence, contain no infrared diver-
gence besides those coming from Coulomb anomalies.
The exceptional case is diagrams (C) and (C'), where
the finite part of the self-energy part drops as a result of
the Dirac spinor operating from the left or right, leaving
an ultraviolet as well as an infrared divergent term. The
treatment of these diagrams is well known. " (C) and
(C') give

M&o)+M(or) = iIMei,
where

I=—[e /(27r) ] ~d k(1/k') {u~y„[ty(p k)+m]—'

Xy},[iy(P k)+—m] 'Y„u„)/(u„y}u„)

Performing the ko integration and taking only the
infrared divergent term we get

which is no longer infrared divergent. Adding M~~~ and
M~~ ~, we have

—4(p q)»ppp/[( —2k p)(—2k q)(—2p J)&'~p'],

which is equal to what we obtain by putting %=0 in the
internal propagator of 3f(~~. Thus, we are allowed to
take only M~~~ and to put k=0 always in the internal
propagator AB in the consideration of infrared diver-
gence. Therefore, we have

M(s}+M(}))+M(s t) +'M (o)

= —ie'/(2 )tr4 dtk(4p q)/

[k' (k' —2k p) (k' —2k q)]M.i. (34)

Performing the kp integration, we get as the infrared
divergent term

M (A) +M (}))+M(B')+M (D)

= (&r/4tr') (p q) dk(1/E)
f
~min

X[1/(k p)(k q)]M.). (35)

M(o)+M(o )
= —[n/(4n-')]. )" dk(1/E)

&min
From the interference with the pure potential scattering
matrix element M. i, (35) plus (29) give the following

X [ps/(p. k)s]M (ks 0) (29) contribution of order &r to the cross section,

This expression holds of course to any order of Born
approximation for such diagrams as (C) and (C'), which
have a self-energy part on the extreme right or left.

The potential integrations in M(p, ~, M(~~, M(g ~
and '

M(r)) can be reduced to (6) and the result again contains
two discontinuity terms A(k' —2k. P) and 6(ks —2k q),
which can, however, be shown to cancel out exactly
when we add the four matrix elements. Here we shall
show this cancellation by the general argument pre-
sented before. Assuming k and 1 are small, the integrands
of (24), (25), and (26) reduce to

M(g .'—4(p q) 2yppp/{( —2k q)(—2k p)
X L

—2p (k+1)]1'~p') (3O)

M(n) ~ 4' ' 2'yppp/{ ( 2p 'i) ( 2k p)
X[—2P (k+1)]lshp') (31)

M&, .). —4(p q)2pppp/{( 2k'q)( 2p'1)

X[—2p (k+l)]1'Dp') (32)

M(r)) . 4tis'2yppp/{ (—2/ p)'[—2p (k+l)]1'hp'). (33)

Adding 3f~g) and 3f(D), we get

4~s2pppp/[( —21 p) (—2p k)1 &ps]

'r R. Karplus and N. Kroll, Phys. Rev. 77, 536 (1950)."F.J. Dyson, Phys. Rev. 75, 1736 (1949).
'4 J. C. Ward, Phys. Rev. 7&, 1&2 (1950).
'5 See, for instance, F. J. Dyson, "Advanced Quantum Me-

chanics, "Lecture notes at Cornell University, 1951 (unpublished).

III. EXAMINATION OF (logm)s

To understand the origin of logm, which does not
appear in the pure potential scattering, we shall examine
the typical integral

)
d'k[k'(k' —2k p)(k' —2k q)] ' (3&)

which appeared in Eq. (34), and is also the most im-

portant integral in the first Born approximation. Since
this is infrared divergent, we have either to restrict the
photon momentum space by

E&E (39)

o.v irt = —((r/2~')
~

dk (1/E)
~min

X[p'/(p k)' —p q/(q k)(p k)] .i (36)

Adding the inelastic cross section (21), the lower limit
E; cancels out and is replaced by the physically
meaningful quantity DE. The k integration can be done
easily and gives as a leading term

(rres =(rinei+(rvirt
—(4(r/pr) log(d, P/m) log(E/AE) o..i. (37)

The coeff}cient of loghE coincides with that of Eq. (2),
which is the required result.
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as before, or to assume a small photon mass p, , and
replace the photon propagator by 1/(k'+ p,'). Although
the former method is noncovariant, it gives the correct
answer, as explained later. For our purpose of examining
the, logos term, it is convenient to employ it. We perform
the ko integration first by contour integral. The pole of
the photon propagator 1/k' contributes a term

(~i/4)~"dk(1/E')[1/(po —n p)]l 1/(po —n q)], (4o)

which now contains a (logm)' term. But this (logm)' is
cancelled in the calculation of the erst Born approxima-
tion by another (logm)' in the bremsstrahlung integral
which is now, for instance [the second term of (21)],

dk[1/(Eo+„o)][1/(k p) (k q)]

(87r/hP') log (hP/m) [2 log (hEhP/y po)

—loghP/m], (k y& =0), (44)

where k=nE. The angular integration can be readily instead of the noncovariant integral
done and gives

(167r/hP') log (hP/m). (po))m)

