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Interpolation Scheme for Energy Bands in Solids*
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The orthogonalized plane wave method is formulated as an interpolation scheme for use in conjunction
with calculations made at symmetry points in the Brillouin zone. The Fourier coeKcients of the crystal
potential and the matrix components of the Hamiltonian between core functions are treated as parameters
to be 6tted to other calculations made at symmetry points by such methods as the cellular, orthogonalized
plane wave, and augmented plane wave. The interpolation scheme then provides a method for making
calculations at a general point in the Brillouin zone. The scheme is most useful for the case of valence and
excited states where the wave function on one center overlaps many of its neighbors.

I. INTRODUCTION

ECAUSE of the computational diffi.culty in carry-
ing out rigorous solutions most energy band calcu-

lations are made only at symmetry points in the Bril-
louin zone. It is therefore desirable to consider methods
for interpolating between such symmetry points. In
general, the requirement for a satisfactory interpolation
scheme is the separation of spatial parts and k de-

pendent parts in the relation determining E as a func-
tion ot k. Further, the k dependence should have a
relatively simple analytic form so that, e.g., enough
general points in the Brillouin zone can be calculated
to get an adequate density of states curve. The cellular
method' ' or procedures which utilize solutions for an
atomic interior joined to exterior plane wave solutions
on some arbitrary surface, ' ' do not seem suited to this

type of separation. ~

However, Slater and Koster, starting with the
LCAO (linear combination ot atomic orbitals) or
tight binding approximation, have succeeded in making
such a separation and have used the integrals involving
the Hamiltonian between two atomic functions as
parameters to be fitted to calculations made at sym-
metry points, The number of parameters to adequately
represent strongly overlapping atomic functions may
become very large, however, and this method seems
best suited to the more tightly bound states.

Another method for which an analytic k dependence
can be separated from the spatial parts in the matrix
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s J. Korringa, Physica 13, 392 (1947).
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array of spherical scatters" (unpublished).' For a spherically symmetrical potential inside a radius r; and
constant between spheres, the methods given by Kohn and
Rostoker (reference 5) and Morse (reference 6) may lead to a
practical scheme for getting general points in the Brillouin zone.
However, at present no estimate is available as to whether it will
be practical to calculate a sufhcient number of points for, e.g.,
a density of states curve.' J. C. Siater and G. F. Koster, Phys. Rev. 94, 1498 (1954). A
prior account of much of this work is given in J. C. Slater, Tech-
nical Report No. 4, Solid-State and Molecular Theory Group,
MIT, July 15, 1953 (unpublished).

IL PARAMETERIZATION OF THE ORTHOGONALIZED
PLANE WAVE METHOD

The orthogonalized plane wave method was de-
veloped by Herring. "Our treatment differs from that
of Herring primarily in use and interpretation and in
that we set up the method in terms of 1ess restrictive
core functions than free atom functions. Ke consider S
identical unit cells, each of which has volume Qp, and
for simplicity we assume one atom per unit cell. The
orthogonalized plane wave corresponding to the lattice
vector I„in k space is defined by

g (k+Kn) ~ . ( )
E'*it„= —Q fi; ti;,

Qp

where the Bloch sums are

b, (k, r) =P e'" 'q;(r —R~). (2)

The p;„'s are determined from the orthogonality

This is also possible for the Fourier series or plane wave
method, and a parameterization scheme could be set up using the
Fourier coe%cients of the potential as disposable parameters.
However, the poor convergence of this method is well known and
a rough estimate based on wave functions for sodium given by
Siater Preference 2 and J. C. Slater, Revs. Modern Phys. 6, 209
(1939)] show that for an adequate representation the resultant
secular equation is well outside the range readily solvable by
present high-speed digital computers.

