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Theory of Donor States in Silicon*

W. KOHN, Departmelt of Physics, Carwegie Iustjtgte of Techstotogy, Pittsburgh, Pelasylvagia aud
Bell Telephone Laboratories, Mlrray Hill, Rem Jersey

AND

J. M. LUTTINGER, Departmestt of Physics, UNiversity of Michigass, AssI Arbor, Michigass
and Bell Telephone Laboratories, MNrray Hill, Eem' Jersey

(Received February 2, i955)

By using the recently measured effective masses for n-type Si, m&=0.98 m and F2=0.19 m, approximate
solutions of the resulting effective mass Schroedinger equation are obtained. The accuracy of the solutions
was tested in the limiting cases where ms/m& = 1 and 0 respectively. The nature of the resulting states and
their degeneracy is discussed in some detail, taking into account the fact that the conduction band of Si
has six equivalent minima. Experimentally measured ionization energies show that the effective mass
theory is seriously in error in the case of the ground state. This error is attributed to failure of the effective
mass theory near the donor nucleus, and allowance for this failure is made in the case of higher states. This
leads finally to a theoretical spectrum for the electrons bound by P, As, or Sb donors.

1. INTRODUCTION

''T is well known that P, As, or Sb—all Group V
~ . atoms —when added to Si, act as so-called electron
donors. The following qualitative picture has been well
confirmed by experiment'. The donor atom has five
electrons outside of closed shells. Four of these serve
to complete bonds with neighboring atoms. The fifth
finds itself in the Coulomb field of the remaining charge
(reduced by the dielectric constant of the medium). In
this field there exist bound states, with ionization
energies of a few hundredths of a volt. The purpose of
this paper is to examine these states theoretically in
the light of existing experimental information.

This investigation was stimulated by the spin reso-
nance experiments of Fletcher et al.' on e-type Si, and
we have examined only donor states in Si in some
detail. However, most of our considerations apply
mltatis mltandis also to m-type Ge. On the other hand,
acceptor states in Si and Ge represent a rather diferent
situation, because of the special structure of the top of
the valence band, to which we hope to come back in a
later publication.

2. EXPERIMENTAL SITUATION

The following experimental data are of special sig-
nificance for our purposes:

@ted= 0.98m, m2= 0.19m,

m being the free electron mass.

(2.2)

3. EFFECTIVE MASS THEORY

The donor state wave functions satisfy a Schrodinger
equation of the form

ttt'

V'+ l'(r)+ t'f(r) l4 (r) =&4(r),
2m

(3.1)

where V(r) is the periodic potential of an electron in a
perfect Si lattice, and U(r) is the additional potential
due to the replacement of a Si atom by a donor ion. We
choose the donor nucleus as coordinate origin. Then,
for large r,

V(r) = —e'/ r, x (3.2)

(b) Band. Structure

Recent measurements of piezo-resistance, ' magneto-
resistance4 and cyclotron resonances' lead conclusively
to the following picture. The conduction band of Si
has six minima located on the (1,0,0) and equivalent
axes. If the minimum on the (1,0,0) axis is denoted by
it&'&= (kp, 0,0), the energy near this point is given by

E=Zp+ (A'/2sstr) (k —kp)'+ (Pt'/2sstp)(k s+k ') (2.1)

where

(a) Ionization Energies TABLE I. Experimental ionization energies of donor states.

These have been determined from the temperature
dependence of the Hall coeKcient. The results are given
in Table I. We have included in this table results for
i,i donors which very likely occupy interstitial posi-
tions in the lattice.

Donor

P
As
Sb
Li

Ionization energy (ev)

0 044a
0 049'b
0.039
0.033 '

*Supported in part by the OfBce of Naval Research. Pre-
liminary reports have appeared in Bull. Am. Phys. Soc. 30, No. 2,
38 (1955) and Phys. Rev. 97, 1721 (1955).' E.g., G. L. Pearson and J. Bardeen, Phys. Rev. 75, 865 (1949).

'R. C. Fletcher et ut. , Phys. Rev. 94, 1392 (1954); 95, 844
(1954).

a F. J. Morin et a/. , Phys. Rev. 96, 833 (A) (1954).
b E. Burstein et al. , J. Phys. Chem. 57, 849 (1953).
e C. S. Fuller and J.A. Ditzenberger, Phys. Rev. 91, 193 (1953).

