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ROALD K. WANGSNESS
United States Naval Ordnance Laboratory, White Oak, Mary4nd

(Received February 1, 1955)

Starting from a microscopic viewpoint, the steady-state value
of the magnetization of a system of.moments has been calculated
semiclassically and quantum mechanically when the external
6eld has a circularly polarized component perpendicular to the
constant component. It is assumed that the only other processes
which can change the orientation of the individual moments are
strong collisions, and that their average tendency is to produce
equilibrium with respect to the instantaneous value of the 6eld.
The solutions thus obtained predict a nonzero absorption in zero
constant field, and that there is no dependence of g-values on
frequency. Further properties of the solutions are discussed. It is

also shown that the solutions for the circularly polarized case, as
well as Garstens' expression for the absorption coefFicient for the
linearly polarized case, can be obtained as steady-state solutions
of the macroscopic equation

dM/d&= vM XH+r 'LxoH —Mg.

This equation is a special case of an equation in which longitudina
relaxation is assumed to be along and transverse relaxation per-
pendicular to the instantaneous field. The relation of these results
to the question of the general validity of this modi6ed form of
Bloch's equation is discussed.

INTRODUCTION

I 'HE phenomenological equations of motion for the
magnetization which were devised by Bloch' for

the description of nuclear magnetic resonance have also
been widely used in the analysis of magnetic resonance
experiments on paramagnetic, ferromagnetic, and ferri-
magnetic materials. In this way, many results of
interest concerning the interactions aftecting the spin
systems have been inferred from the comparison of
experimental line shapes with those given by the solu-
tions of Bloch's equations, since the latter depend upon
the values of the longitudinal and transverse relaxation
times.

Recent measurements of electronic magnetic reso-
nance at low dc fields" have shown that the experi-
mental results no longer agree even qualitatively with
the predictions of Bloch's equations. In particular, the
Bloch formula predicts zero absorption at zero field in
contrast to the 6nite absorption found experimentally;
this point has been recently emphasized by Garstens. 4

This general failure of Bloch's equations at zero 6eld is
not too surprising, since the detailed analysis' of the
conditions required for the validity of Bloch's equations
showed that it is necessary that the applied field be
large compared to the line width.

The question then naturally arises as to the proper
mode of description of magnetic resonance for arbitrary
values of the fields, and, in particular, for very small
6elds. In general, there are several approaches one can
use in attempting to solve this problem. For speci6c
cases, one can start with the microscopic situation and
make a direct calculation of the average value of the
magnetization in the steady state which results from
the 6nal macroscopic balance between the eRect of the
applied 6eld and the interactions aRecting the system
which tend to restore the system to a state of thermo-

' F. Bloch, Phys. Rev. 70, 460 (1946).
s Codrington, Olds, and Torrey, Phys. Rev. 95, 607 (1954).
s Garstens, Singer, and Ryan, Phys. Rev. 96, 53 (1954).
4 M. A. Garstens, Phys. Rev. 93, 1228 (1954).' R. K. lvVangsness and F. Bloch, Phys. Rev. 89, 728 (1953).
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dynamic equilibrium. Garstens calculation is essen-
tially of this kind; he considered specifically the role
of strong collisions in a paramagnetic gas. The principal
disadvantage of this procedure is that it cannot be
carried through except for extremely simple cases, and
even then, the precise relation of the speci6c results
thus obtained to the general problem is usually not at
all clear. On the other hand, one can modify the macro-
scopic phenomenological equations in some plausible
way and then proceed by comparing the predictions of
the modified equations with experiment. The sug-
gestions of Codrington, Olds, and Torrey' fall into this
category; this procedure has the advantage of apparent
generality but the principal disadvantage here is that
one has no 6rm basis on which to predict the applica-
bility of these equations to a new set of experimental
conditions. Perhaps the most satisfactory, but also the
most dif6cult, procedure would be to follow the general
ideas of the treatment used by Wangsness and Bloch
for strong fields in that one tries to obtain a general
description of the phenomena by a suitable method of
averaging the microscopic behavior of the system over
all the degrees of freedom which are not of direct
interest.