'0 C. Herring, Phys. Rev. 57, 1169 (1940).

components of the Hamiltonian is the orthogonalized
plane wave method. As with the orthogonalized
plane wave method in general this scheme: (a) does
not depend on an assumption of a spherical potential
for atomic interiors, (b) is most easily applied when the
wave functions for an atom in the crystal can readily
be separated into a set of core or highly localized func-
tions not overlapping neighboring atoms and a set of
valence and excited functions which have very strong
overlapping, (c) requires special consideration at cer-
tain k values where the plane waves are orthogonal by
reasons of symmetry to all core states. The scheme seems
particularly useful for bands with large overlapping
and as such may be used to supplement the method of
Slater and Koster.
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condition

j~b;*P„dr=0

venient to make this expansion are the Bloch sums
made up from our initially chosen core functions, " io;.
Thus, using (4),

%e assume that the b s are orthogonal: Hb;=+~;,b, =—Q( ~
b;*Hb,dr ~b;.)

(4) Putting (11) into the second term of (8) and using (5),
(9) we have

This implies that the core functions q; form an ortho-
normal set with respect to functions on neighboring
centers as well as on the same center. Both this assump-
tion and the choice of core functions will be considered
later. The»„'s resulting from (3) and (4) are then
Fourier transforms of the core functions:

trei()r+Km) r

p;„= qo;*(r)dr.
~p'

Our one-electron energy band functions for a given
k are now constructed from a linear combination of
functions of the form (1):

I,e
—'()r+x ).

HQ p, „b,dr
n, &

( f' l (1 t'=—P» ( P ~ e "&"+ x")'b, dr [] —' b;*Hb,dr
)) &cV~„

= —2 2 I"-*»-E e*""~'r(R.) (12)
'b Rq

This is the negative of (10). Because of the Hermitian
property of H the other cross term is equal to (12).
To investigate the first term in (8) we write out the
one-electron crystal Hamiltonian as

Putting this in
e(r,k) =P„a„y„.

H% =&I

H= —7'+ V(r).

The erst term then becomes

yields the usual secular equation

where

H „Ef*P„dr =—0,

pg
—s&&+Kr)t) '& es(&+K~) '~

H H dr
S~„Qp& Op'

—s(a+Km) r

HQ» bdr
1V~ „Qp&
1 Zi(k+K ).r

Q p; *b;aH dr

(7)

1
~
k+K ~'b +— e"x" x""V(r)dr,"

n~n, =
~
k+ K

~

'b „yV (n —m).

Collecting the terms, Eq. (8) can thus be written

H „=~k+K. ~'b .+V(n —m)

—Z»'-*»- 2 e'fk'"'X') (R.) (8')
7 Rg

Letting H= 1 in (8), we also get

j Pm*Pndr = bmn —P )i;m*li,.
00

1
+—,I p fi,„*b,*HQ»„b;dr (8).

Let us consider the last term in (8). Defining

q;*(r)Hq; (r R,)dr =3e,,(R,),—J„ (9)

the last term becomes

Z Z ~'-*~ - 2 e'" "'~' (R.)
1 Rq

Next, we treat the two middle or cross terms in (8).
For these, we first consider the expansion of Pb; since
b; is not necessarily an eigenfunction of the crystal
Hamiltonian. The set of functions in which it is con-

lt is now the general method of our interpolation
scheme to treat the integrals representing the Fourier
coeflicients of the potential V(n —m) and the matrix
components K;;(Rs) as fitting parameters. The V(n—m) depend only on the differences of the sets of
integers characterizing our initial choice of the vectors
K„. The K;;(R,) are the same parameters introduced
by Slater and Koster' in their LCAO or tight binding
approximation interpolation method. At symmetry
points our secular Eq. (7) will factor, and we
can determine the values of our integrals V(n —m)

"In this expansion the b s do not form a complete set, and in
particular we are omitting any plane wave contribution to the
part of b; which differs from a crystal eigenfunction. It is hoped
that in most cases Eq. (11) will be adequate, but there may be
instances where an appreciable plane wave contribution enters.
In such circumstances it will probably be best to assume that b;
is an eigenfunction and thus use only diagonal K's in Eq. (8').
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and K;;(R,) by fitting to primary calculations made by
other methods at these points. In the cases treated by
Slater and Koster with the LCAO method, their secular
equation factored to such an extent that they were
able to Gt integrals analytically and for approximately
the same number of disposable constants we may also
expect to accomplish our fitting analytically. However,
for more complicated cases the 6tting will probably be
done most easily by a trial and error procedure.

