
SEEBECK EFFECT I N Si

of the samples between the thermocouples in order to
avoid radial thermal discontinuities. The points shown
in Fig. 8 are the measured values. The curves are calcu-
lated from the equation

Q+ and Q are the values either the holes or electrons
would have in the absence of the other. The values
include a phonon contribution estimated from Figs. 3
and 4. Qtp~), the absolute thermoelectric power of
platinum, is used in order to have the calculated value

apply to the silicon-platinum couple. It is important
only in the purely intrinsic range where it amounts to
something less than a 10 percent correction. The con-
centrations of holes and electrons, e+ and e, and their
mobilities I+ and p, have been taken from the data of
Morin and Maita. s Values of

~
rt+ —I

~

are determined

from resistivity measurements in the saturation region
taken concurrently with the thermoelectric readings
using the thermocouples as potential probes. These are
combined with the values of (st+st )+'* given in Fig. 13
of Morin and Maita. The values of p+ and p are taken
from the extrapolated values given in their Fig. 12.
These represent a major uncertainty. The reasonable
agreement shown in Fig. 7 is significant in demonstrat-
ing the overall consistency of the data; however, it
seems doubtful that the choice of different mass
parameters to improve the 6t would be meaningful.
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The self-consistent 6eld treatment of the electronic wave functions of a solid is used as a basis for a theory
of plasma oscillations in a metal. Two procedures are used to calculate the plasma frequency, both being
based on the Bohm and Pines method of introducing the plasma oscillators. It is found that band-to-band
virtual transitions have a strong eftect on the plasma oscillations in a metal. It is concluded that the effective
mass treatments are not adequate to treat the electron-plasma interaction, except perhaps in certain semi-
conductors.

INTRODUCTION
' 'N the last few years, several papers have appeared
~ - which discuss the theory of the formation of an
electron plasma' ' in metals. In this paper we would
like to treat an aspect of that problem which we believe
has been given insufficient attention, ~is. , the effect of
the energy band structure on the plasma frequency.

The eGect of the lattice potential on the plasma fre-
quency has heretofore to our knowledge been treated
only by WolG, ' who limited his explicit consideration to
matrix elements of the electron-electron interaction
leading to in-band scattering processes. Wo16 estimated
for a particular case the effects of interband scattering
processes on the plasma frequency and found that they
caused a large frequency shift. We will show in the
following that for metals band-to-band processes are in
general quite important, so that WolG's quantitative

' D. Bohm and E. P. Gross, Phys. Rev. 75, 1851, 1854 (1949).' D. Bohm and D. Pines, Phys. Rev. 85, 338 (1952).
s D. Bohm and D. Pines, Phys. Rev. 92, 609 (1953).
4 D. Pines, Phys. Rev. 92, 626 (1953).
s P, WolG, Phys. Rev. 92, 18 (1953),

results are probably limited in applicability to semi-
conductors.

Although previous work has sought to establish the
dispersion relation for plasma waves, we have been
content to calculate the plasma frequency for very long
wavelength plasma waves. Our results indicate that this
frequency is strongly affected by band-band virtual
transitions, the effects of which are difBcult to calculate
accurately. We have not concerned ourselves, therefore,
with extending the dispersion relation since we feel that
this cannot be done correctly in a treatment which does
not make an adequate treatment of band-band trans-
itions.

In carrying out our calculations we have chosen to use
the method of Bohm and Pines (BP)' ' for introducing
the generalized coordinates of the plasma modes. We
made this choice because we feel that their method is
basically the simplest we know and leads most directly
to the results we want. However, we suspect that certain
aspects of their treatment of the auxiliary conditions are
incorrect, and believe the problem of the auxiliary con-
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ditions deserves further study. In the present work we
do not solve the problem of satisfying the auxiliary
conditions, so our treatment is on that score subject to
the same criticism as is that of Bohm and Pines.

