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the role of indicies while the p~ (x) are the independent
variables of our theory. The chief advantage to using
functional derivatives as defined in (A) instead of the
variational derivative is that functional differentiation
is commutative, while variational differentiation is not.

By keeping in mind the idea that the space variables
are really indices, we can, by analogy, define a Poisson
brac et between two functionals Ii and 6 as

APPENDIX II

A canonical transformation from variables gg, x ~ to
p~, x" can be generated by the generating functional
C(&zan") by requiring that

~"(x)= bc/by&(x), @~(x)= bC/br" (x),
H' =H+ BC/Bt.

k

bF bG bG bF It can be shown by direct calculation that the trans-
(F,G) = dsx. (g) formation (C) preserves Poisson bracket relations and

bye(x) bx" (x) bye(x) bx "(x) the canonical form of the equations of motion.
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The cross section for the multiple production of photons in bremsstrahlung at high energies is calculated,
and it is shown that the probability for multiple bremsstrahlung is quite small compared with that for the
ordinary bremsstrahlung even in the very high energy region of cosmic rays.

The general problem of multiple photon production is further discussed, and it appears that even at high
energies the probability for multiple photon production is appreciable only in the following two cases:
(1) an energetic charged particle is deflected through an angle, which is large compared with the ratio of
its rest energy and its total energy; (2) an energetic charged particle is annihilated, captured or converted
into a neutral particle.

1. INTRODUCTION

'HE Bethe-Heitler' ' formula for bremsstrahlung is
one of the most widely used results in the study

of cosmic rays. Therefore, various types of corrections
to this formula have been investigated from time to
time. In this paper, we shall consider the possibility of
multiple photon production in bremsstrahlung to see
how far the Bethe-Heitler formula is adequate to
describe the emission of photons and energy loss of
electrons at very high energies. It would also be inter-
esting to see whether there is a reasonable possibility
of directly observing the multiple bremsstrahlung in
cosmic rays.

Recently, the author' has investigated the multiple
production of photons in the electron-positron anni-

hilation, and it has been found that the probability for
the production of several photons in this process
becomes appreciable at high energies, which are avail-
able in cosmic rays. But, we shall see that the prob-
ability for multiple bremsstrahlung is quite small at all

energies of experimental interest. The reason for this

' H. A. Bethe and W. Heitler, Proc. Roy. Soc. (London) A146,
83 (1934).

s H. A. Bethe, Proc. Cambridge PhiL Soc. 30, 524 (1934).
' For the latest work on this subject, see H. A. Bethe and L. C.

Maximon, Phys. Rev. 93, 768 (1954), and Davies, Bethe, and
Maximon, Phys. Rev. 93, 788 (1954).

4 S. N. Gupta, Phys. Rev. 98, 1502 (1955).

difference in the two cases will be discussed in this
paper. %e shall also further discuss the general problem
of multiple photon production to see under what
conditions such processes are most likely to occur.

It seems to us convenient to represent the ordinary
bremsstrahlung process as

2. MATRIX ELEMENT FOR DOUBLE
BREMSSTRAHLUNG

In the presence of an external electromagnetic field,
we can write Dyson's S matrix' as

S„=(1/I!)(—i/cA)" dx' . dx&" l

with
XFLH(x'), , H(x&-&)], (&)

H = ieger„g(A„+—A„,„), (2)
' F. J. Dyson, Phys. Rev. 75, 486, 1736 (1949).

e -+e +y,
N

where —+ indicates that the above process can take
place only in the presence of a nucleus. %e can then
represent a bremsstrahlung process involving the mul-
tiple production of e photons as

N

e —+ e +my.
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where 3„,, denotes the external field. If this external
field is due to a heavy nucleus of charge Ze at the
origin, then we have

A.. .„(x)=0,

A p, ,„(x)= (Ze/V) P, e'&. *(1/q'),
(3)

Sp ——(e/ch)') dx) dx') dx"A„, ,„(x)A„(x')Ag(x")

X[&(x)y„Sp(x—x')y„Sr, (x—x")ygp(x")

+P(x')y, Sp(x' x)y„Sp—(x x")yq—k(x")

where t/ is the volume of a large cubical box within
which the interacting fields have been confined.

Following Dyson's treatment, we can write the 5
matrix element for double bremsstrahlung as

FIG, 1. Feynmann diagrams for double bremsstrahlung.