' C. Smith, Phys. Rev. 94, 42 (1954).
e G. L. Pearson and C. Herring, Physica (to be published).
s R. N. Dexter et ai., Phys. Rev. 96, 222 (1954).
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where ~ is the dielectric constant of Si, having the value
12.0. Because of this large reduction of the Coulomb
field of the donor ion, one expects bound states around
the donor having dimensions large compared to the
lattice spacing. In this limit it can be shown that (3.1)
has solutions of the form

with an energy
F(r)=4r le ", (4 4)

(4.5)

(i) mi ——ms (or T=1)
This is the hydrogenic case, leading to the following

normalized solution:

/&4&(r) =F&'&(r)it (k&4&,r), i=1, 2, 6, (3.3)
(ii) m,»ms (or y« 1)

where P(k&'&, r) is the Bloch wave at the minimum k&'&

assumed to be nondegenerate. The F&'&(r) satisfy the
effective mass equations,

This we call the adiabatic limit for the following
reason. Equation (4.3) may be regarded as the Schro-
dinger equation describing three one-dimensional par-
ticles of masses 1/y())1), 1, and 1, respectively, inter-
acting through the potential —2/(x'+y'+z')2. Since
one of these masses is much larger than the other two,
we follow the well known adiabatic procedure of first
solving the equation

&&4' B' A' t' B' B' q e'
+ I

——s F&"(r)=0, (3.4)
2m, Bz,' 2m, (BxP By;J»r

where mi and ms are defined in (2.1) and z; lies along
the direction of k&'&. The function tt &4& (r) is normalized,
provided we set

IP(k&4&, rl'dr=a,
~ unit cell

(4.6)

where z is treated as parameter (cf. electronic motion
for fixed nuclear position in molecular problems), and
then

0 being the volume of the unit cell, and

( B' B' ) 2
+ —X(z) C(x,y;z)=O,

( Bx' By') (x'+y'+z')'*
(3.S)

IF"&(r) I'dr=1. (3.6)
[—yd'/dz'+X(z) —s744(z) =0 (4.7)

~ all space

Finally it is convenient to choose the phases of the

it (k&'&, r) such that the P(k&'&,0) are all real. The eigen-
value s of (3.4) represents the energy of the state (3.3)
relative to the bottom of the conduction band.

In the following two sections we shall study the
solutions (3.3) and their energy spectrum. Actually,
however, the assumption of a sufIiciently large orbit—
which leads to (3.3)—is not always too well satisfied
and we shall come back to this difFiculty in Sec. 6.

4. GROUND STATE

(cf. nuclear motion in molecular problems). Let us
now introduce

p= (x'+y') i, p= tan —'(y/x).

Then (4.6) becomes

(4g)

1 8 8 1 l9 2
P

—X(z) 4&(p, p; z) =0.
(p'+z')'

(4.9)

The ground state is of course independent of q.
In the extreme adiabatic limit (y«1), the lowest

eigenvalue of (4.9) is

%e begin by examining the lowest lying solution of
(3.4). We introduce

lime=A(0),
y-+0

(4.1o)

ge = i'4'»/m e' ss mse4/2A——'»'
where X(0) is the lowest eigenvalue of Eq. (4.9) with
z=o. The corresponding solution is

as units of length and energy respectively, and write C = e '&; X(0)= —4. (4.11)

(4.2) Thus we see that if ms is kept fixed while mi increases
from m2 to ~, the ionization energy changes from —60

to —4&0.

It is also of interest to calculate 44(z) in the extreme
adiabatic limit. For this purpose we require X(z), Eq.
(3.13), for small z. A simple perturbation calculation
gives

y=—ms/mi((1).