In the following sections, we will establish an "in
principle" basis for treating the outer electrons of a
metal as an electron gas, and then present two some-
what different procedures for calculating the plasma
frequency. The first procedure is most easily applied to
systems such as semiconductors in which the plasma
frequency is small compared to the energy band spacing.
It gives results which closely parallel those of Wolff. The
second procedure is very much like the treatment of
Bohm and Pines. It is most easily applied to systems for
which the plasma frequency is large compared to the
energy band spacing. Actually in many metals the
energy band spacing is comparable to the plasma fre-
quency. Unfortunately neither of our procedures affords
an accurate way of calculating the frequency in this
case, so we are unable to add very much to Wolff's
qualitative discussion of the absorption of plasma
quanta which takes place when two bands are in "reso-
nance" via an absorption process. However, we have set
the theory up in such a way as to make it clear that
shifts in the plasma frequency due to band-band transi-
tions can be large whether or not the exact resonance
condition is satisfied.

Our chief qualitative conclusion is that even in a
"free electron" metal-like sodium, the band-band transi-
tions should acct the plasma frequency strongly, so it
is not generally correct to apply to metals the results of
Bohm and Pines obtained for a free electron gas.

1. REDUCTION OF OUTER ELECTRON PROBLEM

Ke want to begin by discussing in a formal way how
we can reduce the Schrodinger equation for the outer
electrons. Since we are interested in treating correctly
the field of the atomic cores, we will need to make use of
some kind of self-consistent field (SCF) method to get
inner-shell wave functions. We will want to use the
energy band type solutions since we are concerned here
with typically metallic properties.

For the simple calculations we will do, it is immaterial
whether we suppose the use of the Hartree (H), Hartree-
Fock-Slater (HFS), or some other' SCF procedure.
However, we wish to comment on those characteristics
of the SCF wave functions which would be most
desirable if we were carrying through a complete con-
figuration interaction calculation. Feasibility of mathe-
matical treatment requires two things. First our one-
electron wave functions should form a complete
orthonormal set; second our inner-core wave functions
should be so good that we need consider only a single
configuration for the inner shell. In most cases the simple
Hartree SCF wave function satisfies only the first of
these conditions, but the HFS wave functions satisfy

"J.C, Slater, Phys. Rev. 81, 585 (1951l.

both. Thus the HFS set of SCF wave functions would be
suitable for providing a "frame of reference" in the
function space.

It is possible to conceive that some SCF procedure
other than the HFS procedure would be best6 for de-
termining the one-electron wave functions which define
the "fixed frame. "Certainly the simple HFS method has
the disadvantage that the dependence of energy on
wave number is peculiar at the Fermi surface, ~ and that
feature would be objectionable in some parts of the
calculation. We have not made a study to determine the
best way of choosing a SCF principle in general, but will

merely suggest one which satisfies the two requirements
of orthonormality and of giving good inner shell wave
functions and has in addition one other desirable feature
which will be discussed below. The suggested principle
uses the following one-electron Hamiltonian for de-
termining the one-electron wave functions:

HP(x) = t p'/2m+ V(x)+A, (x)]g (x) .(1.1)

The Schrodinger type Eq. (1.1) describes the motion of
an electron in the average field V(x) of the nuclei and all
the other electrons plus an exchange potential A, (x) due
to the core alone. This exchange potential suffices to
insure that the core wave functions are substantially the
same as the HFS wave functions, since exchange with
the outer electrons should not have much eBect on the
wave functions of the core electrons. At the same time
it is easy to show that the eigensolutions of (1.1) have
the desired orthogonality properties.

Equation (1.1) is just the HFS equation with ex-

change among the outer electrons removed. In the SCF
approximation it will lead, therefore, to an estimate of
the ground state energy which is poorer than that
obtained by the more usual HFS procedure. Neverthe-
less, once committed to going beyond HFS, we would

prefer to treat the exchange among the valence electrons
expliritly. The reason for such a preference is that the
HFS procedure introduces a strong correlation between
positions of electrons of parallel spin and no correlation
between positions of electrons of antiparallel spin, and
thus introduces a preferential lowering of the energy of
high spin states which is at least partly spurious. In a
number of physical phenomena the crux of the problem
is just to understand the competition between Coulomb
correlation and exchange to lower the energy. In such
cases we prefer to study the two eGects on the same
footing, somewhat in the manner of Pines, ' rather than
to start from wave functions which overestimate one
eGect and ignore the other.