In the present paper, we shall not discuss the problem
in its full generality, but rather from a point of view
which is a combination of the first two discussed above.
First, we shall discuss the case of a paramagnetic gas
for which we assume that strong collisions are the only
important factors to be considered in addition to the
applied field. We shall assume the applied field to
consist of a circularly polarized component in the plane
perpendicular to the constant component. This problem
will be treated both semiclassically and quantum
mechanically. After considering some of the speci6c
properties of the solutions obtained in this way, we
shall discuss the relation of these and Garstens' results
to each other and to the solutions of a more general

. diRerential equation. Finally, we shall give a brief
discussion of the possibility of extending the treatment

2'7
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of Wangsness and Sloch to the case of arbitrary field
strengths by using some of the methods used here.

SEMICLASSICAL GAS MODEL' CIRCULARLY
POLARIZED FIELD

The general philosophy of calculations based on a
strong-collision gas model, and which we shall adopt, is
essentially the following: we assume that between col-
lisions only the external field has any eGect on the
orientation of the magnetic moment associated with a
given molecule so that we can follow its changes in
orientation exactly between collisions, provided that
we can solve the appropriate equation of motion; the
collisions are assumed to be so strong and to last such
a short time that during a collision the change in orien-
tation produced by the external field can be neglected
as compared to that eGected by the collision; and that,
immediately after a collision, the moment has an orien-
tation completely determined by this last collision. An
average over the ensemble representing our gas thus
requires an average over the varying times between
collisions, and over the orientations of the moments
immediately after the last collision. Collisions are
therefore the only mechanism we have provided to
enable the system of moments to come into thermal
equilibrium with its surroundings. If the external field
were constant, the average over last collisions must
reAect the fact that for the equilibrium state the
moments have a Boltzmann distribution with respect
to the external field, and thus that the parallel com-
ponent of the magnetization is given by the classical
I.angevin function while the transverse components are
zero. If we now assume an additional time-varying field
to be present, whose period is long compared to the
duration of a collision, then the instantaneous field seen

by the molecule after collision is the same as that
before collision. Therefore, it is reasonable to assume in
this case that an average over the orientations after the
last collision should correspond to an equilibrium state
with respect to the iestmtaeeous field at the last
collision.

We shall carry this program out only for the case in
which the external field H consists of a constant plus a
rotating component perpendicular to it, i.e., we assume
that

H, =He, H~= H.+iH„=H, e

The advantage of discussing this case is that the solu-
tions of the equation of motion dM/dt=yM)&H can be
obtained exactly; thus we can avoid the difficulties
encountered by Garstens for both the circularly and
linearly polarized case which resulted from not using
an exact description of the motion of the moment
between collisions.

If p is an individual moment whose last collision

~ R. K. Wangsness, Am. J. Phys. 21, 274 (1953).The right side
of the expression for y„ in Eq (9) of this pa. per should have a
minus sign before it.

occurred at a time t', the values of its components at
the time t are given by'

p+(t)=tie '"'fcosrtisin8+-' , sin&L(cos8 —1)e'&~"+&'

+ (cos8+1)e '&~ "+&') . (2)

p. (t) =trLcosp cos8—sing sin8 cos(nr'+rt) j, (3)

where

(4)

(5)

(6)

In (2) and (3), the time which has elapsed since the last
collision is r'=t t', and p—and tl give the orientation
of p for r'= 0 in the primed coordinate system of
reference 6, i.e., a coordinate system rotating with
angular velocity —~k, so that the components of the
effective field in this system are given by

H. =Hi, H„.=O, H;=6/y.
The situation for r =0 is illustrated in Fig. 1(a).

We must, however, perform our averaging over
orientations at the last collision in the laboratory
system where we have assumed that the collisions
tend to result in equilibrium with respect to the
instantaneous value of the actual field. We can choose
the axes of our laboratory system to coincide with
the primed axes at t', and we let p and $ give the
orientation of p with respect to the resultant field
H = (Hps+ His) '*. This situation is illustrated in Fig.
1(b); we note that tanP=Hi/Hs=oii/ops. Since both
sets of angles give the orientation of the same moment
at the same time, we can equate the expressions for p, ,
p„, and p, obtained from the two parts of Fig. 1 to
get the following relations:

cosy sinos+ sing cos$ cos8
= cosp sin8+sing cosii cos8,

sing sing=sing sinrt,

cosy costi —sing cos$ sing
=cosP cos8—sing cost) sin8.