This leads to the equation

( B' B' B' ) 2
+ + I

——— F(r) =0,
Bzs Bxs Bye)

(4.12)

d' 32
t 4+s)——+—lzl —

I I
~(z)=0

&. ~) (4.13)
4 J. M, Luttinger and W, Kohn, Phys Rev. 97, 869. (1955l,

where we have dropped the subscripts and super- &(z)= 4+32lzl+
scripts i For p(1. this equation does not completely Substitutin into (4.7) leads to
separate and no exact solutions have been found.
It is therefore of interest to consider two limiting cases:
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By changing the variable to

~-=(32/. )i, ()= (~), (4.14)

limiting cases. F(") is evidently exact for p=1. For
p—+0, one finds, by minimizing the energy,

Eq. (4.13) becomes

L
—ds/dp+

I pl
—&]e(~)=0,

where
(4.15)

a —+ 4/3s =0.424, b —+ xi(4/s)s&'y'",

e —& —ss (3s/4) s = —3.701,

P&"&(0) -+ 2.12' "'.
(4.26)

(4+.).
(32):y'

(4.16)

Equation (4.10) can be solved in terms of Bessel func-
tions. The lowest solution is symmetric in g and is
given by

g= 1.02,

(~) =&(~ ~):~—&L-:(-~-~)i]+~.i.Ll(~ ~)'],—
0&P&q, (4.17)

e(~) =C(~3/ )4—.)'"& &.L-:4—.)-:],.«& -, (4»)
where

C'= 5.3,

when e is normalized such that

(4.19)

b(~)]'«=1 (4.20)

y~O: e= —4+10.3y'", (4.21)

~= L(8/~)'"(32) "sv "s]e "eL(32/v)'s] (4 22)

The qualitative aspect of this function is of interest:
As y~0 (i.e., mi—+~) the dependence on y and s
tends to a constant function, e '&, which extends over
dimensions of the order of u~, the Bohr radius associated
with m2. On the other hand the extent of the wave-
function in the x-direction is of the order of (ms/mt)'I'a~,
i.e., the function becomes pancake-like as mt/ms —+~.
At the origin we have from (4.22), (4.17), and (4.19):

y~O:F(0)—+Ay "',
A —1.98.

Variational Method

(4.23)

(4.24)

Neither the hydrogenic nor the adiabatic case are
of much direct practical value for the actual case
ms/mt ——0.19, which lies in between. However a simple
variational function, namely,

P &" = (s'a'b) —' exp L
—(p'/a'+s'/b') ~] " (4.25)

represents, with a suitable choice of u and b, a very
good approximation to the actual situation for all

y &1. (We use again (4.3) and (4.2) as units of length
and energy. $ Its accuracy can be nicely tested in both

From (4.16) and (4.17) we obtain the following refine-
ment of (4.11):

The agreement with the true limiting function (4.23)
and (4.24) and energy (4.11) is remarkably good. Figure
1 shows a plot of the energy as a function of p= ms/mt, '

as calculated with the variational function (4.25). The
error is only 7.5 percent at &=0 and no doubt smaller
for all intermediate y. For Si, with y=0.19 we find

e = —0.029 ev. (4.27)

Repre
tation

A1
A2
8
~1
T2

1$

p
ment

8C8

1
1—1
0
0

3C2 6a&f

1

0
1—1

6S4

1—1
0—1
1

Comparison with the characters of the irreducible
representations shows that (1s} decomposes into

(1s}=A t+8+ Tt, (4.28)

which are one-, two-, and thI'ee-dimensional respec-
tively. The degeneracy of the six functions (3.3) obtains
of course only in our effective mass approximation. In
reality this degeneracy will be partially lifted according
to (4.28) and one singly-, one doubly-, and one triply-
degenerate level will be produced. If we number the
minima in the (1,0,0), (—1,0,0), (0,1,0), (0,—1,0),
(0,0,1), (0,0,—1) directions by 1, 2, , 6, respec-
tively, the correct linear combinations are given by

6

O';=+ n, "&P&'& s=1 2, , 6,
j~l

(4.29)

Degeneracy

We remarked in Sec. 3 that in the effective-mass
approximation, the Schrodinger equation has six equiv-
alent and evidently degenerate solutions of the form
(3.3). These functions must form a basis for a repre-
sentation of the symmetry group of our system, vis. ,
the tetrahedral group T~" about the donor atom. The
six functions (3.3) behave under operation of Tq like
x, —x; y, —y; 2, —s respectively. Td, has five classes
and we list in Table II the characters of the present
representation, (1s}, as well as of the 5 irreducible
representations of Td, '.

TABLE II. Characters of tetrahedral point-group representations.

