
FREUNDLI CH RED —SH IFT FORMULA 887

TABLE I. A reanalysis of Heifer's data from Gve binary star systems by which Freundlich's red-shift interpretation was tested.
The results in column 7 are obtained upon the basis of formula (5'). For the minimum and middle shifts the values obtained by
means of the point-source model do not dier appreciably from the more exact values given in column 7; for the maximum shift the
difference is appreciable and is indicated in parentheses.

Star
name

TT Aur.
5'8' Aur.
TX Her.
Z VQI.
F Cyg.

Eff.
tem p.'K

18 000
8000

10 000
18 000
25 000

3
Mean

radius in
units of
the solar

radius

4.3
2.1
1.6
4.3
5.9

4
Radial

distance
between stars

in units of
their radius

2.7
6.0
6.7
3.5
4.8

5
Observed

semi-
amplitudes
expressed
in km/sec

197; 246
116; 135
121; 140
96; 214

245; 241

6
Calculated

fixed shift of
each star due to
own radiation
field, km/sec

188
3.6
6.7

188
960

7
Calculated min middle

and max shift in a
half-period, due to

radiation field of
companion km/sec

36; 55; 102 (259)
0.3; 0.5; 0.9 (5.3)
0.5; 0.8; 1.3 (10)

28; 42; 81 (268)
101;156; 304 (1405)

sr/2, and sr —sin '(1/n) j, in the light of one component
due to the radiation field of its companion. It is seen
that, while the variations in shift are now within the
semiamplitudes of the radial velocity curves, they are
still, except for two of the systems, considerably outside
of ob servational error.

In view of the reduced magnitude of the stellar-

statistical E-term which emerges from Weaver's recent
analysis, ' there is no longer any possibility of correlating
the solar shift values with those found in 0 and 8
stars —that is if one adheres to the temperature fourth
power (radiation density) dependence, or any reason-
able modification thereof. This is illustrated forcibly
again by the large values in column 6 of Table I.
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In view of the recent publication of a derivation of the expression for the entropy Qux of radiation, in
terms of its spectral speci6c intensity, a brief comparative study of various known methods for obtaining
the entropy formula is presented.

'N a recent article P. Rosen presents an interesting
discussion of the question of how to obtain an

expression for the entropy Aux of electromagnetic
radiation of specif ed intensity. ' The very problem itself
implies, in its general formulation, a well-defined en-

tropy concept for nonequilibrium radiation. Rosen's
derivation of the above-mentioned expression starts
with the ordinary statistical definition of entropy, in
this case for a system of photons (bosons) in terms of
their density in phase space, followed by the substitu-
tion of this density by the equivalent expression in
terms of the specific intensity of the corresponding
radiation.

The explicit solution to the problem may be expressed
in "diGerential" form as a relation connecting E„, the
specific radiation (energy) intensity of linearly polarized
light of frequency v, and L„, the corresponding specific
entropy intensity. E'„ is defined in such a manner tha t.

E,dvdo cosedQ represents radiation energy pr. sec
(power) in the frequency band dv which passes through
an element of area, do., and inside an element of solid

' P. Rosen, Phys. Rev. 96, 555 (1954).

angle, dQ, in a direction which makes an angle 8 with
the normal to the area. L„ is defined correspondingly.
The desired relation turns out to be the following:

L,= (kv'/c')L(1+x) ln(1+x) —x lnxj, x=—c'I,/hvs, (1)

where k =Boltzmann's constant, h =Planck's constant,
and c=velocity of light.

In passing to present his elegant derivation of what
amounts to. this formula, Rosen makes a statement to
the eGect that while Planck has previously derived a
functional relation, I„=v'f(E, /v'), no explicit expres-
sion was given by the latter' for f(E',/v').

In the opinion of the present author, however the
explicit relationship for L„ in terms of E„was indeed
known to Planck, even prior to the advent of the Bose-
Einstein statistics proper. It seems worth while, there-
fore, to present a brief comparison of various methods
of proving the entropy formula (1).

As previously mentioned, Rosen bases his method on

s M. Planck, The Theory of Peat (The MacMillan Company,
New York, 1949).

s Bose, Z. Physik 26, 178 (1924).



AA DNE ORE

the statistical extension of the entropy concept to non-
equilibrium states of a system of bosons. Long ago
Planck4 derived formula (1) by an admittedly less
satisfactory method which, on the other hand, in part
bears a formal resemblance to the more modern one
based on Bose-Einstein statistics. The introduction of
the concept of entropy of radiation dates back toWien. '
Planck has shown, furthermore, that reasoning along
the lines of ordinary thermodynamics and classical
electrodynamics leads, firstly, to what is a generalized
form of Rien's displacement law, namely, the func-
tional relation previously indicated:

L,„=(v'/c') F(c'K,/t s), (2)

4 See M. Planck, Theorr'e der Warmestrahluag (Johann Ambrosius
Barth, Leipzig, 1906), erst edition, . 148ff.

~ W. Mien, Ann. Physik 52, 132 1894).

and, secondly, to the following relations connecting, in
the stationary state for oscillators exposed to radiation,
the mean vibrational energy, U, and the mean entropy,
S, of a linear, harmonic oscillator (resonator) of fre-
quency v, with the field quantities E„and I.„:

U= (c'/v')E„, S= (c'/v')L, . (3)

Equations (2) and (3) imply

S=F(U/t ).
The statistical definition of entropy is then introduced
in order to obtain Eq. (4), and thereby Eq. (2), in
explicit form. In distributing a given amount of energy
on a system of identical resonators Planck4 actually
introduces energy quanta, hv. The statistical problem
is then mathematically equivalent to that for bosons,
a fact which is also apparent from the resultant
expression:

Ui U U
+

ho) i ht ) ht ht

when this is being compared with the statistical ex-
pression for the entropy of a system of bosons. ' It is
readily seen, furthermore, that the formula (5) renders
Eq. (2) identical with Eq. (1). It may, perhaps, be
considered a matter of convenience whether the explicit
form of the function F be derived in this way rather
than by considering directly the relation (2) for the
radiation itself.

A diferent method of deducing the entropy formula
(1) is one which makes explicit use of the extension of
the temperature concept. The first attempt to assign
a definite temperature to monochromatic radiation
seems to have been made by Wiedemann, ' but in a
rather limited way. More generally, the temperature
may be defined thermodynamically, i.e., by putting

dL„=dK„/T, or BL„/BE„=1/T. (6)

Again, T and E„are interlinked through the celebrated
Planck formula:

hu'
Ev

g2 ~hvlkT
(7)

' E. Wiedemann, Ann. Physik 34, 446 (1888).
r M. Planck, Theoree der Warmestrahhwg (Johann Ambrosius

Barth, Leipzig, 1913), second and subsequent editions. See also
R. Clark Jones, J. Opt. Soc. Am. 43, 138 (2953).

which has been derived in a variety of more or less
satisfactory ways during the first quarter of this cen-
tury. This is the general relation between E, and T
because in the equilibrium state (cavity radiation of
temperature T) radiation of each frequency must be
thought of as having the same temperature, equal to
that of the cavity wall, as there is no internal or external
dissipation of energy.

When Eq. (7) is solved with respect to 1/T, and the
result inserted in Eq. (6), integration of the latter
leads once more to the same (absolute) entropy for-
mula (1).'