We shall now consider the extreme relativistic case,
i.e., we shall take kp))K. We shall also assume that the
major contribution to the cross section for the process
under consideration arises from those values of qp' and
qp", which are small compared with kp. We can then
simplify the denominators and the numerators in (7) as

(k'+ q'+ q")'+»'= 2k'q'+ 2k'q",

(k —q' —q")'+»'= —2kq' —2kq";

[i(k—q')y —»](y e')u, .(k) =2i(k e')44„(k),

where the various terms in (4) represent the contribu-
Therefore, we can express 7 astion of the Feynman diagrams shown in Fig. 1.We also

put 1—iZe4
P(x) = V 'a, (k)u, (k)e"* E= [u, (k') y4u„(k) ]

2(c@)' (qo'qo")'*
I
k—k' —q' —q" I'

V 4a,*(k')u, (k')e ""',k(x')= 2
A(x')= P

q', e'

A(x") =

(k.e') (k.e") (k'. e') (k e")

(kq'+ kq") (kq") (k'q') (kq")
V—**(ch/2qp') le'a, .*(q')e

—'p'*'

(5)
V l(ch/2qp")l—e"a; *(q")e 'p"*", —

(k' e')(k' e")

(k'q') (k'q'+ k'q")

q/I et I

(10)'Lp'r K-
Sp(x —x') = lim(2m)

—4 dpe""&*
e~+p J ~ )

P +K 1E.
But, due to the indistinguishability of photons in the

same state, we have to write (6) aswhere k and k' are the propagation four vectors for the
initial and the final electrons respectively, g' and q"
are the propagation four vectors for the two photons,
and other quantities have the usual meaning. Substi-
tuting (3) and (5) in (4), we obtain

Sp ——V—'p p' p p dxe'p'
q', q" e', e" k', s 0

S =V Pg P P P Idxe'4'e"~P P 4 4 ~E (6)
q q', e' q",e" k', s J where E' is obtained from E by interchanging the roles

of the photons q' and q", and P', p
~ denotes sum-

mation over all values of q' and q" such that each
physically different state occurs only once. It then
follows from (10) that

where

iZe4

(cA)' (4qp qp )l Ik —k' —q' —q" I'

i (k q' q")y »—— —
X u, (k')y4 (y e')

(k—q' —q")'+»'

i(k —q")p —»

(y e")u„(k)+u, (k')(y e')
(k—q")'+»'

i (k'+q')y » i (k q")y »—— —
y4 (y e")u, (k)

(k'+q')'+»' (k —q")'+»'
i(k'+q')p »—

+u, (k')(p e') (p e")
(k'+q')'+»'

i (k'+q'+q")y »—
x y4N„(k) .

(k'+ q'+ q")'+»'

—iZe4
+E =

2(ch)' (qp qo")'
l
k—k' —q' —q" I'

x[u, (k')y4u„(k) ][(k.e')/(kq') —(k' e')/ (k'q') ]
X[(k e")/(kq") —(k' e")/(k'q")]. (12)

Let us now denote the angle between k and k' as y.
Further, let the angles made by q' with k and k' be
denoted as 4p' and P', respectively, and the angles made
by q" with k and k' be denoted as n" and P" respec-
tively. Since it is evident from the denominators in (12)
that the major contribution to the cross section arises
from small values of the above angles, we can simplify

+0'(x )'YVS&(x x )VASE(x x)VA'(x)]) (4) (kl) ( I)[ (k/+ i) ] (kl)2 (kI I)
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these denominators as

fk'+q'+q" —k f'= (fk'f+ [q' f+ f

q"
[
—fk [)'+k 'y'

="(qo'+qo") /(4ko')+koV,

kq'= ——2qo'ko (82/ko2+n"), etC. , (14)

where we have also made use of the conservation rela-
tions

where d4p is an element of solid angle along k'. Putting

ko' ——ko, d
f

k' f/dko' ——1,

U ' p=(22r) ' "dq', etC. ,

we have

k+q k q —q =0 kp ko qo
—

qo
—=0. (15) g 2

—(1/2!) (22r)
—8 fdql I d II

t d k 2

Using (13) and (14), we can express (12) as

—2iZe'
E+E'=

(C@)' (qo qo )

(k e') (k' e')
X

ko(,2/ko2+~'2) ko(.2/ko2+P'2)

(k e") (k' e")

(~2/k 2+~ 2) k (~2/k 2+P 2)

x L~.(k')&4~.(k)j
[~'(qo'+qo")'/(4ko')+ ko'v']

xg(l~+~ I &„. (20)

We now choose our coordinate axes in such a way that
k is along the s axis, and k' lies in the gs plane. Then, we
can write the components of k and k' as

k=(0, 0, fk[), k'=(fk'f sing, 0, fk'f cosy). (21)

