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The x-ray scattering diagrams of liquid helium, obtained by
one of the authors, have been analyzed in this paper using the
Los Alamos "701" IBM Electronic Calculator. The liquid He4

atomic correlation and pair distribution functions have thus been
obtained over a wide range of interatomic separations and at a
number of liquid temperatures between 1.25 and 4.20'K.

The limitations in the experimental scattering structure factors
give rise, among others, to two types of limitations in the corre-
lation functions. One of these concerns their behavior at small
atomic separations; this limitation could be compensated for
without difhculties. The second limitation, of more elusive char-
acter, appears to be connected with the lack in these functions of
any manifest tendency toward their asymptotic behavior at large
atomic separations. The here derived correlation or pair distri-
bution functions should, nevertheless, be good approximations to
their correct values at medium and intermediate separations
extending to about fifteen angstroms, whereby the relevant range
extends to 10—15 A. This could be verified using two types of
integral checks on the correlation functions. In one of these,
their space integrals, out to relevant distances, turned out to be
quite close to their expected values determined only by the
macroscopic properties of the liquid. In the second series of

integral checks, they reproduced closely the original experimental
structure factors. This verified the internal consistency of the
calculations and indicated that the results should be correct at
the relevant interatomic separations.

At all the liquid temperatures here investigated, in any sphere
of given radius, around an origin atom, or in any spherical shell
of given thickness, the computed number of atoms was always
less than what one would compute neglecting the interatomic
correlations.

An application, of major physical significance, of the correlation
or pair distribution functions obtained in this work was made by
deriving the approximate mean potential energies per liquid He'
atom at the various temperatures. The mean potential energy,
as a function of the liquid temperature, has a cusp at the lambda
point. Its temperature derivative, which is the configurational
heat capacity, is thus discontinuous at the transition point with
an inverted lambda type of discontinuity. The knowledge of this
qualitative behavior of the configurational heat capacity was
sufhcient to prove, on quite general grounds, that the lambda
transition of liquid He is of kinetic energy origin, i.e., it is con-
nected with the momentum space behavior of the liquid atoms.

I. INTRODUCTION

~

~

N analysis of the atomic distribution in liquid
He' has been first performed by one of us' using

x-ray scattering data obtained recently. ' ' The x-ray
scattering data communicated to Los Alamos have
there been analyzed using the "701" IBM Electronic
Calculator. Some of the results obtained in these
machine calculations have already proved to be of great
value in the interpretation' of the Los Alamos slow-

neutron total scattering cross-section measurements4
in liquid He'. While the machine calculations have fully
confirmed the results derived by hand calculations, '
they originated in that the necessarily slow hand
calculations could not really fully exploit the available
x-ray scattering data. These hand calculations suc-

ceeded in analyzing the spatial distribution of the
helium atoms, around one chosen to be at the origin of
the coordinate system, up to separations r of about 6 A.
This distance is only some 1.5 times the mean separation
of the atoms resulting from the mean liquid concentra-
tion. Clearly, for purposes of deriving the neighborhood

picture within the liquid, that is the number of first,
second, and even third, neighbors of a given atom, the

r J. Reekie and T. S. Hutchison, Phys. Rev. 92, 827 (1953);
C. F. A. Beaumont and J. Reekie, Proc. Roy. Soc. (London)
A228, 363 (1955).' Reekie, Hutchison, and Beaumont, Proc. Phys. Soc. London
A66, 409 (1953).' L. Goldstein and H. S. Sommers, Jr. (to be published).

4 Sommers, Dash, and Goldstein, Phys. Rev. 97, 855 (1955).
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previous analysis' was satisfactory. However, as recog-
nized at Los Alamos, the restriction on the linear
extension r of the region explored, resulting inevitably
from the time-consuming hand calculations, could not
lead to an entirely satisfactory picture of the inter-
atomic correlations in liquid helium whose analytical
description defines the liquid correlation function or
correlation concentration. Indeed, the investigation of
the space integral of the correlation function of re-
stricted range showed its failure to satisfy the all-
important statistical thermodynamic test requiring it
to yield a quantity directly connected with the Incan
square Ructuation of the number of atoms, per atom,
under isothermal conditions. ' It was then decided to
reanalyze the x-ray scattering data with the Los
Alamos "701"IBM Electronic Calculator. In so doing,
however, it was fully realized that the results to be
derived would be affected, inevitably, by limitations
arising from various causes.

One of these was experimental and was associated
with the restricted response of the measurements to
temperature variations of the liquid. An attempt to
compensate for this lack of sensitivity of the data, at
small scattering angles, was made using a method of
extrapolation of the scattering diagrams toward small
angles, where the liquid temperature has a critical effect
on the scattering. The method of extrapolation is based
on the rigorous theory of small angle radiation seat-

s L. S. Ornstein and F. Zernike, Proc. Roy. Soc. (Amsterdam)
17, 793 (1914).
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t,ering. The liquid correlation functions could thus be
investigated here over a wide temperature interval,
extending from 1.25 to 4.20'K. However, the correlation
functions here derived are found to be better approxi-
mations at the low and the high temperatures, than at
intermediate ones, such that

2.50—2.75 «& T «& 3.0—3.25'K.