"This function was independently introduced by M. I.ampert, ' See, e.g. , Eyring, Walter, and Kimball, QNuetum Chemistry
and by G. Mitchell and C. Kittel (to be published). {Jonn Wiley and Sons, Inc. , New York, 1944},p. 388.
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turbation being 88'/ciz' Lsee Eq. (4.3)5. This mixes
states of given e and m and all l of a given parity, e.g.,
the states m=2, m=O, 1=0 and 2, and the accidental
degeneracy due to different f and m will be lifted. (The
double degeneracy corresponding to ~m remains of
course. )

(b) Adiabatic Limit

Proceeding as in the last section, we first solve (4.9),
obtaining, for 2'=0,

0
Q2 0.4 0.6

tjs
m~ m,

o.e l,o

m=0, +1,+2,

(5.2)

Fre. i. Energy of ground state as function of mass ratio,
y=m2/m&, calculated with the trial function (4.25); co=mme'/
2A IP.

where
ni&'& = (1/g6) (1, 1, 1, 1, 1, 1), (Ai)

n2 "&=-'(1 1 —1 —1 0 0)2 » » ~ r (g)na&"=-', (1, 1, 0, 0, —1, —1), (4.30)

n4'" = (1/V2) (1, —1, 0, 0, 0, 0),
na"' = (1/v2) (0, 0, 1, —1, 0, 0), (Ti)
n6'" = (1/K2) (0, 0, 0, 0, 1, —1)..

Since all f'&&(0) are equal (see Sec. 3), we notice
that only the nondegenerate function 4'1 has a 6nite
value at the donor nucleus. It therefore will have a
much larger hyperfine structure than the other states.
The experiments of Fletcher et a/. ,

' who have measured
the hyperhne splitting of electron spin resonances in
donor-doped Si at liquid helium temperatures, show
that in fact %1 must be the ground state. Other con-
siderations which wil} be discussed in Sec. 6 support the
same conclusion.

S. EXCITED STATES

We now wish to obtain some orientation concerning
the excited solutions of Eq. (4.3). This equation is
invariant under rotations about the s axis and under
inversion through the origin. Hence the solutions of
(4.3) may be labelled by an integral magnetic quantum
number et $F(r) e' &5 and a parity F=&1.

It is of interest to trace, qualitatively, the spectrum
of (3.4) as we pass from the hydrogenic case to the
adiabatic limit.

(a) Hydrogenic Limit

For y=1, the spectrum is given:

and
(5.3)

(5.4)

where p, &.,q is de6ned by the above equation, Evidently

llm p, m g,.q=O.
y~o

The parity of Pm, $ q is given by

(5.5)

(5.6)

(c) Connection Between Hydrogenic and
Adiabatic Limit

We now raise the following question: What happens
to the hydrogenic level scheme as y decreases from 1
to 0. This change to p may be considered as the gradual
appearance of a perturbation, 8'/Bs'. Since this per-
turbation commutes with rotations about the s-axis and
inversion, m and I' are conserved. However, all states
with the same m and I' are mixed. In Table III we list,
for y=1, the states corresponding to given m and I'
in order of increasing energy. We shall use the symbol
R; to denote a set of states with given m and I'. The E;

TABLE III. Hydrogenic levels grouped according to
values of m and P.

where f e(x) denotes an associated Laguerre poly-
nomial.

In principle, X(s) for s P 0 can be similarly found and
used to solve (4.7). Since X(s) is a symmetric function of
s the solutions of (4.7) will be either even or odd. They
may be labeled by a quantum number q representing
the number of nodes. Thus the total wave function
becomes, in the adiabatic limit,

e= —1/n', 8=i) 2) ''') (5.1) R1
m=0, P=1 R2

m=o, P= —1
Rs

m=1, P= —1
R4

m=1, P=i
where n is the principal quantum number. The states
of even and odd l have P= &1, respectively.

The case where p is just less than one, p= 1—6, must
be treated by degenerate perturbation theory, the per-

1$
2$
3$) 3d
4$, 4d

2P
3P
4p, 4f
Sp, 5f

2P
3P
4P 4f
Sp, 5f

3d
4d
5d, 5g
6d) 6g
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belong to diGerent representations of the symmetry
group of the Hamiltonian in (4.3). As the perturbation
f)'/f)s' comes into play, two levels belonging to different
R; may cross freely but those in the same R; "interact"
and hence cannot cross.