So much for the starting wave functions. We now
wish to see how to construct an approximation to the
true ground state wave function which is better than
the SCF ground-state wave function. The first step is to
calculate the matrix of the energy in a representation

s F. Seitz, The Modern Theory of Solids (McGraw-Hill Book
company, Inc. , New YOIk, 1940), p. 340,
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using antisymmetrized products of the SCF wave
functions. One must calculate the expectation value of
the energy for each configuration which is to be included
in the calculation. Having done so one can for each
configuration write the diagonal matrix element as an
expression consisting of (a) a sum of SCF parameters
for the occupied states, (b) a sum of Coulomb and ex-
change integrals for the lowest SCF configuration, (c) a
sum of Coulomb and exchange integrals which take
account of the difference in charge distribution between
the configuration of reference and the SCF ground-state
configuration. We will neglect the terms (c) in our
subsequent discussion, since the ground state should
consist chiefly of configurations which are relatively low,
and the terms (c) should be small for all these low
configurations. In any case the terms we wish to take
account of are very much larger than the terms (c).

Thus we see that for our purposes the energy of a
configuration (c) will be of the form

g(c)=P„& & E„+P„„&& E„„&*&. (1.2)

In (1.2) the configuration (c) refers only to the outer
electrons; the inner shell configuration being always the
same, we need not mention the inner electrons any
more. The energy E„„&' is just the exchange energy
between electrons p and v. The Coulomb and exchange
interaction between outer and inner electrons and be-
tween inner and inner electrons is completely taken
account of in the SCF parameters E„.The zero of energy
in (1.2) has been chosen so as to get rid of the Coulomb
and exchange integrals (b).

Having gotten the matrix elements of the energy
which are diagonal in configurations, we next have to
treat the matrix elements which lead to configuration
interaction. These will have the property that, except
for some small exchange terms, they connect only
configurations which diGer in the quantum numbers of
just two electrons, and in fact, it is for this reason that
we are able to replace the inner shells by an equivalent
potential. Now the SCF energy eigenvalues take account
of the matrix elements of the electron-electron inter-
action which are diagonal in the configuration. These
matrix elements involve only the particular Fourier
components of the interaction with wave vectors equal
to the wave vectors K of the reciprocal lattice. No
matrix elements which lead to scattering between con-
figurations have been taken into account, of course. If
we include the exchange energy in the SCF energy
parameters (as would be done in the HFS procedure), we

would have as our perturbation just those matrix
elements of the electron-electron interaction which mix
configurations.

If we do not include the exchange energy in the SCF
eigenvalues, though, we must retain the diagonal matrix
elements when computing exchange but not otherwise.
The last case may be treated formally by simply using
the electron-electron interaction with the Fourier com-

2. PLASMA FREQUENCY: APPROXIMATION
OF WOLFF

In the previous section we have described a certain
Hamiltonian procedure for treating the electron-electron
interaction problem in a representation based on SCF
solutions of the many electron problem. In this section
we will attempt to deduce the plasma frequency for
very-long-wavelength plasma waves. We will use a
mathematical method which is the exact analog of the
BP method, except that we will use the language of
perturbation theory to describe certain approximate
stages of the calculation. Following BP, we introduce
auxiliary quantized oscillators with the associated
operators ps, qs which satisfy

Lps, qg j= (A/i)les,
pa+= p s, /1+=A s. — —

(2.1)

We will not be concerned with deciding just how many
oscillators should be introduced, but will refer to BP for
a discussion of that question. The treatment we will
make will apply only to small k values in any case.

To introduce the oscillator coordinates into the

s E. N. Adams, J: Chem. Phys. 21& 2013 (1953).

ponents K removed. The deletion of this discrete set of
Fourier components does not acct the calculated value
of any quantity except the diagonal-in-configuration
nonexchange matrix element of the Coulomb inter-
action, and it causes the value of this quantity to be
zero. That is exactly what we want.