It is apparent from the form of the integrand that logm
is contributed from n~~p or n~~q, where one of the
denominators becomes

po —P=m'/2po,

while the other becomes

po —p q/P=hP'/2P.
The pole of the factor 1/(k' —2k p) of (38) gives the
following contribution after a little manipulation:

k hp [(k—p)'+m']l

(k'p —po +poL(k p) +m ]'*}
(41)

E'[po' —(n ' p) ']
Again, this has a denominator (n p)' —po', which be-
comes small when' k~~p or k~)

—p, and gives logm by
angular integration. When especially k=p, the second
denominator becomes nz, but at the same time the
numerator of the last factor becomes —mo+mPo, so that
no (logm)' can be expected from this additional singu-
larity. (We shall call such factors as 1/[(k —p)'+ m']'* or
1/[Eopoo (k p)'], m-sin—gular, because they become
singular when m-+0. ) The first denominator never
vanishes as long as k~~p except when k=0, where the
numerator also becomes 2k p. The same analysis
holds for the third factor 1/(k' —2k. q). Thus, we can
expect no (logm)' term from the integrals of the type
(38). The actual evaluation of the integral (38) can be
done more easily by combining the three denominators

by the usual perscription, integrating 6rst over ko and
then integration over k subject to (39). The result is

(4i~'/hP') log(hP/m) log(po/K;„). (42)

Thus we actually get no term (logm)'. It will be noticed
also that we get exactly the term in Eq. (2) if we
substitute the value (42) into Eq. (34).

Qn the other hand, if we assume the small photon
mass p, the integral (38) becomes

(2is'/hP') log (hP/m)
X[2 log(hP/p) —log(hP/m)], (43)

dk(1/E) [1/(k p) (k q)] (16m-/hP' )

Xlog(hP/m) log(hE/E; ), (k'=0) (45)

employed in the evaluation of (37). That the (logm)'
terms in (43) and (44) come from the contribution of
small k will be evident by remarking that the integral

no longer gives (logm)' and leads to a unique value by
any integration method. Since we have established in
Sec. II the exact cancellation of the contribution from
the soft photon E&dE«AI', we conclude that the
diGerence of the two methods, that is solely associated
with the soft photon, should cancel in the final answer
completely. [Note that (21) and (36) have the same
integrand. If we assume a small photon mass p, we have
only to replace the factor 1/E by 1/(Eo+p')l, and
ko ——E by ko (E'+p')l, a——nd set E;„=0, in both

integrands. This leads to no change in the above con-
clusion. ]In fact, in the case of the first Born approxima-
tion, we can show that the two methods give exactly the
same answer including the terms of order unity.

It remains to examine the eGect of the long Coulomb
tail. Let us take as a typical integral Mp, &, Eq. (24). The
integrand is

$(k'(k' —2k P)(ko —2k q)

X[(k—P+i)~ymo]lo (I—hp)o}—i (46)

where the numerator E is given by

S=N,y„[—iy(q —k)+m]go[ —iy(p —k+i)+m]yo
X[—iy(p —k)+m]y„N„. (47)

In order to get (logm)' in (46), it is clear from the fore-

going analysis that the l-integral,

I dl(1/[i' —2t (p —k)+k' —2k p]}
X (1/l')L1/(l —hp)' ], (48)

must be singular or m-singular at some point near k~~p

or k~~q. In the lrst denominator of (48) we can expect
that the singularity will occur at that point which
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satis6es the following two conditions:

k—y=O, ks —2k. P=O, (49)

because there the first factor of (48) is of order 1/I',
which gives a very high singularity at 1=0, together
with the potential factor 1/Is in (48). The condition (49)
is equivalent to k —p=O. (The symbol = allows an error
of order m. ) In the same way we know that when
k—q=0 and k' —2k g=O, the first factor of (48) be-
comes of the order 1/(I —Ay)', which again overlaps
with the second potential factor of (48). Thus the higher
m-singularity, if any, will occur at either

or
k= p 1=0

k=g, l=hp,
(50)

&= .vo[ 'v(p i)+ jv.—[v(p —k i)+ 1vo-
X[—zy(p —k)+m]v„~, . (52)

where the singularity of the I-integral overlaps with
those of the second or third denominators of (46). The
conclusion is readily conhrmed by looking at the exact
value of the I-integral given by (A-1). For instance,
assuming f, g)0, (A-1) gives for the real part of the
integrals the value

~s/[~p(Rs~psyf g)'*]

which is singular at R'=0 and f=0 (or g=O). Re-
membering that Rs= (kp Pp) —m' f=k —2k P and
g= k' —2k. q for (48), the singular point is equivalent to
k= p (or k=q). On the other hand if the integral (48)
has one /; in the numerator, the integral is no longer
singular at k=p, as is readily seen from (A-1) and
(A-9). This implies that the singularity at k= p occurs
because 1=0.

However, at the points (50), the numerator (47) is of
order m', which is enough to cancel the m-singularity
of the /-integration. Therefore, we get no (logm)' from
diagram 2 of Fig. 3.