While a method of analysis exists for a fairly well

approximated evaluation of the number of first-, second-
and higher-order neighbors of the atom at the origin of
the coordinate system within the liquid, this method is
far from being simple in its applications at medium and
larger separations. It has been used by one of us' to
derive both the low- and high-temperature neighbor-
hood picture in liquid helium. In the present work, we
limited ourselves to a rigorous evaluation of the number .

of neighbors of the origin atom 6lling spheres of given
' radii, which in turn determine the number of atoms in

spherical shells of any thickness. This method seems
to be the only practical method of deriving a fair
picture of the atomic distribution beyond the shells of
neighbors of the first few orders.

The correlation functions will be seen to satisfy with

good approximation their test relation based on their
space integral, with the latter extended to the range of
r at which they were evaluated, or r equal to 15—20 A.
Nevertheless, the experimental x-ray scattering data
failed to yield the correct limit of these functions at
vanishing separations' r—+0. While this appears to be
a serious failure of local character, it could be obviated
without too much difhculty. Another shortcoming of
these functions appeared in that they did not exhibit

any definite tendency to approximate their expected
asymptotic large distance behavior. ' '

A major application, along a line conjectured previ-

ously, ' was 6naBy made of the correlation functions
obtained in the present work, through the two-atom or

pair distribution functions which they define. This
consisted in a rigorous proof of the kinetic energy origin
of the lambda transition in liquid helium. The proof
could be based on quite general grounds and involved

mainly the qualitative temperature behavior of the

pair distribution function. This result, while justifying
the current theoretical trends attempting to explain

the lambda transition, should help to provide a solid

guidepost for the establishment of an improved theory
of liquid helium.

II. INTERATOMIC CORRELATION FUNCTION
IN LIQUID He4

The coherent scattering cross section for radiation of
wavelength ), per liquid atom, and per unit solid angle
whose axis is at an angle 20 to the direction of incidence,
can be shown to yield, with

Ak=
I
~&1=2IitI sin8=4v (sin8)/), (I)

s L. Goldstein, Phys. Rev. 84, 466 (1951).
r F. Zernike, Proc. Roy. Soc. (Amsterdam) 19, 1520 (1916).

the momentum change, in units of k/2v. , of the incident
radiation on scattering in the direction 28, Jr being its
propagation vector, Fr,'(hk, T) standing for the experi-
mentally derived scattering intensity structure factor
per atom, and by the Fourier integral theorem, the
correlation function~

g(r, T)= (I/2v'r)~t LF&'(Ak, T)—1j
&( (sinrAk) (d,k) d(Ak). (2)

In the limit of vanishing separations r, one obtains

(3)

because in this limit the two-atom distribution function
m(r, T) or dN(r, T)/dv(r), the latter including the
quantum-mechanical exchange effects,

dN(r, T) =m(r, T)dv(r)
= tm(T)+g(r, T))dv(r),

has to vanish; no two atoms being able to approach
each other too closely, with finite probability, under
equilibrium conditions of the liquid. Equation (3)
constitutes a rigorous normalization or check relation
for the experimental structure factors Fl,'. It will,
however, be seen below that this relation is not critical,
in the sense that if it is not strictly satisfied, the
empirically derived structure factors may still be fair
approximations to the actual ones.

In the present work the portions of the structure
factor functions Fl,'(Ak, T) above hk 0.9 A ' belonged
to either the low- or high-temperature liquid. They
have been obtained experimentally' from 0.9 to about
6A ' and they are given in Fig. 1. The regions Ak

(0.9 A ' will be fully discussed, below. The preceding
d k range is equivalent, for the Cu K, radiation used in
the scattering experiments, ' to a scattering angular
range 12' «& 20 «& 100'. Limitations inherent in the very
low scattering cross section of liquid helium and the
experimental technique have prevented the effective
exploration of a larger Dk or 0 interval. It may, however,
be expected that techniques with increased detection
sensitivities should help to widen the explorable Ak

range and to increase the over-all precision of the
scattering structure factors. The estimated average
relative error will be seen on Fig. 1 to be about 5 to 7
percent.