From these, we easily find that

cosP= cosy cos(8—tl)+sing cos$ sin(8 —8);
sing cosrf = —cosy sin(8 —8)

+sing cos$ cos(8—8), (8)
sing sing=

sining

sin).
Results which represent averages only over orien-

tations in the laboratory system will be represented by
( ); in accordance with our assumption of equilibrium
with respect to the instantaneous field, we can now
assume that: p and $ are independent with respect to
averaging; $ has a random distribution; and, p is
described by a Boltzmann distribution with respect
to the resultant field H.
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Thus, we have Z, z'
sE

and
(siny cos$) = (siny sing)=0,

(cosy)=L(tiH/kT) tI,H/3kT, (9)

where L is the Langevin function. Averaging over Eqs.
(8), and using these results, we find that

(cos$)= (cosy) cos(8—8),
(sing costi) = —(cosy) sin(8 —8),
(sing sing) = 0,

so that
(singe+'s) = —(cosy) sin(8 —8).

Therefore, we see that (2) and (3) become

(10)
(a)

Z,z'

X

o)Av-'

1+Asrs+„isrs
(19)

(ti+(t)) = p, (cosy)e '"'{sin8 cos(8—8)+-', sin(8 —8)
)&[(1—cos8)e'~"—(1+cos8)e '""5), (12)

(ti, (t))=p,(cosy)[cos8 cos(8—ei)

+sin8 sin(8 —8) cosnr'j. (13)

The second part of our averaging process now in-
volves the average over the intervals 7' using the dis-
tribution function e "'(dr'/r), where r is the mean
time between collisions. Representing our final averages
by ( )A„, we find from (12) and (13) that

(p+(t))s„=p(cosy)e '"'(sin8 cos(8—tt)
—[sin(8 —8) (cos8—iur) /(1+ rrr')]}, (14)

(tig (t) )Ag =p(cosy) {cos8 cos(8—0)
+L ( —)3/(+ ' ')} ( )

If we now multiply these equations by the number
of moments per unit volume, E, we will obtain the
values of the magnetization components at the time t.
From (9), we have Xp(cosy)=Xti'H/3kT=xsH, where

xs is the static susceptibility. From (5), (6), and Fig.
1(b), we also find that

cos (8—tt) = (n'+oiA)/yaH

sin(8 —y) = (oH, /nH.

Substituting these into (14) and (15), we get

~+(t)= xsH, e '"'(1+[(war +ia&r)/(1+rrsr )j) (16)

~.(t)=(xoh)( -( '")/(1+ '")). (1&)

We can also obtain expressions for the in- and out-of-
phase components of the susceptibility, for, if we write

M+(t) = (y'+iy")H+= (x'+ig")H, e—'"'

we find from (16) that

Y

FIG. 1. Orientation of the moment and the 6eld components at
the time of the last collision in the coordinate systems used in
the text. (a) Rotating system. (b) Laboratory system.

QUANTUM-MECHANICAL DERIVATION

In the previous section, we considered the effect of
the external field and of collisions upon the magnetiza-
tion components. In this section, we shall instead
consider the eR'ect upon the distribution function, i.e.,
the density matrix for the spins.

As before, ' we shall use a representation in which the
s component of the spin, I„is diagonal with eigenvalues
m. In terms of the spin probability amplitudes a (t),
the components of the density matrix p are given by

(m~ p(t) ~m') =a (t)a„*(t). (21)

We also have the relation

We shall defer a detailed discussion of these results
until a later section, but for the present we can note
that they reduce to the correct values for the static case,
for when co=0, g =gp& g =0, and M, =xpap. As
Garstens noted, his results for the circularly polarized
case, which can be obtained from the above by dropping
the one in (19) and replacing a& by &os in the numerators
of (19) and (20), are incorrect in that they do not
reduce to the proper values for the static case.