Making use of the "crystal momentum representa-
tion, "' we can now write down the configuration inter-
action problem in a Hamiltonian form with the simple
Hamiltonian

H =Q„E(p„)+Ps,, „"(2s.e'/k')

Xq(p„,J)q(p. , -~)."*" (1.3)

in which q denotes the eGective charge. The first prime
on the second summation in (1.3) refers to the fact that
k does not take on the value zero nor that of any
reciprocal lattice vector. The second prime is a reminder
that p, W v. Greek indices are used to denote electrons. p„
denotes the "crystal momentum" of the pth electron,
z„denotes the "crystal coordinate" which is conjugate
to p„, x„=i7iB/Bp„—, x„„denotes x„—x.. The quantity
q(p, k) is a matrix in the bands. Its matrix elements are
given in terms of the SCF wave functions by

a- (p, ~)= (k.. .~"v..).
The states we have to work with are those properly
antisymmetrized eigenstates of (1.3) in which no elec-
trons occupy the states which were previously assigned
to the inner shell electrons. In the remainder of the
paper we will omit the double prime on such summations
as that in (1.3) since it plays no role in our considera-
tions, which concern only scattering matrix elements.
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Hamiltonian (1.3), we replace (1.3) by

H= Q„E(p„)+Pi,„.'" ( ~e'/k') q(p„,k)q(p„—k) e"*~
+ l 2"'{P.—(4~e'/k') ' Z. q(P. ,k) e'" "}

X{pi,+—(4zre'/k'): Q„q(p„, —k)e "*"}. (2.2)

The notation (l), (s) for the regions of summation of k
is used to indicate that the wave numbers in the two
regions are "large" and "small" respectively as dis-
cussed in BP. Clearly the Hamiltonian (2.2) has the
same matrix elements as the Hamiltonian (1.3) between
wave functions which satisfy the auxiliary conditions,

By means of the aforementioned equations we can
now reexpress the Hamiltonian (2.2) in the new repre-
sentation defined by the unitary transformation (2.4).
We have, in the approximation to which we will work,

zziHzzi '=ZvLE(pv)+2 i,&'(4zre'/k')

X{zk.v(p„)/2, e" *i }qi+ (1/2zzz) p i, i&')

X(4zM'/k l)n(p„):kle'i"'i'~q„qi++. ]
+Hezz+-', 2~"[p~—(4~e'/k') '
Xp„zk X(p )e"*~)
XfPi++ (4zre'/k') & P „ik X(P,)e"*"). (2.8)

pi+ip—=o (2 3) In (2.8) we have used the notation

We may therefore adopt for the Hamiltonian the ex-
pression given by (2.2) instead of (1.3), provided that
we use it in a function space in which all functions
satisfy (2.3).

We now make a unitary transformation in the manner
of BP to a new representation in which we will be able to
introduce the so-called "random phase approximation"
(RPA). The desired transformation is made by means of
the unitary operator

u (p) =m8'E (p)/By8y,

v(p„) = BE(p„)/By„.
(2.9)

Using the RPA, we may neglect those terms in (2.8)
which involve q~qi+(kAl). We will also neglect for the
moment the terms involving k X and Hezz and look at
the partial problem defined by the Hamiltonian,

Ho P„——[E(p„)+Qsi'&(4zre'/k') l{', zk e-(p„). e"*i}qi]
+l 2 'LP.P"+ "q.q ') (2 1o)

I,=exp (isi/lz),

si —— Pz,„—(4re'/k') &qi.e'" *~
(2.4) with auxiliary conditions zziQi, zzi /=0. In (2.10) we

have introduced the notation

Before writing down the results of the transformation
(2.4) on H, we will describe the RPA briefly. The essence
of the approximation is to say that for finite k such a sum
of phase factors as P„e'"'*i is small compared to I, the
value of the sum when k= 0. The BP assumptions imply
that the value of such a sum should vanish essentially
like k, so that for small k we may in certain cases neglect
these sums. The basis for the approximation is the
supposition that in the true wave function the only
configurations which are very probable are those for
which the electrons are rather evenly distributed. We
will not go into the matter here since it is discussed
thoroughly in BP.

For brevity we will call that term in the Hamiltonian
involving the sum (l) over large values of k, Hsrz.
Further, in treating the sum (s) we will make use of the
approximation, valid' for small k,

1—q(p„,k) = —ik. X(p„), (2 5)

where X(p) is a matrix in the bands. Its general matrix
element can be expressed in terms of the modulating
function of the Bloch wave by

X„„(p)=—(N„„,cIzz„„/Bp).