III. DISCUSSION

A. Choice of Core Functions

In the formulation and use of the orthogonalized
plane wave method, free atom wave functions have
usually been assumed for the core functions q;.' " "
Callaway'4 has found, however, that such an assumption
may lead to considerable error. Since we are using a
parameterization scheme and are thus not making ex-
tensive calculations with our core functions, we may use
less restrictive functions.

If we assume the form

E(r) Vp(8, q ), (&3)

where R(r) may be a series of terms made up from poly-
nomials in r times exponentials and the Fp's are
spherical harmonics, then the Fourier transforms which
give the p;„s are spherical harmonics in k space times
polynomials in ~k+K„~.is" Further, we may use a
technique suggested by Parmenter. "In his calculation
for Li by the orthogonalized plane wave method, he
assumed an exponential for the is core function and
determined the coeKcient in the exponent by a varia-
tion calculation using the crystal potential which he
had constructed. It seems entirely feasible to introduce
such variation parameters into E(r) and, if desirable,
to consider linear combination of terms of the form
(13) determining such parameters and coefficients of
the linear combinations by a variation calculation using
the crystal potential constructed for the symmetry
point solutions.

If a choice of core states is made which includes
functions p; which overlap functions q; centered on
neighboring sites, Eq. (4) is not satisfied and consider-
able additional eGort is required to properly handle
them. For this case it seems that the most satisfactory
procedure for our interpolation scheme is to consider
that set of functions on each center which overlap other
centers and to construct from these a new orthogonal
set. This can be carried out in a symmetrical manner
by the method of Lowdin. "For example, in germanium,

"C. Herring and A. G. Hill, Phys. Rev. 58, 132 (1940).
ia F. Herman, Phys. Rev. 93, 1214 (1954)."J.Callaway, Phys. Rev. 97, 933 (1955). The author wishes

to thank Dr. Callaway for being permitted to see his work before
publication."F.Herman and J. Callaway, Phys. Rev. 89, 518 (1953).IB. Podolsky and L. Pauling, Phys. Rev. 34, 109 (1929).

'r R. McWeeny, Acta Cryst. 4, 513 (1951).
is R. H. Parmenter, Phys. Rev. 86, 552 (1952)."P. -O. Lowdin, J. Chem. Phys. 18, 365 (1950).

if we consider the core as those functions through 3d,
we could classify the functions through 3p as non-

overlapping and the 3d as overlapping nearest-neighbor
3s, 3p, and 3d functions. We would then orthogonalize
the 3d to 3s, 3p, and 3d functions on nearest-neighbor
sites.

B. Numerical Considerations

The basic problem is the solution of the secular
equation, (7), at every value of k we wish to consider,
and its order depends directly on the initial choice of
the vectors K„.There is evidence that in using orthog-
onalized plane waves very few sets of neighboring I„
vectors in k space give a good representation of many
of the valence and excited states. "'4" If we consider
the vectors K„out through nearest neighbors in k
space, the secular equations for the face-centered cubic
structure are 9&9 and for the body-centered cubic are
13&13; through next to nearest neighbors these become
15&&15 and 19X19, respectively. Solving such secular
equations at a large number of points in the Brillouin
zone is practicable on high-speed digital computers by
a program like that developed by Dr. Alvin Meckler
for Whirlwind I at M.I.T. This program has been
successfully employed for 5&5 secular equations by
Slater and Koster for the density of states curve com-
puted using their LCAO interpolation method. It is
worth noting that because of the large number of
points involved, Slater and Koster also found it de-
sirable to have the digital computer compute the
matrix components even though these were expressed
in a simple analytic form. It is expected that such a
procedure would also be adopted for the present
interpolation scheme.