Let us begin by considering Er. For p= 1 3(—8 being
a small positive number), its levels are all discreet and
in a definite order

Rr.'1s, 2s, (3s,d)&", (3s,d)&" (5.7)

HYOROSK NIC
L I MIT

i.= I,rn=+ I—
~=-~in=2 l=o& m=o—4

&=I, IVI =0

A 0 I A8AT IC
LIMIT

m=+I,&=O,E--4

m t q
R~'. 1s, m=O —+ 0 0 0

2s m=0 —+0 0 2

(3s,d)~", m=O —& 0 0 4
(3s,d)ts& m=0 -+ 0 0 6.

Similarly for the other groups:

(5.8)

R2.'

R3.'

R4'.

5$ $ g

2p, m=0 —+ 0 0 1

3p, m=0~ 0 0 3

2p m=1 —+1 0 0
3pm=1~1 0 2

3dm=1 —+ 1 0 1
4d, m=1 —+ 1 0 3.

(5.9)

%e see then that all hydrogenic levels go over, in the

where the superscripts (1) and (2) indicate certain
linear combinations. These levels represent the lowest,
second lowest, etc., level corresponding to m=0, P= 1.
As y approaches zero, they remain the lowest, second
etc. level corresponding to no=0, P=1, as a result of
the noncrossing principle; i.e., they go over into the
adiabatic levels, m=0, 1=0 and q=O, 2, 4, ~ . [In the
adiabatic limit these all lie lower than the levels as=0,
t&0, q=0, 2, 4, , which belong to the same repre-
sentation, see (5.2) and (5.5)j. Thus we have the fol-
lowing correspondences:

e=-&, n=I. l.=O, IYI=O

—&=2
~rn=o, t,=o,f=-4

Q=O

adiabatic limit, into adiabatic levels with the same m,
and t=0."Therefore, as y diminishes from 1 to 0, the
energy of a hydrogenic level e, l, m changes from
e= —1/n' to e= —4/(2 (

m )+1)' Lsee Eq. (5.2)].
Figure 2 illustrates the correspondence for the first few
hydrogenic levels.

(d) Variational Calculations

To determine the energies of the first few excited
states of donors in Si, we have made variational calcu-
lations which we have tested in the limits y= 1 and 0.
This comparison enabled us to make slight corrections
and to estimate the error of our calculation.

FIG. 2. Correspondence between energy levels in the hydrogenic
limit, mz/mr=1, and the adiabatic limit, mq/mr=0 (schematic).
s is in units of es=mze'/2A'z. Note that ~ is drawn on dilierent
scales in the two limits.

TABLE IV. Energies in the effective mass approximations. '

State

1s (0,0,0)

2p, m=0 (0,0,1)

2s, m=0 (0,0,2)

3p, m=0 (0,0,3)

2p, m=1 (1,0,0)

Trial function

C expL —(p'/o'+z'/bz) &j

Cz expL —(pz/az+z'/b') tj

(CiyCzp'+Csz') expL —(p'/o +z /b )tl

(C,+Czp'+C, z')z exp f—(p'/o'+z'/b') &j

Cz expL —(p /o'+zz'/b')&g

0
0.19
1.00

0
0.19
1.00

0
0.19
1.00

0
0.19
1.00

0
0.19
1.00

—3.70—1.60—1.00

—3.47-0.597—0.250

—3.34—0.456—0.245

3.22—0.288—0.111

—0.434—0.324—0.250

—4.00

—1.00

—4.00

—0.250

—4.00

—0.250

—4.00

-0.111

—0.444

—0.250

Ey

-1.63&0.03

—0.63&0.03

-0.49&0.03

—0.32&0.03

-0.33&0.005

a A11 energies are expressed in units of ee, Eq. (4.1), which for Si has the value 0.0i79 ev.

~~ The adiabatic levels with t&0 have no counterpart in the hydrogenic spectrum.