The 6rst exploratory x-ray scattering experiments'
have already demonstrated the absence of any major
change in the scattering diagram of liquid He4 over a

s F. Zernike and J. A. Prins, Z. Physik 41, 148 (1927).
9 W. H. Keesom and K. W. Taconis, Physica 5, 270 (1938);

J. Reekie, Proc. Cambridge Phil. Soc. 36, 236 (1941); 43, 262
(1947).
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temperature range extending from well below to some-
what above the lambda point. The more recent data's
fully confirm the above results and tend to indicate
that in the explored Ak-range the scattering structure
factor does not change, within experimental errors, up
to temperatures approaching the normal boiling point.
The total liquid density change in the temperature
range 1.25—4.2'K, with the apparent density cusp at
the lambda point, is relatively small. The interference
factor in the integrand appearing in the scattering
cross section' will tend to minimize the expected changes
in the correlation function g(r, T) over this temperature
interval. This then is probably the main cause of the
absence of any easily detectable variation in the struc-
ture factor P&' over a relatively wide temperature
interval and for Ak-values larger than 0.9 or 1.0 A '.

The structure factors should exhibit, however, con-
siderable temperature variations at small momentum
changes or small scattering angles' or precisely in a Ak

range which remained unexplored in the experiments. '
At 6k~&0.5 A ' or so, it should be possible to observe
the relatively large variations of the structure factor
as shown in the rather dificult experiments of Tweet"
on the very small angle x-ray scattering as well as in
the small angle slow neutron scattering work of London
and EgelstaG" in liquid He'. More recent x-ray scat-
tering work, using counter detection techniques, by
Gordon et a/." where the explored scattering angular
range extended from 1.5 to 90', again confirms at small
angles the expected large variations of the structure
factor with liquid temperature. The small angle scat-
tering structure factors are determined essentially by
the macroscopic concentration Quctuations of the liquid,

I.O

0.5

hk, A

FIG. 1. The experimental structure factors Fs'(dk, T) vs ak, at
two liquid temperatures I(4.20'K); II(2.06'K). For the extrapo-
lated portions of these graphs at Ah &0.9 A ' see the text.

"A. G. Tweet, Phys. Rev. 93, 15 (1954)."H. London and P. A. Egelsta6, Proceedings of the Third
International Conference on Low Temperature Physics and
Chemistry (Rice Institute, Houston, 1953).

's Gordon, Shaw, and Daunt, Phys. Rev. 96, 1"."' (1954).

under isothermal conditions. ' The simple physical basis
of the following rigorous result has been discussed
previously" and need not be considered here,

where

rgi'& =4x "r'g(r, T)dr,

is the second moment of the correlation function.
In the present analysis of the atomic distribution in

liquid He4, the low-temperature structure factor, the
one at 2.06'K, where Ak &0.9—1.0 A ', was taken to be
the same, approximately, at all temperatures T(3'K.
The observed structure factor at the normal boiling
point was taken to be the same, approximately, in the
above mentioned Ak-range, at the temperatures 3&&T
~&4.2'K. In spite of the rather large experimental errors,
the structure factor curves of Fig. 1 suggest that there
should be a rather smooth change-over from the low- to
the high-temperature structure factors at Dk&0.9
—1.0 A '. It is thus expected, as a consequence of the
above-mentioned approximate groupings of the struc-
ture factors, that the results obtained in the present
analysis, with the low- and high-temperature structure
factors, will not join smoothly. They will thus be affected
with greater errors in the transition region 2.50—2.75 ~&T
~&3—3.25'K than at the other temperatures.

The structure factors at the diferent temperatures
and at 0&&6k~&0.9 A ' have been obtained by interpo-
lation between their rigorous valise at vanishing 5k,
where they reduce to e(T)kT)c&, Eq. (5), and the
measured value of Fzs(Ak, T) at the smallest Ak-value
of about 0.9 A '. The interpolation was facilitated by
the somewhat rough knowledge of the second moments
rot'&(T) of the correlation function g(r, T). These mo-
ments became available through the' analysis of the
small angle x-ray" and slow neutron" scattering experi-
ments, to a rather limited degree of approximation.
The parabolic behavior at small Ak, as shown by (5),
tended to simplify considerably the interpolation pro-
cedure at these small hk-values. It should. be noted
that in considering Fr,'(Ak, T) as a function of (hk)'
rather than Ak, a change in independent variable
evidently justified by the even character of PI,' in Ak,
the structure factor has a small linear region in (Ak)'.
It becomes parabolic through the term in (hk)' which
follows the quadratic term in the expansion of Fr.'(k, T).s
The interpolation procedure out to 6k~0.9A ' entailed,
inevitably, a good many uncertainties. These, however,
are minimized in the Fourier integral (2) in this same
range of small' hk values. We give in Fig. 2 a series of
the interpolated approximate small hk structure factors
at various temperatures. The behavior of the small Ak

"L.Goldstein, Phys. Rev. 83, 289 (1951).
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0.8- 3,25 3.75

I I I I T„ form the sequence

&T +s&T„&T„s«T 4&T s&T s&T,. (11)

~ 0,6

a
u. 0.4

0.2

I I I

0 0.5 I.0 I.5

5k, A

I I I I

0 0.5 I.O I.5

FIG. 2. The extrapolated small hk structure factors at various
liquid temperatures. The origin and the common abscissa scales
are given only for the 6rst and last curves. All structure factors
start at vanishing bk.