We will also use the following relations:

NiE[p„)zz '=E/p„+p-p(4zre'/k )'ikqze'"s). (2.6)

aoi,z= (4zre'/zl)p e(p ):kk/k' (2.11)

and used curly brackets to denote the anticommutator.
For this partial problem we will go beyond our

original program and derive the dispersion relation
for the plasma waves. We want to show that the
Hamiltonian (2.10) gives exactly the dispersion relation
of Wolff, ' so that electively the approximation which he
makes is to neglect the terms in (k X). To get the
dispersion relation for the plasma waves we erst intro-
duce the creation-destruction operators for the plasma
waves through the usual type of relations:

q~= (@/2~oi,)'(a~+a a+),

pi (kcopi/2): (a i
——ai,+)/z—

Using (2.12) we rewrite (2.10).

(2.12)

u (p„):kk/k'= ni, (Iz),
—

L~(p.) k]/k=»(z),
(2 14)

H, =Q„E(p )+g, (2m e'lz/Moyk )**{ik z (p„)/2, e'~'&}-

X (ai+a ~+)+P i,"&~0i(&i+ z). (2.13)

To get the dispersion relation of Wolff, we need only
calculate the effect of the interaction term in the second
order of perturbation theory, ignoring the Pauli prin-
ciple in the intermediate states. Writing

~E——Z.LZ ~ .zzz» (z )/2, ~.(~)]+&.(&~+-',)
XA o [Q„k' (zz)' ( )/2, „'( )). (2.13)NiQiui ' pg+ ( 4/zr——kez)& gz„e'i ~i (2.7)

ELP) „ is the energy eigenvalue for a Bloch state of we can write the second-order energy as

momentum p in the zzth band.
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X„„.= (A/mi)P„„ /E„„, (2.19)

we can write (2.18) in the form

8&v/~= —(4me'/m)Z. - I
k P- I'/(k-'E- »') (2 2o)

The first of the terms in (2.15) represents an eigen-
value renormalization. If the energy surfaces are
spheres (ni(p) =const) we get the BP result that the
mass of the electron is reduced by the relative amount
(e'/3e) with e' the number of oscillators per unit
volume.

The second term of (2.15) represents a frequency
shift. It agrees with the formula (21) of Wolff, ' so we are
justified in regarding our procedure as essentially the
same as his. It is easily shown that (2.15) agrees with
the BP formulas if the energy surfaces are spherical.

We will now return to (2.8) and re-examine the terms
in the energy which we have not yet taken into account.
These extra terms are given by

Hi ——P' i,&'&(4vre'/k')~pgik X(p„)e. '" *~++p

&((2xe~/k')[k X(p„)][k.X(k„)]e''*». (2.16)

The second term in (2.16) is a residual long wave-
length interaction between the electrons. If the bands
are far apart so that k X(p„) are small, this last term
represents an interaction very much weaker than the
original Coulomb interaction, and may properly be
ignored. Probably there are many cases in which it
cannot be ignored. We will return to this question later.

The first term describes an interaction between
electrons and plasma quanta which can cause the
electrons to scatter from one band to the other. There
will be a frequency shift due to this term and we will

estimate the shift by means of perturbation theory also.
We will here omit the eigenvalue renormalization term
and give only the expression for the frequency shift. We
assume notationally that only the n band is occupied
with electrons.

8(o/a)=4~e' Q„,„.
~

k X„„,(p„)('E„„,(p„)/
k'[E '(p )—(Ao) p)'$ (2 17)

The sum over bands e' in (2.17) should be taken only
over those bands which are unoccupied in order to be
consistent with the "fixed frame" treatment of the inner
shells.

It is not immediately obvious whether or not the shift
given by (2.17) is significantly large in the general case.
In order to get some basis for an opinion we can see
what (2.17) gives in several limiting cases. The special
cases we will discuss are those in which either
(a) A~i,))~E„„~ for those states N' which make an
important contribution to the sum, or (b)

~
„E„~))hruq

for all important states, or (c) E„„~Ace.for some of the
important states.