920 W. KOHN AN D J. M. LUTTI NGER

The results are listed in Table IV, together with the
exact results in the two limits. The description of a
state by, say, 2p, m=1 means that as y~1, the state
becomes a hydrogenic 2p state, with m=1 along the
direction of k&'&. The numbers in parentheses are the
quantum numbers m, t, q' in the adiabatic limit. The
following notation is used:

E„,=energy calculated variationally with the
indicated trial function;

E, =exact energy;
Er ——final energy, i.e. , variational energy, cor- (5.10)

rected by comparison with |;xact ener-

gies, including an error estimate;
p=m2 mJe

{e) Degeneracy

Considerations similar to those of Sec. 4 show that
each efFective mass wave function F&'&(r)tp(k~o, r) is
one of a 12-fold degenerate set for m /0, and a 6-fold
degenerate set for m=0. It is of interest to find the
linear combinations of these functions which transform
according to the irreducible representations of the
tetrahedral group. For this purpose we given in Table V
the characters of the tetrahedral point group for the
representations corresponding to different m values.

Comparison with Table II gives the following decom-
position:

l~l=o: A i+E+Ti,

I nial even (QO): A&+A&+2E+T&+Ts, (5.11)

lml odd: 2Ti+2Ts.

Thus deviations from the effective mass model will

split each degenerate set into groups according to the
following scheme:

6= 1+2+3,
m even (QO): 12= 1+1+2+2+3+3, (5.12)

m odd: 12=3+3+3+3.

6. DEVIATIONS FROM THE EFFECTIVE-MASS
FORMALISM

The shortcomings of the effective-mass formalism are
best seen from the following comparisons with experi-
ment. The eGective-mass theory predicts an ionization

energy of 0.029 ev for all donors, whereas the experi-
mental values for P, As, and Sb range from 0.039 to
0.049 ev (see Table I). The discrepancies undoubtedly
arise largely due to the breakdown of our assumptions

in the immediate vicinity of the donor atom, for the
following two reasons: (1) The perturbing potential
U(r) changes from e'/~—r to A—Ze'/ar near r =0, where
AZ is the excess charge of the donor nucleus over that
of Si. (2) The efFective-mass formalism does not apply
in this region since the fractional change of U(r) in a
typical lattice distance, a, is large.

We do not have a good quantitative theory to take
these effects into account. But it is clear that they will
be largest for the states of greatest amplitude near the
donor nucleus. In the remainder of this section we shall
discuss the effect of deviations from the effective mass
formalism on the most important low-lying levels.

"ls"-states

We begin by considering the six states (4.29), (4.30),
whose modulating functions J'"&(r) becomes "1s"-like
when m&/m&~1. The lowest of these is almost certainly
0'& corresponding to the identity representation. Since
all 4&'&(0) are equal, the 6 terms in the sum (4.29) are
all in phase at r =0 so that Vr(0) would be expected to
be quite large. This is borne out by the observed large
hyperfine splitting of the lowest donor state. ' It is
therefore not surprising that the energy of this state,
as calculated by the effective mass approximation is
substantially in error. As was noted previously, the ob-
served ionization energies for group V donors are from
35 to 70 percent greater than the effective mass energy.
We have discussed this state in some detail elsewhere. "
The other five "1s"-states evidently vanish at r =0 Lsee

Eq. (4.30)j.
For orientation let us study these six 1s-states in the

tight binding approximation. In this case, in the vicinity
of the donor nucleus,

k(i) . r
P&'& =nR, (r)+P R„(r), (6.1)

A, : +,(r) =+6nR, (r), (6.2)

where R, (r) and R~(r) are the normalized radial atomic
3s and 3P functions, and n and P are numerical constants
of comparable order of magnitude. The p-part of this
function contains the factor k&i& r, because it must be
invariant under rotations which leave k&i~ invariant.

With the help of (6.1), we can make a plausible guess
as to the positions of the is-levels belonging to the
representations Ai, E, and Ti. By (4.29) and (4.30),
we see that in the vicinity of the donor nucleus (and
extending over about one atomic volume), we have:

TABLE V. Characters of tetrahedral point group representations. 0's(r) =0,
4's(r) =0,

(6.3)

+Group element
fanjet

0
even, +0

Qdd

6
12
12

3CR .