The number of parameters V(n —m), of course, is
governed by the choice of vectors K„; e.g., for the
f.c.c. structure, going out to nearest neighbors yields
four V's while if we go out to next to nearest neighbors
we get a total of six V's (if it is convenient to take the
average potential equal to zero we get one less in
each case). The number of K;;(Rs) parameters arising
from the matrix components of the Hamiltonian be-
tween core states depends on the particular solid and
how many sets of neighboring atoms in real space are
to be considered, and may be predicted directly from
the tables given by Slater and Koster. ' Since, in general,
our core functions are chosen as those functions which
do not overlap, we can use the much restricted set of
X@(R,)'s corresponding to R,=O. However, for those
core functions which overlap to some extent (and have
been made into an orthogonal set by the method given
in the previous section), it is reasonable that only
nearest neighbors will have to be considered.

C. Orthogonality by Virtue of Symmetry

It was originally pointed out by Herring" and also by
others" " that the plane wave parts of the wave func-
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tions (6) at certain symmetry points (e.g. , it=0) form
bases for irreducible representations of the crystal
point group, some of which may be automatically
orthogonal to core functions made from orbitals of the
form (13).At such points we are left with the relatively
poor convergence properties of the non-orthogonalized
plane waves. For these circumstances Herring has sug-
gested the addition of a Bloch sum of atomic-like func-
tions of the expansion having the appropriate symmetry
properties and the proper rapid variation near the
nucleus. Callaway has constructed and successfully
used such functions in his treatment of iron" (if we
orthogonalize these functions to the core states as
indicated in Part A they do not in principle have to be

constructed so as to vanish at half the interatomic
spacing as contemplated by Herring and used by
Callaway). For our interpolation we first make an
initial choice of the vectors K„and then for a particular
crystal investigate at which points the automatic
orthogonality occurs. Then, in order to insure a good
representation at and around these points, such atomic-
like functions are to be included and treated in the
same manner as the core functions.
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The scintillation response of anthracene and stilbene to low-energy protons (170—570 kev) and x-rays
(10—40 kev) has been investigated. In agreement with previous work at higher proton energies, the proton
pulse height vs energy curves are quite nonlinear. The x-ray data are essentially linear down to 10 kev. This
result is contrary to the reported response of these crystals to electron bombardment, but seems to be in
agreement with the theory proposed by Birks. With the aid of this theory, proton response curves are ob-
tained for stilbene and anthracene over an extended energy range.

INTRODUCTION

'HE response of anthracene and stilbene to protons
having energies greater than 500 kev has been

extensively investigated. ' ' Studies have been made of
electron response below 500 kev, 4' but the response to
protons in this energy range has not been reported. It
is in this low-energy region that the nature of the
scintillation response can be investigated in detail. The
work of Hopkins4 and Taylor et al.' shows that the
response to electrons below 25 kev is nonlinear, and
although the proton response is nonlinear above 500
kev, it becomes more pronounced at lower energies.

In the case of low-energy gamma rays or x-rays, the
photoelectric process plays the major role. One might
therefore expect gamma rays and electrons to have the
same response. However, the nonlinearity observed
for electrons'4 is not apparent in the curves presented

~This research was supported in part by the U'. S. Atomic
Energy Commission.
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here for x-rays which are linear within experimental
error. An explanation of this discrepancy can be found
in the relation developed by Birks, ' between the lu-
minescence S and the energy E of the ionizing particle:

AdE/dr
dS/dr =y

1+kBdE/dr

AdE/dr gives the number of "excitons" produced in
the crystal by the incident particle. The term "exciton"
refers to the quantity which links the energy of the
incident particle to the Quorescence. Sirks has given
arguments which indicate that- these "excitons" are
photons of about 10-ev energy. The function p is given
by the expression

y = I——',)exp( —r/as) —(r/as) E;(r/ao) j,
where E;(r/ao) is the exponential integral, ao is the
mean free path of the "exciton" in the crystal, and r
the range of the incident particle in the crystal. p gives
the probability of capture of an "exciton" before it
escapes through a crystal surface. kJt dE/dr represents
the quenching of these "excitons" by molecules damaged
by the ionizing particle or by inactive impurity
molecules.

e J. B.Birks, Proc. Phys. Soc. (London) A64, 874 (1951),