At small separations, around the atom chosen to be at
the origin of the coordinate system, there is a very large
density defect as a result of the interatomic repulsion
at such separations. Actually, at vanishing separations
g(r, T) reaches its minimum minimorum. This largest
density defect is then followed by a large density excess
at increasing separations, with a damped oscillatory
behavior at larger distances. It is easy to see that the
zero order moment of the correlation function, which
is the fluctuation integral G(T),

rg'"(T) = g(r»)dt (r)

=G(T)

is such that there is a single characteristic temperature"
To, in any liquid, whereby, T, being the critical temper-
ature,

rgtsl(T&~T, ) =G(T(Ts) &0;
rgt'l(T, & T~& T,) =G(Ts& T~& T,) &~0.

(9)

Similarly, if T„denotes that liquid temperature at
which the n'th moment, of the correlation function,

- rg("', n even, vanishes, one has

rgt"l(T»&T„)&~0; rgt"l(T&~ T„)&~0. (10)

It can be shown that the characteristic temperatures

"L.Goldstein, Phys. Rev. 85, 35 (1952).
"In reference 6 this was denoted by T;.

structure factors has been discussed previously in
various connections. ' ""

It does not seem superRuous to restate here brieRy
some general properties of the correlation functions
valid in all liquids. Physically the correlations cannot
but vanish at large separations r, or, we have at both
limits of r, with (3),

limg(r, T) = —e(T); limg(r, T) =0.

Indeed, a moment rg(") which is negative at some low

temperature will increase faster with liquid temperature
the higher is its order, because the negative contribu-
tions to the moment integrals decrease with decreasing
density. The higher the order of the moment the faster
the decrease, " because the negative contributions are
due predominantly to regions of g(r, T) at small r or
r&zl, sl being the first zero of g(r, T). It will be seen
that the sequence (11) is 6nite, since, if e is large enough
there is no liquid temperature at which the corre-
sponding moment can become negative.

The small angle scattering structure factors of liquids
can be at once understood on the basis of the preceding
results which are rigorous. These structure factors are
defined by their limiting Ak~ value, that is L1+G(T)j
or m(T)kTzr and by their slope at d,k small, or, by (5),

d Ft,'(Ak, T)
lim — = —(r g"'/3) (Ak).

AL small d (gk)
(12)

The mean square Ructuation in the number of atoms,
per atom, n(T)kTxr, is a monotonically increasing
function of the temperature. Even in liquid helium
where the compressibility might have a very slight
discontinuity and where is(T) has a cusp at the lambda
point, the over-all behavior of e(T)kTyr in the liquid
in equilibrium with its vapor is a monotonic increase.
Hence the family of structure factor curves represented
as a function of hk, the temperature being a parameter,
reaches the ordinate at vanishing Ak, with values such
that

e(T~)kTsryr(Tsr) & lim Fl.'(Ak, T)

&«(T.')kT.'xr(T.'), (13)

T~ being the ordinary melting point and T,' a temper-
ature close to the critical point. The temperature T~
is to be replaced by the absolute zero in liquid He4
and He', according to all evidence available at the
present time. In the latter limit, the structure factor
vanishes identically with d k—&0.

According to the behavior of the first positive mo-
ments of the correlation function, Eqs. (9) and (10),
at all temperatures T~& T2, rg(') is negative. Hence, at
these temperatures the initial small Ak slope of the
structure factors, 'Eq. (12), is positive. They are concave
upward. At all temperatures T2&~ T~& T„ the small Ak
slopes are negative, the structure factors start to de-
crease from their limiting values, the vertices of the
osculating parabolas (5). At small Dk-values, at these
higher temperatures, the structure factors are convex
upward. "These results have the strength of a rigorous

"The discussion of the small Ak structure factors in reference
14 was led with the characteristic temperature Tp allowing only
the use of the inequalities T &T0 and T&Tp.
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Fio. 4. Partial, g, (r), g&(r), and total correlation functions g(r, T) as a function of the
interatomic separation at 4.20'K.

the correlation functions had their 6rst zero at about of the component functions gi(r, T) and gs(r, T) are of
2.8A. At a&2.8A, they fell toward increasingly large interest for the whole field of the determination of
negative values, as t ey s ou . en eyh h Id Wh th reached atomic distributions in liquids. It is thus realized that the
the value of [—n(T)] at some value a of r, they were procedure of the extrapolation of the structure actors
taken to be equal to $—n(T) ) at all r ~( a. At r ~&u they toward their vanishing d, k-value previously discussed
were of course determined by the Fourier integrals (15). acquires added importance in the light of the relative
This procedure appears to be reasonable in spite of the values of the functions gi(r, T) and gs(r, T). t is entire y

d' d ~ T~j t . Physically outside the scope of the present work to review, even
this cut-oG procedure is equivalent to postulating that in the most cursory fashion, the rather consi era e
the minimum closest distance of approach of two atoms amount of experimental work accumulated on the

analysis of atomic distributions in liquids, and this
We should like to give now some numerical results even from the solepoint of view of the smal momentum

on thecorrelationfunctionsresultingfrom theintegrals change structure factors. We cannot but emphasize
(15). Th It re resented in graphical form here, on the basis of the results obtaine y us overese resu s are presen