2
4—4

6S4 '4'4(r) =%2P(x/r)R„(r),
Ti.' ~ @s(r)=V2P(y/r)R„(r),

.'@s(r) =V2P(s/r)R (r).
(6.4)

"W. Kohn and J. M. Luttinger, Phys. Rev. 97, 883 (1955).
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Therefore we would expect +l to be lowest because the
electron spends a relatively larger time near the nucleus,
where the attraction is greater. Similarly we would
expect the states belonging to T» to have somewhat
lower energies than the effective-mass energy, but
because of their p-nature to lie substantially above 4&.
Finally the energy of the two states belonging to E
should be rather accurately described by the effective-
mass energy.

m*= 0.31 m, (6 3)

which in the effective-mass approximation gives the
same ground-state energy as the measured masses. Now
for r & a, where a is a typical lattice distance, the wave
functions 0 „,, for both the 1s- and 2s-states, belonging
to the identity representation, will be given by the
effective-mass expressions

+„,=F„,(r)P P(kio, r); n=1, 2, r) u. (6.6)

where because of the single mass m* all F"'(r) are
identical for i=1, 6 (see Eqs. (3.3), (3.4), and
(4.29)j. The functions F„,(r) satisfy equations of the
hydrogenic form

( A' e'
V'——... (F.,(r)=0,

2m* ~r ) (6 /)

where e„, is the actual energy of the ns-state. Since the
~„, do not exactly coincide with the hydrogenic levels,

m*e'/2A'r. 'n' the—F„, which vanish at r= ~ would
become in6nite if continued to r=0. However, for
r(a the effective-mass function (6.6) no longer is
reliable. On the other hand, in view of the negligible
value of Ae(—= es, —et,) we have in this region

+is =+2s) (6.8)

'~ It can be easily seen that the relevant criterion is AZ
«(ft'/2m)o, s, where a, is the radius of the Wigner-Seitz sphere.
In the present case nZ =0.02(A'/2m)o, s.

"2s"-states

Among the excited levels, we expect the greatest
deviation from the effective-mass energy in the case
of that 2s-state which belongs to the identical repre-
sentation A & of Tz (see Table II). Since the energy dif-
ference AE between this state and the corresponding
1s-state is small ( 0.03 ev), their wave functions will

be practically identical in the vicinity of the donor
atom. ' It is therefore possible to estimate the shift of
this level relative to its effective mass value from the
experimentally observed shift of the corresponding
is-level.

To make the analysis manageable let us replace the
two different masses ml and m2 by a single mean mass
m*. A reasonable choice is to take

TABLE VI. Correction of 2s-energy.

ls-energy a
EK Ob-

Element mass served
1

(& —&/2)'

2s-energya
EK Cor-

mass rected

p
As
Sb
Ll

—1.0—1.0—1.0—1.0

—1.52 0.18—1.69 0.23—1.35 0.14—1.14 0.07

1.21
1.27
1.16
1.07

—0.30—0.30—0.30—0.30

—0.36—0.38—0.35—0.32

a All energies are in units of ~ = —0.029 ev.

By combining (6.6) and (6.8), we And

aF s,/ar aF r,/ar
(6.9)

~2s - r=g - ~ls - r=a

Since a is much smaller than the "Bohr" radius a* of
this problem (a*=~A'/m*e' =20A), the situation is
entirely analogous to that encountered in the optical
spectrum of the alkalies. One finds therefore in the
same way that

e„,= e/(—n a)')— (6 8)

where e is the "Rydberg" (=m*e'/2h'z') and a is the
quantum defect which is independent of n. (6.8) may
also be written as

1

n' (1—a/n)'
(6.7)

the last factor being the correction factor due to de-
partures from a simple Coulomb law in the interior
region. Thus 6 may be determined from a comparison
of e (= —0.029 ev) and the observed ground-state
energy, and the correction factor for the 2s-state can
then be calculated from (6.7), and applied to the
effective-mass value of the 2s-energy, —0.0088 ev (see
Table IU). The results are listed in Table VI.

We see that in all cases the correction of the 2s-level
is fairly small.

It can be shown that the replacement of ml and m2

by m* does not materially affect the correction we have
just calculated.

The remaining 6ve 2s-states are expected to be much
less shifted (see the discussion of the 1s-levels), pre-
sumably slightly downward.

$ See note added in proof at the end of the paper.

"P"-states

These states have the property that the modulating
functions F&" (r) vanish at the donor nucleus. Since the
relevant length in these functions is of the order a~
(which is about 20 A), their amplitude will be com-

pletely negligible in that region near the donor nucleus
where the effective mass theory breaks down. Therefore
we would expect the effective mass theory to be excellent
for "p"-states. f
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TABLE VII. Level scheme of donor states in silicon.