In case (a) we get

B~/co= —4i-e'P„„~k.X„„~'E /[k'(Aug)'j. (2.18)

Using the commutation relation

We could do such a sum over e' explicitly if the summa-
tion were over all bands (N'WN), since by the f sum rule

(2/m)P (
k P„„['/(k'mE„„)=n~ 1.—(2.21)

Actually we are supposed to sum only over bands e'
which are unoccupied, hence higher in energy than the
band rs which is of interest. Nevertheless, we may use
(2.21) to get an estimate of the order of magnitude of
the frequency shift (2.20). The estimate so obtained is

~~/~=K p(~~(p) —1)/Z. 2~~. (2 22)

The estimate (2.22) indicates that even when the
plasma frequency is large there may be a substantial
percentage shift as a result of the band-band interaction.
According to (2.22) the shift is positive and amounts to
just 50 percent when

) n& )
&)1.When

( n&
~

is of the order
of unity, the predicted shift may have any sign and size.
This last feature of (2.22) must not be taken seriously,
since it is clear from (2.20) that in perturbation ap-
proximation the frequency shift is always positive. The
strongest statement we can make is that the shift
is always positive as long as the assumption (a) is met,
and (2.22) gives a lower limit on the amount of the
shift.

In case (b) we assume that A&oq is small. Such a
situation can be met, for example, in semiconductors. In
such a case it is clear from (2.17) that the plasma
frequency is always reduced by the band-band processes.
The relative shift is obtained from the expression (2.20)
by reducing each term in the sum by the factor
(hcvz)'/E„„'. But this factor is very small by assump-
tion, so one can probably neglect the shift in most
cases (b).

In case (c) we have the possibility of a sort of reso-
nance behavior, so the shift cannot be accurately esti-
mated by the formula (2.17) at all. There is no reason,
however, to suppose that the shift is especially small, if
the matrix elements X are large. We cannot tell what
sign to expect for the shift in this case.

The band-band transitions will also acct the dis-
persion relation. Inasmuch as we have been unable to
get a generally accurate formula for the frequency at
long wavelength, it would be pointless to give our
approximate formula for the correction to the disper-
sion relation.

To summarize the situation, we can say that there are
several terms which can have a large effect on the plasma
frequency but which were not explicitly treated by
WolK (Wolff estimated the effect of these terms for
certain of the transition metals and decided that it is
large. ) One of these terms gives the frequency shift
which we have estimated crudely by (2.17) and found
normally to be large in a metal. The other kind of term
is the second term of (2.16) which we cannot readily
treat using our present approach, but which is probably
large in many cases. We conclude that Wol6's dispersion
relation is probably not valid in metals because of the
band-band interaction terms of the first sort.
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In order to establish what the situation is as regards
the terms (2.16), we will have to do another calculation.

So= —2o.(4 e'/k') 'cl(PN, k) e*"*"qo. (3 1)

It is straightforward to establish the following
equations:

Nofl~oco '=Po++(4~e'/k')'Z. ol(p. —k)e '"'" (3 2)

NoE(p„)oco ' E(p-—„)+(1/2m)go(4ore'/k') t

X (ik P(p„),q(p„,k)e"'c'}q&

+p„g,c(2ore'/mkl) (k l)cI(p»k)

Xq(P» l)ecc~" —*oqoqc+ (3 3)

In (3.3), the operator P(p) is a matrix in the bands.
Its matrix elements are given in terms of the $CF
functions by

&- (p) = (mi/k)&. .(p) LE-(p) —E. (p)3.

By means of Eqs. (3.2), (3.3), and the RPA we can
get for the transformed Hamiltonian the form

H=Q„E(p,)+Hi+ ,' Qoc'(po'+-coo'qo')+Hex. (3.4)

In (3.4) coop= (4ore'/m) is the plasma frequency for a
free electron gas having the same mean electron density
as our metal, and H~ is given to sufFicient approximation

by

Hr= (1/2m)po„. '(47re'/k')l(ik P(p„),e"*i}qk. (3.5)

Besides the RPA we have made a further approximation
and dropped all terms which would not affect the plasma
frequency in lower order than order k'.