'
a ed the con-through Figs. 3 and 4. These refer to the two liquid the whole temperature interval investigate, e con-

temperatures o 2. an . an aref .06 d 4 20'K nd are thus repre- siderable care which is necessary in dealing wit the
sentative o e ow- an ig-f th I - d h' h-temperature correlation structure factors in the Ak-range O~hk~ i. , or a
functions. At both temperatures, we give the functions values of (sine)/X in the range ~ / s ~
gi(r, T), gs(r, T), and their al ebraic sum or the corre- Failure to include the structure factors over all or part

i If, ~ T~j Th results show that of the preceding Ak-intervals in attempts to derive the
the contributions to g(r, T) of the function gi(r, T) are correlation function cannot but yield results w ic,
of considerable importance not only at larger separa- though, may have some resemblance to t e correct
tions, as one might have expected, but throughout the function, might not have very much quantitative
whole r-range investigated here. Figures 3 and 4 exhibit connection with it at medium and larger separations.
clearly the application o e cu -o prI' ' f th t- ff ocedure just A glance at the representative correlation function

graphs Figs. 3 and 4, shows that there are character-discussed. )

A superficial examination of the g(r, T) functions istic differences between the low- and high-temperature
might lead one to underestimate the importance of functions. These diGerences originate with the g2 unc-
these functions beyond the third extremum. It will, tions. The oscillatory character of the corre ation

, b h below that this procedure is quite function is of course evident, with a slow damping of
ions at ar e se arations.unjustified, unless, of course, one is prepared to analyze the amplitudes of the oscillations at arge separa ions.

It is to be noted here that the evaluations of theonly the very close neighborhood picture.
ith t e hei of theIt is believed that the results based on the evaluations Fourier integrals (15) were made with the he p o
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experimental structure factors, Figs. i and 2, at every
0.025 A ' interval in b,k. The g(r, T) functions have
been obtained at every 0.05 A in r, out to r equal to
20 A. The necessity of obtaining g(r, T) at such close
intervals was imposed by their future use which involved
their integration. Since the hk-intervals of integration
were kept constant, it was of course realized that at
increasing r-values, the integrand was approximated
with a polygon of decreasing number of sides. Hence,
at increasing r, the functions g(r, T) tended to become
less accurate. However, even at the largest separation
of 20 A, the number of integration intervals per half
cycle of the sine function in the integrands of (15) was
never less than six. Indeed, with the Ak-interval of
0.025 A ', rhea is 0.5 radian at r equal to 20 A, and,
hence, per half-cycle of the sine function, there were
2x integration intervals.

It is entirely outside the scope of the present work to
investigate methods of evaluating numerically Fourier
integrals. Nevertheless, an independent evaluation of
g(r, T) was made at 2.06'K liquid He temperature
using a method'~ which did not have the limitations
arising from the decreasing accuracy of integrations at
large separations. In this method no approximations
have been made at all in the integration of the sine
function of the integrand of g(r, T).

Let us, indeed, de6ne the function f(Ak, T) by

f(Ak, T) = LFJ2(Ak T) —1)(Ak), (16)

and rewrite (15) as

g(r, T) = (1/2 r2)r2f(Ak, T) sin(rAk)d(Ak), (17)

the interval of integration is finite and extends from
zero. to AE. Assume that this Gnite interval has been
divided into equal segments e. Then,

g(r, T) = (1/22r2r)
~

f(Ak, T) sin(rAk)d(Ak)
0

p2 1

+~ f(Ak, T) sin(rAk)d(Ak)+ . (18)

The function f(Ak, T), varying slowly in any small
interval, may be replaced by f(Ak, T) its value in the
middle of the small interval e and we may thus write,
with good approximation, integrating the sine function,

g(r, T)—(I/22r2r2) I
—f(O, e) cosrAk

~

0'

f(e,2e) COSr—Ak ~,
2' — j

= (1/22r'r')t f(0,e)+Lf(e,2e) —f(O, e)) cosre

+[f(2e,3e) f(e,2e)] co—s2r e+ .

= (1/22r'r') f~+ P (f~q f ) cos(nre) . —(19)

'~ This was suggested by Mr. Bengt Carlson who is in charge
of the Numerical Analysis Group.

Here, the range of integration has been divided into S'
equal intervals, and

f„=f((n —1)e, ne),

denotes the value of the function f(Ak, T) in the center
of the eth interval.