We further assume that the azimuthal angles of q' and
q" around the s axis are pl and p" respectively, so that
the components of q' and q" are

(16)
q =(qp sinn cosg, qp sinn sing, qp cosn),

(22)
3. CROSS SECTION FOR DOUBLE BREMSSTRAHLUNG

In order to find the cross section for double brems-
strahlung, we have to square the element (16). Then,
averaging over the spin states of the electron in the
initial state, summing over the spin states of the
electron in the final state, and also summing over the
states of polarization of the photons q' and q", we get

Z(I&+&'I')"

P"=n"+y2 —2I2'y cosP',

P'"=n'"+y2 —2n "y cosf",
(23)

Since the angles y, n', p', 42", and p" have been assumed
to be small, it follows that

4Z'e' 1 1

( I) (q. q.-) f "(q.+q.-) /(4k")+k.ej
dq'=

J
dqp'qp"~ n'dn'~ dltl',

~J 0 0

(24)

X
(~2/k 2+~I2)2 (~2/k 2+pl2)2

&loypl2 +2

(I42/ko2+42") (I42/ko2+P")

I/ d I/ I/2 ! IId //

"o

dc@= 2x 'yd'y,

dy/ I

X
(g2/k 2+~II2)2 (~2/k 2+PII2)2

II2+pll2

(I42/k 82+42'") (I42/ko2 jp"2)
(17)

where 5 represents the upper limit of integration for the
angles n', n", and y. Ke can choose any suitable value
for this upper limit, provided that P is large compared
with I4'/k' but small compared with 1.

Using (17), (24), and (25), we can express (20) as

The cross section r2 for the process under consider-
ation is related to the quantity (17) as

o 2
——(1/2!)U

—' p p (22I)
—' ~d(ok"

q1 q/1 aJ

Xd
f

k'
f
/dko' Q( f

K+&'
[ )A, (18)

16Z ( c ) f' dqo 9 dqo

44'lrck) ~ qp J qp ~ p

I'I", (26)
f

I44(qo'+ qo")'/(4ko') +kopy2]2
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where

I/= —n'dn' I

22r " 4 p (»'/kp'+n")'

p/2 n/2+P/2 +2
1, (27)

(»2/k 2+p/2)2 (»2/k 2+n/2) (»2/k 2+p/2)

22r o o "o l (K'/ko'+n'")'

pl l2 //2+pl/2

(„)
(K2/k 2+p//2)2 (K2/k 2+nl/2) (K2/k 2+p//2) I

Substituting (23) in (27), and carrying out the inte-
gration over the azimuthal angle p', we get

above minimum value of
I ill by

Z QK. (34)

According to the present approximations, the above
integral gives the same result as (26), which shows that
the effect of screening on double bremsstrahlung at high
energies is negligible.

Hence, taking into account the eGect of screening, we
have instead of (26):

16Z2( e' q4
t

dqp' t dqp"

(42rct2) J qo' " qo" "o

kp'
X I/I//. (33)

I
z*n2»'+kopy2]2

I = ndn
0

~2y2»2/k 2

( 2/k 2+ 2)L( 2/k 2+ /2+ 2)2 4 /2 2j)

(K'/ko'+n"+y2)

4. DISCUSSION

In the extreme relativistic case, the cross section for
the ordinary bremsstrahlung due to an incident electron
of energy E is approximately given by

k 2 L(»2/k 2+n 2+~2)2 4n 2p2ji 16Z~nac~52 p der 282

J~
—log

CO @GO

(36)

(29)
kp' (»2/ko2+n")2

I/=-', kopy2/»2

= log (ko'y%') —1

(fOr y2 &4»2/ko2),
(30)

(for 4»2/ko2&y2&82),

The above integral can be easily evaluated, but the
resulting expression is a rather complicated function of
p. However, we find approximately

16Z n c k
t

do/—log (183Z—'),
oo3p

(37)

where 0-~ denotes the cross section without screening,
o.j' denotes the cross section with screening, and ~ is
the energy of the emitted photon. For a rough estimate,
we may take the upper and lower limits of integration
for co as E and p, , respectively, so that we have

and we also note that I"=I'.Hence, substituting (30)
in (26), and integrating over y, we obtain

o,= ,' (16Z' —c'n0p'/3p') Dog (E/tt))'

or' ——(16Z' n' CA' /3 tt) 1Og(E/tt) 1Og(183Z *).