The integrand of Mzz, Eq. (25), is

&{k'(k'—2k P)L(k —P+i)'+m'3
X (P—2/ P)Is(1—Ay)') ' (51)

with

[The matrix element should be expressed. as a power
series of m/ps plus some function of log(m/ps). g The
I-integration of (51) gives another less singular term of
the same order as (48), which is singular only at k= p.
(This comes from an integral that has one power of I in
the numerator. ) However, again at k =p the numerator

(52) becomes of the order m, which cancels the
singularity.

The same kind of argument applies also for M(g),
M(c), 3f(c, ), and M(D) and in any case we can exclude
the possibility of the appearance of (logm)'. A more
rigorous analysis has been done by integrating 6rst by
ks, then performing the I-integration and finally inte-

grating over k in the small region around k= y. The re-
sult conforms with the foregoing discussion.
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APPENDIX

The potential integrations were made following the
method of Dalitz and Lewis employed for the calcula-
tion of the second Born elastic scattering matrix ele-
ments. The calculation was made for the Yukawa
potential e ""/r, in order to express the results for off-

and-on-energy shell matrix elements compactly, and
also to exhibit the discontinuity on the energy shell

clearly. The necessary integrals for the evaluation of (6)
are the following:

Is(y', q', R')

I gI 1/{(P—Rz —ze)[(1—y')s+yzg

&([(I—q') '+li'$), (e—+0)

= (zzr'/gA) log[(B—iC—iD)/(8 —iC+iD) $

= (zr'/gA) [tall '(D+C)/8+tan '(D —C)/Bj

Comparing (51) with (38), it is apparent that (51)
cannot give a higher m-singularity than (38), except
when 1=0. From 1=0, the I-integration gives rise to a
singular term where

+(z~'/V'A)»g{[&'+ (C+D)'j/

[&'+ (C—D)'1&' (A-1)

—(zrs/2PAP') [1/(k' —2k P)]

(Incidentally, this was the origin of the additional
infrared divergence appearing in M&n&. ) Inserting this
into (51) we get the double pole (k' —2k p)'=0, which
gives a term of the order 1/m' after k-integration. How-
ever, the direct calculation shows that this 1/m' is
cancelled by the numerator S, as we should expect.

RsgP&2(gP&2+Q2) 7 2(f g)2

y~P's(V+ f) (~'+ g),
(A-2)

l (2ys+ f+g)gP&2. C—R+P~2(QP~2+4lts)

D= hP"QA,
's R. R. Lewis, Jr. , thesis, University of Michigan, 1954 (un-

published).
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with

»'=
~

p' —q'~, f=P'2 R2—, and g =Q'2 P2.—

J(p', R2) =) dl 1/{(P—R2—ie)L(I—p')2+X2]}

= (i2r2/P') log((X —iR+iP')/(X —iE+ip')]
= (2r2/P) )tan '(R+P')/A+tan '(P' —R)/X]

+ (~22/P) log {p.2+ (E+P')2]/

P,2+ (It!—P')']}'*. (A-3)

&(p',q') =~ dl 1/{L(&—p')'+~'][(&—q')'+~']}

= (m-'i/»') logL(2X —i»')/(2X+ihP)]
= (2~'/»") tan-'ap'/X. (A-4)

In all these expressions the argument of the numerator
and the denominator of the logarithmic functions must
be taken as L

—2r/2, 2r/27.
The value of the integrals depends critically on the

relative magnitude of f, g, and X2, in the limit f, g, X2~0.
Keeping these quantities finite, whenever the relative
magnitudes are relevant, the soft photon limit, as well as
the unscreened limit, is obtained by replacing P', Q', It'.2,

and»' by P, Q, P'=Q' and Ap, respectively, and
taking X—+0. The results are

where

Io(p' q', &') =I0"+~(f)+~(g),
I(p' &') =I"+»'~(f)
I(q' ')=I"+ ' (g),

X(p' q') =E",

(A-6)

f 2XP
A(f) =lim tan ' +i log ~. (A-7)

0 pgp2 ( 2lw p (f2++ 2P2)-', )
From this definition, we have, of course,

D(0) =0. (A-8)

I; de6ned in (6), Sec. II, can be reduced to the linear
combination of Io, J and E, as follows:

I'= {P''/LP"Q"—(p' «')']}
~ {(p q)I(p,~)-Q"I(',~)
+(Q"—p' q')&+i&'(Q" —p' q')

+P"(P"—p' q')]Io}+(p'~q') (A-9)

I(p', R2) =——+i tan ' +i log
P 2 2XP f' j4A'P2

E(p', q') =2r2/Dp.

Separating the terms which remain when f=g= 0 (on-
energy-shell value) and denoting them as I0", I" and
E" we get

I' f
I0(p' q' Z2) =

~

tan-&
P»21 E 2XP 2XPJ

4I"AP'
+2 log

L(f2+4$2P2) (g2+4y2P2)]g (A g)

From (A-6) we have, in the soft photon limit,

I'= I'"+P'~(f)+c'~(g)

In the same way, we get

I' =I"'+P'P~~(f)+c'c ~(a).

(A-10)

(A-11)