Using the preceding method at 2.06'K, the results
of the direct method of integration have been fully
checked. An advantage of this last method lies in the
possibility of extending the evaluation of g(r, T) over
much wider separations r without loss of accuracy, in
contrast with the more primitive method of direct
integration, whose accuracy decreases at r& 15 A.

The correlation function at 2.06'K has been studied
with the help of Eq. (19) to rather large r-values. The
function was found to be oscillatory and relatively
slowly damped. But apart from the very large r-behavior
of g(r, T), one might have expected to 6nd some
tendency of these functions toward an asymptotic type
of behavior below 20 A. This was not observed. It is
true that the characteristic asymptotic expression of
g(r, T),'

limg(r, T)—(G(T)/42rp') exp( r/p)/r, — (20)
&»p

is derived' from considerations which do not involve
scattering theory. But the scattering structure factors
Fl,'(Ak, T) determine uniquely the correlation functions
g(r, T) over their whole range and, in particular, at very
large r, where the asymptotic expression (20) should
result from the straightforward analysis of the structure
factors. The range p(T) of g(r, T) or its square is given'
by

Lp(T)1'=rg"'(T)/I 6n(T)kTxrl, (21)

where, on the right-hand side the absolute value is to
be taken if rg&" (T) is negative at T(T2. Numerically,
p(T) could have been expected to be moderate at all
the liquid temperatures investigated here. Hence, the
appearance of the asymptotic form (20) at the larger
separations r studied by us seems to be possible. No
attempt will be made here to supply an explanation for
the absence, at large r, of any tendency of the g(r, T)
functions toward their asymptotic form (20). It is,
however, clear that, as a result, the correlation functions
here derived cannot be used safely in integrals over
monotonically increasing functions of r. It should be
noted that (20) and (21) lose their precise meaning at
the temperature T~.

The problem of the convergence of the correlation
functions may be considered also from the point of
view of rather simple physical arguments. These func-
tions give, by definition, the local excess or defect of
the atomic concentrations from their mean value. Since
the mean values n(T) are not known to better than
about a fraction of a percent, it would be somewhat
illusory to use the correlation functions in regions of r
where their extrema, positive of negative, reached
values of, say, &Ln(T)/500j, approximately. We give
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g(r, 2.06 K)
g (r,2.06oK)

10» atoms/cc n(2.06'K) A

g(r,4.2oK)
g (r,4.20oK)

10» atoms jcc n (4.2'K)

11.65
13.05
14.70
15.75
17.05
17.65
18.15
19.45

—0.00921
0.00841—0.00423
0.00231—0.00156—0.00479—0.00102
0.00213

—0.420
0.383—0.193
0.105—0.0711—0.0218—0.0466
0.0970

10.10
10.70
11.10
11.65
12.25
12.80
13.05
13.65
14.20

0.00983—0.00210
0.00181—0.00522
0.00488
0.00105
0.00169—0.00305
0.00108

0.520—0.111
0.0959—0.276
0.258
0.0553
0.0896—0.161
0.0571

TAnLE I. Extrema of g(r, T) and of the ratios g(r, T)/N(T) at two
liquid temperatures (r) 10 A).

below by investigating some integral properties of these
functions.

An interesting method has been worked out" for
the determination of the numbers of these first, second,

~ ~ ~, neighbors with the help of the surface concentra-
tions 4rrrn(r, T), and it has been used by one of us' to
separations r~6 A. This method, though somewhat
laborious at even relatively small separations, becomes
quite dificult to use at larger separations where the
peaks of the distributions n(r, T) or 4rrrn(r, T) become
more and more smeared and less pronounced.

We have here obtained the function

in Table I, the positions and values of the positive and
negative extrema of g(r, T), r)10A, as well as the
ratios g/n, at the two liquid temperatures of 2.06 and
4.20'K, with n(2.06'K) and n(4.20'K) equal, respec-
tively, to 2.194 and 1.892)&10ss atoms/cc. This Table I
indicates that with the just-mentioned limitation of
the physical significance of the values of g(r, T), the
latter would be well determined to separations r&10
—15 A. One would thus expect that all those physical
properties of the liquid which are evaluated as integrals
with the correlation functions should be, in turn,
determined by integrations extending to 10—15 A. Any
extension of these integrals beyond these separations
should not modify sensibly their values obtained at
the limits of 10—15 A. It will be seen below that this is
generally the case. It is to be remembered, however,
that the preceding situation will be realized actually
only if the integrands in question are sufBciently con-
vergent. With fast monotonically increasing functions,
as mentioned already, the preceding integration pro-
cedure with the g(r, T) functions here derived cannot
lead to the desired result.

In order to achieve a more rapid convergence of the

g(r, T) functions, a rather customary method could
have been used, in principle. Namely, the direct
method of evaluation of the integrals (15) could have
been followed up to say 10—15 A. Beyond these sepa-
rations, one might start integrating by parts the sine
function in the Fourier integrals. This yields integrals
whichfallasr ', r ', -, etc. However, thisnecessitates
the numerical evaluation of the successive derivatives,
with respect to d k, of the structure factors Frs(hk, T),
an operation fraught with considerable diQiculties and
uncertainties. This method did not appear to be usable
here.