We can also point out here that the maximum value
of g" occurs when 6=0, i.e., cop ——co. Thus, for the cir-
cularly polarized case, there is no change in g-value
with frequency.

xs 1+Jar'+(uPr'
(20)

(22)
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(+)=p-+ and (I*)=s(p++ p —)—(24)

If we now transform from the laboratory system to
the primed coordinate system which is rotating so as
to keep the resultant field H in the x's' plane, it is con-
venient to express everything in terms of the probability
amplitudes b and the density matrix p' in the rotating
system. Using the results quoted by Bloch and Rabi~
for the transformation of the probability amplitudes,

b =e '&"'u and b =g'&"'a+ +

we find that
I I —7',oe t

P++—P++ ~ P——P— P—+—~ P+
so that the expectation values in the laboratory system
given by (24) becomes

(I+)=p~'e '"' and (I,)= s (p++' —p '). (25)

In the primed coordinate system, the probability
amplitudes at the time t in terms of their values at the
time t' are given by7

b+(t) =Ab+'+Bb ', b (t) =Bb+'+A*b ', (26)

where
A = cos(-', nr')+i cos8 sin(snr'),

B=i sin8 sin(-,'nr'), (27)

and where, as before, ~'=t —I,' is the interval since the
last collision. Therefore, we find for the elements of P'

the following:

p-+'= (A*)'p +" B'p~"-—
+A*B(p~"—p—"),

p++' p
'= (AA*+B')—(p+—+" p ")——

+2B(A*p~"—A p+-"), (28)

where p++"=6+'b+'*, etc. These results must now be
averaged over the state at the last collision and then
over the intervals since the last collision.

According to our basic assumption, the average over

~ F. Bloch and I. I. Rabi, Revs. Modern Phys. 17, 237 (1945).

so that we can initially confine our considerations to
the expectation values of I. In fact, the expectation
values are given by

(I+.)=Tr(I+p)=P (5$(I/~Nt —1)(m 1—]p[ts),
(I,)=Tr(I,p) =g m(m~ p~m),

(23)

where

(m~ I~ ~
m —1)= [(I+m) (I—m+1)]&.

Although all of the results describing the eGect of the
external field alone on p which we shall be using have
been obtained for arbitrary values of I,~ we shall
restrict our considerations to the case that I= 2 since
the formulas become quite cumbersome otherwise.
Since then m=&-,', we shall let (+-', )p~+-', )=p++, etc. ,
so that Eqs. (23) simplify to

the states at the last collision should correspond to an
equilibrium distribution with respect to the instan-
taneous resultant field H of Fig. 1(b). If we use c+ and
c as the probability amplitudes in the system whose
s" axis lies along B and whose y" axis coincides with y',
we can therefore assume that there exists complete
incoherence in the relative phases of c+ and c . If we
let averages over the states at last collision be repre-
sented by ( )„our basic assumption therefore is
equivalent to the relations

(c+c—).= (c+*c—).= (c+*c-*).= (c+c-*).=o,

(c+c+* cc ~—),=tanh(AH/kT) pH/kT=z.
(29)

PROPERTIES OF THE RESULTS FOR THE
CIRCULARLY POLARIZED CASE

The quantities of principal interest to us in this
section are the susceptibilities

(32)

Since the systems in which the b's and c's are used
diGer by a rotation about the y' axis by the angle 0,
the relation between the amplitudes is given by'

b+'= c~ cos-', 8—c sin-', 8, b '= c+ sin-,'8+ci cos-,'0,

and therefore, we find that

(p +"),= (p~ ").=-', » sine, (p~+"—p "),=a cos@,

so that (28) becomes:

(p +'),= a[-,' sin8((A*)' —B')+cosiliA*Bj
—',a(sin8 cos(8—0)+-,'sin(8 —es)