State
Representations

Of Tda
Number of

degenerate& states E8. mass theory
(Energy in ev) X10~ e

P As

1s, m=0
1s, m=0
2P, m=O
2s, m=0
2s, m=O
2P, m=+1
3p, m=O

Ag
E+T1

A1+E+Tg
Ag

E+T1
2Tg+2T2

A 1+E+T1

1
5
6
1
5

12
6

—2.9~0.1—2.9&0.1—1.13&0.06—0.88&0.06—0.88+0.06—0.59&0.01—0.57&0.06

—4.4d
-3.2~0.3—1.13&0.06-1.06~0.10—0.93~0.11-0.59~0.01—0.57~0.06

—4.9~
—3.3&0.4—1.13&0.06—1.11+0.10—0.95~0.13-0.59~0.01—0.57&0.06

—3.9d
—3.1~0.2—1,13&0.06—0.94&0.08—0.90~0.08—0.59&0.01—0.57~0.06

a See reference 14.
These states are only approximately degenerate, consisting in general of several strictly degenerate sets, as appears from the second column. Spindegeneracy is not included.

o The indicated errors represent estimated uncertainties within the framework of the present model.
d Experimental.

P. SUMMARY AND DISCUSSIOÃ

On the basis of the previous sections, our picture of
the donor levels in Si is represented in Tab1e VII and
Fig. 3, which latter shows graphically the level scheme
for one of the donors. In summary we may recall that
this picture is based on the following model:

(1) The conduction band of Si has six minima in the

(1,0,0) and equivalent directions. At each minimum the
band is nondegenerate. The minima are not too close
to k=0.

(2) The effective masses are m~ ——0.98 m, m2=0. 19 re
{twice).

(3) Except in the immediate vicinity of the donor
atom, the donor states are described by functions of the

CONTINUUM

0 ev

3p, m= 0 (6)
2p, m=+1 Q 2)

2s, m=0 (5)
2s,~= 0 (1)
2p, ~=0 (6)

-0.0057& 0.0006 ev
-0.0059+ 0.0002 ev

-0,0093+ 0,0008 ev
-0.0106+0.0010 ev
-0.0113&0.0006 ev

is, m=O (,5) — -0.032+0.003 ev

)s, m=O (1) -0.044 ev

FIG. 3. Spectrum of bound states around a phosphorus-donor.
Numbers in parentheses indicate number of approximately de-
generate states; spin degeneracy is not included. See Table VII.

form

@=g~(t)F(t)(r)p(k(t) r)

where the F&&'&(r) are modulating functions satisfying
the eBective-mass equations (3.4), the p(k&&'&, r) are the
&loch functions at the minima k&'& of the conduction
band, and the e&&& are constants obeying the require-
ments of tetrahedral symmetry.

(4) Shifts of the energy levels relative to their values
in the effective-mass theory are attributed to failure
of the eGective-mass formalism in the vicinity of the
donor atom. From the known shift of the ground state,
the shifts of other levels are estimated.

%e should like to mention explicitly that the eGects
of lattice vibrations on the position and width of the
levels has not been considered.

All the states can be excited thermally. However,
only the p-states are expected to play a major role in
the optical transitions from the ground state. Oscillator
strengths for these transitions will be published shortly.

There exist as yet no experimental data with which
our results can be quantitatively compared. It is hoped
that when such data become available their agreement
or disagreement with our results will throw some light
on the nature of donor states.

This work was begun at the Bell Telephone Labora-
tories in the summer of 1954. It is a great pleasure to
thank their staG for the hospitality they extended to
us. We are grateful to Dr. R. C. Fletcher, Dr. C. Herring,
and Dr. G. Wannier for many stimulating and helpful
conversations.

jVote added iN proof.—Since this paper was sub-
mitted we have learned of experimental work by Bur-
stein, Picus, and Henvis (to be published) who have
observed optical transitions from the ground state to
various excited states of donor electrons. These meas-
urements are in excellent agreement with the theoretical
positions of the excited "p"-states reported in the
present paper. A discussion of the experimental resu1ts
in the light of the theory is in press.