In concluding the study of the liquid helium correla-
tion functions, we cannot but state that neither the
expected very small r nor the possible very large r
behavior of these functions have been verified. It is to
be expected, however, that at the intermediate sepa-
rations„a &~r &~ 15 A, the directly evaluated g(r, T)
functions should be good approximations to the
presently unknown correct correlation functions of this
liquid. That this is the case, essentially, will be shown

N(r, T) =~ 4srr'n(r, T)dr, (22)

which gives the number of atoms surrounding the
origin atom in any sphere of radius r, complete isotropy
being assumed throughout in the spatial distribution
of the atoms. Clearly, the number of atoms in the
spherical shell of thickness (r' —r), is

X(r' r, T)=cV—(r', T)—E(r,T). (23)

If the function X(r,T) is known for all relevant r-
values, it becomes a relatively easy matter to locate
the approximate positions of the successive spherical
shells with their number of atoms in conjunction with
the peaks in g(r, T), n(r, T), 47rrn(r, T), and 47rrsn(r, T).
Such an analysis of the spatial distribution of atoms
and molecules in liquids has been made use of by
Hildeb rand. "

As an illustration of the spatial distribution of atoms
in liquid helium we give in Fig. 5, the functions
$(r,2.06'K) and Ar(r, 4.20'K). To distances r~6A,
these distribution numbers will be seen to be the same
as those given before by one of us. ' A comparison of
these numbers with the limiting numbers

g(r, T) = (4 r'/3)n(T),

shows that the correct distribution (22) is always
smaller than the limiting distribution (24). This is, of
course, always the case at the temperatures T+Tp Tp
being the intermediate temperature defined above, Eq.
(9), at which G(T) vanishes or at which the mean
square isothermal Quctuation of the number of liquid
atoms per atom is unity as in an ideal classical gas. '
At temperatures Tp(T(T„ the opposite situation
prevails, insofar as the correct distributions E(r,T) are
in excess of the limiting distributions (24). In liquid
He', the intermediate temperature Tp was found to be
about 4.6'K.

Since, in the liquid He II region, the liquid contracts
with increasing temperature at 1.25~&T~&2.18'K, the

"G. S. Rushbrooke and C. A. Coulson, Phys. Rev. 56, 1216
(1939)."See the book of J. H. Hildebrand and R. L. Scott, Solubility
of Xorietestrotytes (Reinhold Publishing Corporation, New York,
1950), third edition, pp. 62-105. See also, Henshaw, Hurst, and
Pope, Phys. Rev. 92, 1229 (1953).
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pair distribution functions e (r,T) automatically exhibit
a parallel behavior insofar as their space integrals are
increasing functions of the temperature. The liquid
contraction also manifests itself somewhat through the
slight decrease of the values of the cut-oG separations
a(T), at and below which n(r, T) vanishes. In the He II
region, one finds that da(T)/dT(0, while da(T)/dT) 0
in the He I region.

For the sake of completeness, we give in Table II a
series of values, at r~&6A, of the pair distribution
functions n(r, T) at the two temperatures of 2.06 and
4.20'K, respectively. "While these functions have been
calculated at many temperatures and close r-intervals,
we give only these two distributions, representatives of
the low- and high-temperature groups, at intervals of
0.2 A.

The limitations in the pair distribution functions are,
of course, similar to those of the correlation functions.
These concern their precise meaning at large separation,
r&15—20 A, as well as their relative poorness at inter-
mediate temperatures 2.50&~ T &~3.00—3.25'K, as dis-
cussed above and in Sec. III.

6.0
6.2
6.4
6.6
6.8
7.0
7.2
7.4
7.6
7.8
8.0
8.2
8.4
8.6
8.8
9.0
9.2
9.4
9.6
98

10.0

n (r,2.06'K)
Ea =2.360 Aj

2.20
2.25
2.277
2.283
2.277
2.26
2.24
2.22
2.20
2.18
2.16
2.15
2.15
2.16
2.17
2.18
2.19
2.20
2.209
2.214
2.214

~(r,4.20'K~
La 2.384 Aj

1.90
1.92
1.910
1.913
1.95
1.974
1.966
1,93
1.89
1.879
1.883
1.882
1.87
1.864
1.87
1.88
1.894
1.894
1.893
1.896
1.90

lim m(r, T)~2.194 lim g(r, T)~1.892
r large r large

TasLE II. The pair distribution functions m(r, T) at two
temperatures, in units of 1(P' atoms/cc.

too

80

60

40

20

4 5 .6
r, A

Fzo. 5. The total number of liquid atoms E(r,T) m spheres of
radius r, around the central atom, at 2.06 and 4.20'K.