(38)

(39)

with
3p

7 16Zsn4PPC2
t

d4o/ ! dco//

0'2

4' / J
(31) Choosing the upper and lower limits of integration for

to' and to" also in a similar way, we obtain from (31)

n=e'/42rC/it, tt=»Ch, ro'=qp CA o/ =qp CA (32)

where 0. is the one structure constant, p is the rest
energy of the electron, and co' and co" are the energies
of the emitted photons.

In order to estimate the inRuence of screening on
double bremsstrahlung, we note that the minimum
value of the quantity

I t1 I
appearing in the integral (6) is

I ql--= I
&

I
- II 'I -

I
a'I -

I
q"

I

= 2»'(qo'+qo")/ko' (33)

and we also note that the square of the above quantity
appears on the right-hand side of (13).It is well known'
that roughly the effect of screening is to replace the

' W. Heitler, Q/4a/rt/4m Theory of Radiation (Clsrendon Press,
Oxford, 1954).

=(7 /4 )(16Z' ' '&'/»')Dog(E/t )3' (40)

Comparing (40) with (38) and (39), we find that even
at E= 10'4 ev the probability for double bremsstrahlung
is quite small compared with that for the ordinary
bremsstrahlung.

Using the approximations, described in this paper and
the earlier one, 4 we can also calculate the cross section
for bremsstrahlung involving the production of e
photons. The cross section for this process is found to be

8~Z' '(n2nq "
t dqo' t dqo'"'

22! (2r I & qp' J qo'"' ~

kp'

X I/// (41)
»4 (q l+

+ qo(Rl)2/ (4kp4) +kppy2]2
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or

84rZ'a' (4n) " o dqo'

44! ( w J ~ qo'

r. dip(n)
~ ~ ~ 7d7

q
(n)

1 ( koyq
x Ilg

00274 E

00(40ty ") Eq "p kopje"
~-=—

I

—
I I

log—I I
log

e!(~) ( ~)
(42)

where 0-p is the cross section for the radiationless scat-
tering of an electron through an angle 7, and e is the
lower limit to the energy of ero, itted photons. The above
result is in agreement with that obtained by following

where the integral I' is given by (27). Substituting (30)
in (41), we can easily see that even at very high energies
O„rapidly decreases as e increases.

The above situation is quite different from that in
the case of the electron-positron annihilation. For, we
have already shown' that in electron-positron anni-
hilation at high energies multiple production of several
photons can easily take place. This difference between
the two cases is due to the following reasons: In high
energy bremsstrahlung the average angle, through which
the electron is deflected, is of the order of p/E. Further,
it follows from the general treatment in Sec. 5 of refer-
ence 4 that the photons emitted by an energetic electron
mainly lie within a cone of angle p/E around the direc-
tion of motion of the electron. Therefore, in brems-
strahlung the photons emitted by the initial and the
Anal electrons interfere strongly, which greatly reduces
the cross section. On the other hand, there is no appre-
ciable interference between the photons emitted by the
electron and the positron during their annihilation.

It is interesting to note that if y»p/E, we obtain
from (41) and (30)

the general treatment in Sec. 5 of reference 4, if we
ignore the interference between the photons emitted by
the initial and the final electrons. This con6rms the fact
that if an energetic electron is deflected through an
angle, which is large compared with y/E, there is very
little interference between the photons emitted by the
initial and the 6nal electrons. In such a case, the prob-
ability for multiple photon production is appreciable,
but a high-energy bremsstrahlung process with a large
deflection of the incident electron is a very rare event.

5. GENERAL REMARKS ON MULTIPLE PHOTON
PRODUCTION

The present investigation also throws some light on
multiple photon production in nuclear collisions. For,
according to the present view, a proton, too, is de-
scribed by the Dirac equation, and therefore the treat-
ment in Sec. 5 of reference 4 also holds for collisions
involving high energy protons. Hence, in high-energy
nuclear collisions sometimes multiple photon production
is bound to take place along with the production of
mesons and other particles. Moreover, a proton pos-
sesses an anomalous magnetic moment, which might
also appreciably increase the cross section for multiple
photon production by protons.

It further follows from the discussion in the pre-
ceding section that even at very high energies, the
probability for multiple photon production is appre-
able only if there is no interference between the photons
emitted in the initial and the final states. This condition
is evidently satisfied in the following two cases: (1) an
energetic charged particle is deflected through an angle,
which is large compared with p/E; (2) an energetic
charged particle is annihilated, captured or converted
into a neutral particle. Therefore, we should specially
look for multiple photon production in nuclear collisions
under the above conditions.