X[(1—cos8)e' "—(1+cos8)e ' ")}, (30)

(p++' p ').——
= a[cos8(AA"+B')+sin8B(A* —A)j
= z[cos8 cos(8—8)+sin8 sin(8 —i7) cosnr'j. (31)

The next step would now be to average these results
over the intervals since the last collision. We do not,
however, have to carry this through as we can now
easily see that we will get the same results as before.
For, if we now wanted to get a result to compare with
that of the last section at an equivalent stage such as
(12), we see from (22) and (25), we can get (p+(t)) by
multiplying (30) by yAe '"'. Then the factor in front
of the braces of (30) becomes, except for e '"', siyhlr

=ti~= p'H/kT=xpH/N where xp is the static suscep-
tibility appropriate to spin —,. Since we showed in the
last section that ti(cospp)=xpH/N, if we now compare
the form of (30) and (12) we see that we will be led to
exactly the same final result upon averaging (30) over
r' as we were from (12). Similarly, since the terms in
the brackets of (31) are the same as (13), an average
of (31) over r' will lead to the same 6nal results as did
(13). Thus, we see that Eqs. (16)—(20) will also be
obtained by this quantum-mechanical calculation.
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We note Grst of all that for zero constant field
(cop=0) they become

x' x" (07'

(33)
xo 1+(~r)'+(~ir)' xo 1+(~r)'+(~ir)'

1+(pair)'

We see that g" /0 so that there is an absorption at zero
field as there should be and, in fact, if the rotating field
is suKciently weak, i.e., (pair)'((1, x" reduces correctly
to the Debye formula xpp~r/(1+aPr').

For extremely large fields (6—&~), we also find that
these formulas reduce to the reasonable values g —+xo
and g"~0.

As mentioned before, x" has its maximum value for
6=0 (resonance), and we have

X res Xp»y X res Xooi&/(1+oil r ) ~

It is interesting to see that x' is not zero when x" is a
maximum, but rather is equal to the static value of the
susceptibility.

For more detailed discussion, it is convenient to write
(32) in terms of a set of dimensionless variables

20

cups
IO

FIG. 3. Imaginary part of susceptibility es applied Geld when
transverse Geld is circularly polarized. The numbers near the
peaks are the values of the parameter e which measures the com-
bined effect of frequency and amplitude.

In this notation, 1+0.'r'=x'L(r —1)'+c'7 and (32)
becomes

g=COT) SO=COOT) Sy=+]7')

r =xo/x= ooo/p~,

(34)

(35)

(r—1) fx"l 1—=1+ xf —
/

= . (37)
(r 1)2+o2 Exp ) (r 1)2+oo

o= L(1+xio)/x'7». (36)

X

&o

. Fre. 2. Real part of susceptibility vs applied Geld when trans-
verse field is circularly polarized. The numbers near the peaks are
the values of the parameter e which measures the combined effect
of frequency and 'amplitude.

so that resonance corresponds to r= i. In addition, we
introduce a parameter ~, which is a convenient measure
of the combined effect of the frequency and amplitude
of the rotating Geld, and which is defined by

These forms are more useful in performing numerical
calculations.

One easily finds that the points at which y" is equal
to half its maximum value are r = 1&o, or (pop)»

=&u(1+o). It also turns out that these are the same as
the points at which x' has its maximum and minimum
values. In fact, we have, for (pip) =&a(1+o),

(x'/xo) .*=1+1/2o
and for (p~p) =pi(1 —o),

(x'/xo)--=1 —1/2o

Thus, except for the case discussed below, the maximum
and minimum values of x' are equally above and below
xp. If o& p, (x'); is negative; if o& o, (x');„is positive,
while for o=p, (x'); =0, (x'), =2xp, (~p);, =op~,
and (pop),„=poco. If o&1, however, the above formula
would indicate that (~p); is negative; this means, of
course, that for c&i, the minimum value of y' corre-
sponds to the value for coo=0 and is greater than the
value 1—(1/2o) given by the above formula.