The Hamiltonian (3.4) is just that of BP with the
difference that we sum only over "outer" electrons, and
we have been able to make a slight simplification in the
matrix elements which occur in H~. We will not be
interested in calculating anything like the BP dispersion
relation, however. We wish merely to estimate the eGect
of band-band transitions on the plasma frequency for
long wavelength plasma waves.

We can again estimate the frequency shift by means
of second-order perturbation theory. We obtain in the
same manner as previously,

b~o/~o=(1/mii)Z. Ik & - (P.) I'E '(P~)/
[E „'—fc'coop jk'. (3.6)

Formula (3.6) is, of course, unreliable unless the shift it
gives is relatively small.

3. PLASMA FREQUENCY: APPROXIMATION
OF BOHN AND PINES

We will now do an analogous calculation to the one of
Sec. 2, except that we will use the exact transformation
of BP so that the terms (2.16) do not occur. Thus,
starting with the Hamiltonian (2.2) we will make the
unitary transformation generated by the unitary opera-
tor No constructed in the usual way from So.'

We will now examine as before the limiting cases
(a) Scop))(E„„(, (b) scop«[E„„.(. We will begin with
(b) this time and use the f sum rule just as we did in
case (a) of Sec. 2. Such a procedure yields the formula,

&coo/coo = (1/2ic) PoLak (po) —1$. (3.7)

It is not immediately clear that (3.7) gives anything like
the result that was obtained in Sec. 2. However, in view
of the fact that (3.7) is a perturbation theory result, we
are justified in rewriting (3.7) in the form

coo+&coo = f 1++„L~o(p„)—1$/~i} l2coo

= O.'jc 'Mo. (3.8)

&quation (3.8) is identical with the zero-order result
of WolG. While it cannot be said that we have verified
Wolff's result, the agreement of (3.8) with Wolff's result
is not disappointing. It should be noted, however, that
the agreement is not as complete as it appears at first
sight. In the first place, to get (3.8) we have summed
over all intermediate bands e' in contravention of the
Pauli principle and in clear violation of the restrictions
on our "fixed frame of reference" in the function space.
In the second place, we obtain the result (3.7) taking all
terms into account, while the result of WolG was ob-
tained with the neglect of the terms (2.16). If (3.8) were
really a valid result, we might conclude that the
agreement between (3.8) and WolfFs result (2.11)
justifies the neglect of the terms (2.16). Although that
interpretation of our results is not justified, we take the
view that, while the terms (2.16) may not be insignifi-
cant, the procedure of Sec. 2 is the most satisfactory one
to use when Scop«~ E„„~.Thus we think WolfPs results
may be useful in semiconductors.

We now return to case (a) bcop)) ~E„„~.We see that
the shift predicted by (3.6) is relatively much smaller
than that we found for case (b) and normally positive.
Thus if the plasma frequency is very high the band-band
transitions would not aGect it very much and the
frequency should be similar to what it would be if the
electrons were free.

As in Sec. 2, we conclude that when ~E„„.
~

Scop, the
shift is dificult to predict and may be large.

4. SUMMARY AND CONCLUSIONS

We would like now to summarize the tentative con-
clusions which we draw from the calculations of Secs. 2
and 3. First we conclude that for the case that the
plasma frequency is small the results of Wolff are
probably valid. In that case the procedure of Sec. 2 is
probably the simplest to follow in studying the plasma
since it gives rather good results in zero order. In the
case that the plasma frequency is larger, however, the
procedure of Sec. 3 is probably the simplest to use, since
the equations indicate that the behavior is much more
free-electron-like.

The strength of the band-band interactions brings
into question the adequacy of the "fixed frame" treat-
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ment. In a metal for which Mo is large, the inner-shell
electrons are capable of interacting strongly with the
plasma waves and thus in turn perturbing them. Ke
will discuss this question further below, but it should be
said here that the whole matter could stand further
examination.