It is possible for g' to go through or become zero, but
only if e ~& -,'. If ~&-,', x' is zero at the frequencies given
by

opog = pcl7$1& (1—4o ) 7

while if e= ~, the two zeros coincide and equal the value
a&/2 found above for (cvp);„. On the other hand, if o& ip,

p' is always positive.
Figures 2 and 3 show calculated curves of (x'/xp)

and x(x"/xp) as functions of r for various values of o.

They clearly show the existence of absorption for zero
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RELATION OF THESE RESULTS TO A GENERAL
EQUATION OP MOTION

As was discussed, it would be of interest to have a
general equation of motion for the magnetization, pos-
sibly a suitably modified form of Bloch's equation,
which is a more accurate description of resonance phe-
nomena for arbitrary 6elds, particularly at low fields.
In the previous sections we derived expressions for the
susceptibilities which do reduce to what are felt to be
the correct forms at low fields. If we could now show
that these susceptibilities can also be derived from a
general equation under the same conditions as used in
the previous sections rather than necessitating the type
of detailed calculation we have actually used, this
would furnish a limited theoretical support from the
microscopic point of view for the validity of the macro-
scopic equation.

Briefly stated, the basic assumption in our derivation
was that the efIIect of the strong collisions was the
tendency to establish equilibrium with respect to the
instantaneous value of the field. This is similar to the
suggestion of Codrington, Olds, and Torrey' that
Bloch's equation be altered by assuming that longi-
tudinal relaxation takes place along the instantaneous
field while transverse relaxation is perpendicular to it.
We shall now show that our specific results can be
obtained from an equation of this type.

If we let T~ and T2 be the usual longitudinal and
transverse relaxation times, respectively, then the
equation of motion suggested by Codrington, Olds, and
Torrey would have the form

dM 1 (M H)=yM&(H+ —xpH — H
Ty IP

1 (M H)——M — —H
T2. H'

or

dM

dt

xpH M (1 1) (M H)
=~MPH+ ——+ (

——
~

H. (38)
Tg Tp I T, T) HP

If we let M+ M,+iM„ then (38) is equi——valent to

xo
M, = —

( i&H,+—(M,+ i&M,+-
T,) T,

(1 1iM H-
H„(39)

KTp Tg)

Hp and the change in the character of the curves as
discussed above for increasing values of e. Experi-
mentally, this could be obtained under suitable condi-
tions by increasing cu& for a fixed value of ~.

The value of M, as given by (17) never changes
appreciably from the value ppHp except for very large
co~. The value of M, at resonance is

(M,)...=xpHp/(1+»Pr').

If we now assume that H has the constant and cir-
cularly polarized components given by (1), we can And
a steady state solution of (39) and (40) of the form

M+ ——(x '+ix ")Hge '"', Mg ——const. (41)

When (41) is substituted in (39) and (40), we find that

x '=xpD [1+(n'+(pe)T2Pj, (42)

pD Q) (43)

where
M, =(xp/y)D [ pp(p1+ nT )p—n~~'Tp'], (44)

(1/D ) =1+n'TgTp
—Tp(T, —Tp) (»'+a)pA)'/(cop'+(uP). (45)

Now in the case of gases, where strong collisions
provide the relaxation mechanism, it is known' that
there is no longer any real distinction between T~ and
T2. In order to compare these results with those of
previous sections, therefore, we should consider the
case that T~ Tp ——r, then w——e see at once that (42)—(44)
reduce exactly to the corresponding expressions in
(17), (19), and (20). In other words, the results ob-
tained by the earlier detailed calculations can most
simply be obtained as the steady-state solution of the
equation to which (38) reduces when T& ——Tp = r;
namely,

1
=yM &(H+-[xpH —M]. (46)

We can also find the steady-state solution of (39)—
(40) for the other sense of circular polarization. If we
assume the external held now has the components

H, =Hp, H+= H~e'"',

and assume a solution of the form

M+ ——(x~'+ix+")H~e'"', M,+——const.