The treatment that we have made is based in principle
on a limited configuration interaction calculation ac-
cording to which all inner-shelL states are completely
occupied. Strictly speaking, the prohibition against
exciting electrons from inner shells must be maintained
even in virtual processes if we are to justify the
Hamiltonian formalism which we used. Actually, since
the electron-electron interaction is so strong, it might be
better to seek a procedure which treats the inner shells
more accurately, but we have not been able to imagine
one which does not have drawbacks. The difhculty
which results when too many bands are brought into the
purview of the calculation is somewhat obscured by our
method of calculation, but it lies in the fact that the
exclusion principle must eventually be satisfied. In the
BP treatment, which we have followed, the problem of
satisfying the Pauli principle cannot be separated from
the problem of satisfying the auxiliary conditions. As we

bring in more electrons it becomes harder to satisfy the
auxiliary conditions, and at the same time more im-

portant to do so. We note that in the BP papers' the
auxiliary conditions were simply ignored. That may well

be the reason that BP failed to obtain the effect of
exchanges on the plasma frequency.

The entire question of the correct way to treat the
auxiliary conditions is too complicated for us to go into
here, and we do not know the answer anyhow. However,
if our practice of ignoring the Pauli principle and
auxiliary conditions in intermediate states can be
justified, we can see that the manner of treatment of
inner shells is optional. Equation (2.11) shows that
closed shell electrons contribute nothing to the plasma
frequency since the sum of the 0. (p„) over a band will

vanish. Further, if the electrons are in bands lying so
deep that the level spacing is large compared to A~, then
the argument of Sec. 2 shows that the band-band virtual
transitions of the electrons will have only a small effect
on the plasma frequency. On this basis we can say the
results of our calculation are insensitive to the particular
way in which we separate the electrons into "inner" and
"outer" provided that all electrons which lie below the
Fermi surface by not more than a small multiple of Ace

are treated as "outer" electrons.
As an application of our ideas we will comment on the

plasma frequency in sodium, because we think it
presents a particular point of interest. Since the
effective mass of the sodium electrons is close to unity,

the plasma frequency will be found to be the same, in
the 6rst approximation, whether one adopts the method
of calculation of Sec. 2 or of Sec. 3. Indeed, the reputa-
tion of sodium as a "free electron" metal might lead us
to expect that this 6rst approximation value of the
frequency should be close to the actual plasma fre-
quency for sodium. Actually our theory suggests that
such need not be the case. From the matrix point of
view the small deviation of the effective mass from unity
in sodium is a consequence of the cancellation between
terms in the f sum going through higher bands and
terms going through lower bands. Our rough estimate
(3.6) shows that the dipole matrix elements are weighted
differently in the formula for the frequency shift than in
the f sum, so the rather complete cancellation found in
the f sum is no longer to be expected. Since the dipole
matrix elements in sodium are not abnormally small and
since the plasma energy is comparable with the interband
spacing the imbalance of cancellation in (3.6) should be
substantial and the frequency shift large. Moreover, if
we observe the Pauli principle in a manner consistent
with our "fixed frame" treatment of the inner shells, the
sum in (3.6) should be extended only over bands e' of
higher energy, and the imbalance is complete. Thus we
must be prepared to find that the observed plasma
frequency differs substantially from that calculated on
the free electron gas model. Unfortunately it is dificult
to make an accurate estimate of the expected shift.

7Vhile the case of sodium is of special interest because
it illustrates that even the best "free electron" metal
cannot be treated as an electron gas for the purpose of
forming a plasma, our conclusion is actually quite
general that in metals the effective mass approximation
is inadequate for treating the electron-plasma inter-
action. We think that semiconductors provide the only
possibility of cases for which the effective mass treat-
ment is adequate.

In our opinion the published theories of the electron
plasma in metals are unsatisfactory as regards the
treatment of the exclusion principle. However, it seems
possible that the exclusion principle only affects the
frequency of waves of finite wavelength since the effect
of density waves of suKciently long wavelength should
be nearly equivalent to a static perturbation and the
effect of a static perturbing potential on the one
electron wave functions is not affected by the exclusion
principle. For that reason, we believe that the con-
siderations of this paper have some chance to be valid,
even in view of their incompleteness.

While this manuscript was in preparation the writer
has had the pleasure of a number of conversations on the
subject with J. McClure, D. Pines, and M. Cohen.