(47)

we find that p+', p+", and 3f,+ are given exactly by
simply replacing co by —co everywhere in the corre-
sponding results (42)—(45) obtained for the other case.
For example, we find that

where
X+ = XpD++T2~ (48)

(1/D+) =1+[(«+~)'+~PfT,T,
—Tp(T~ —Tp) [»'+np(«+~))'/(~p'+»') (49)

The linearly polarized case for which H =2H& cosset,
H„=O is very difficult to solve exactly. For our present
purposes, it will be sufhcient to restrict our considera-
tions of the linearly polarized case to the simpler

M.= i (M—+H+* M—+*H~)
2

M, xp (1 1qM H
H, . (40)

Tp -Tl (Tp T]) H
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equation (46). We can get an approximate steady-state
solution if we assume B~ to be small enough so that
we can neglect the product M,EI,. We then find that a
solution of the equation corresponding to (40) is

M ~=XOIIO= const.

The corresponding equation (39) then becomes simply

&&H (e'"'+e '"') (50)
since H+ ——2B~ coscot.

Equation (50) can be easily integrated directly to
find the steady-state value of M+& which we see will be
proportional to Hq. But the linear form of (50) suggests
that we should be able to write M+g as the sum of the
solutions we found for the two circularly polarized
cases when T~——T2= r, provided that we neglect the
quantity (&o&r)'. This can be veri6ed directly to be the
case and therefore we can write

~+i= (x-'+tx-")Hie ""'+(x+'+~x+")H~e'"',
ol

Mg( ——2HgL-', (x '+xp') cosa)t+-', (x "—x+") sin(at],

~w&=2H~L2(x — +x+") cosset —-', (x
' —x+') sin&A]. (51)

The only term which will contribute to the energy ab-
sorption is the coefficient of 28~ sin~t in the expression
for M, ~, and this can be written in the normal manner
as x~". Thus, from (51), (43), and (48), we get

xi"=
2 (x-"—x+")

= zX~& (52)
1+((oo—a))'r' 1+((op+o))'r'

which is exactly the expression obtained by Garstens
for the linearly polarized case' and is known to agree
well with experiment. ' Since Garstens, Singer, and
Ryan always used extremely small amplitudes for
their oscillating 6eld, one could not expect their experi-
ments to show the effects of the additional terms (&u~r)'

which will likely appear in a less approximate solution
of (46).

The general origin of Garstens' expression for x~" is
now less obscure since we have just shown it to be ob-
tainable from an approximate steady-state solution of
the general equation of motion (46) in which both

. relaxation times are taken to be equal.

DISCUSSION

In general, the fact that our results for the circularly
polarized case and that of Garstens for the linearly
polarized case, which were derived by suitable averaging
over the microscopic states, can be obtained as solutions
of the macroscopic equation (46) provide support for
the feeling that (46) and hence the more general equa-
tion (38) will provide a valid description of magnetic
resonance phenomena for a wide range of experimental
conditions. In order to specify these conditions in
detail, we would obviously require a more elaborate
analysis than given here. It seems likely that this task
could be carried through, at least for the circularly
polarized case, by transforming to a properly chosen
rotating coordinate system in which the external field
has effectively been eliminated, as we did in previous
sections by means of the simple transformation equa-
tions for spin —'„and then by proceeding along lines
similar to those used before. '

It has been common practice to use equations of the
Bloch form as a basis of discussion of line shapes and
relaxation times in ferromagnetic and ferrimagnetic
resonance experiments. One of the qualitative results
obtained here is the definite indication that g-values
obtained by the usual method of finding the held at
which the peak of the absorption curve occurs should
depend on whether one is using a linearly or circularly
polarized 6eld, and it would be interesting if this should
also be the case for ferromagnetic and ferrimagnetic
materials. This point is currently being investigated
experimentally by Dr. T.R.McGuire of this Laboratory.

Pote added ie proof Since th.—is article was sub-
mitted, I have learned from private communications
that similar conclusions about the necessity of con-
sidering the interactions as tending to produce equi-
librium with respect to the instantaneous field have
been independently arrived at by E. P. Gross, J.
Kaplan, and P. Weiss.