~ For r ~& 6 A, see reference 1.

III. THE FLUCTUATION INTEGRAL. THE DEGREE OF
APPROXIMATION ACHIEVED IN THE DERIVATION

OF THE COMUS LATION FUNCTIONS

We have seen in the preceding section that at one
and only one of its points the value of the structure
factor F&'(hk, T) is determined by purely macroscopic
properties of the liquid. This is the value of Ill.' at

vanishing Ak, where Eq. (5) reduces strictly to

lim Fr.'(Ak T) =1+G(T)
b, k—+0

=e(T)kTxr. (25)

The space integral of the correlation function, the
fluctuation integral, is I rs(T)kTx& —1j. This quantity
is actually independent of the scattering data. It
appears thus reasonable to state that the evaluation of
the fluctuation integral G(T) constitutes, at the present
time, a method of checking the correlation functions
g(r, T) derived from the scattering data. It is to be
remembered here that by the use of the rigorous
limiting relation (3), which was adapted to our evalu-
ation of the g(r, T) functions through a cut-off method
described in Sec. II, we have, strictly speaking, modihed
the experimental structure factor functions Fr,'(Ak, T).
It is, of course, expected that this modification should:
affect predominantly the Iii.' functions at larger hk
values. One should also expect, nevertheless, that the
PJ.' functions derived from the correlation functions,
modified iin the sense of Eq. (3), should not be too
different from the experimental structure factor func-
tions.

The present attempt at assessing the degree of
approximation achieved in the g(r, T) functions, derived
in the preceding section, is thus two-fold. On the one
hand, the space or fluctuation integrals G(T) have been
obtained over the whole liquid He4 temperature interval
explored. On the other hand, the Fr,'(Ak, T) functions
have been evaluated with the here-derived g(r, T)
functions at two representative temperatures, 2.06 and
4.20'K. These two types of checking of the correlation
functions will now be discussed.
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r
(nkTg -1)

ej,5
0

/~ G(r,4.20'K}

-1.05

r, A

20

FIG. l5. The fluctuation integrals G(r, T) as a function of r,
at 2.06 and 4.20'K.

As far as the fluctuation integral G(T) is concerned,
it is being calculated with a function g(r, T) which is
known only to a finite though relatively large value of
r, r 20 A. Hence we can obtain only

G (r, T) = 4rr'g(r, T)dr,
0

(26)

and we have to study this integral G(r, T) as a function
of its upper limit r. This was done at all the liquid
temperatures investigated here. %e give in Fig. 6 the
G(r, 2.06'K) and G(r,4.20'K) functions. The values of
limG(r, T) or Ln(T)her —1j are also indicated in

these graphs. It will be observed that beyond about
r 10—12 A, the G(r, T) functions closely approximate
their limiting values G(T) or [n(T)kTxr —1j. Clearly,
the g(r, T) functions being oscillatory over their whole
range at which they are available, the G(r, T) functions,
being negative at all the temperature T~&4.20'K,
exhibit a series of extrema.

We give in Table III the last minima of the G(r, T)
functions. These are all negative, but their sign has
been changed in the table. The third column gives the
limiting pro value of L

—G(r, T)] or t 1—n(T)kTxz7.
An examination of the G(r, T)'s shows that beyond
about 10—12 A they closely approximate their experi-
mental values of Ln(T)kTxr —1j. One may thus feel
justified in stating that as far as their ftlctlation
integral test is concerned, the g(r, T) fgnctions obtained in
the Present work are satisfactory. Clearly, there being no
direct elementary test on the point behavior of the
g(r, T) functions themselves, the fact that they satisfy
the integral test appears to be a justi6cation for their
use as representing at the present time the best available
correlation functions of liquid He4 in the temperature
interval investigated.

The use of the minima of the G(r, T) functions as the
best representative of the G(T) integrals originates in
the following property of the correlation functions.
The asymptotic behavior of the g(r, T)'s at the temper-
atures T~&4.20'K requires that they tend toward the
r-axis from below. This is apparent from the perma-

TABLE III. The last computed extrema of P
—G(r, I lg

at various temperatures.

1.25
1.50
I.75
2.06
2.25
2.50
2.75
3.01
3.25
3.50
3.75
3.97
4.20

—G(r, T)
18.SS (r (18.65 A

0.922
0.913
0.900
0.901
0.886
0.860
0.827
0.887
0.845
0.784
0.689
0.624
0.520

1 —n(T)kTxz

0.953
0.942
0.931
0.915
0.902
0.884
0.860
0.830
0.802
0.757
0.697
0.628
0.542

nently negative values of G(T) or Ln(T)kTxr —1i at
T~&4.20'K. This is interpreted by saying that the
oscillatory functions G(r, T) are better approximated
at some Rnite r, if this r-value coincides with such a
zero of this function which was reached from the
negative side. The minima of the G(r, T) integrals
correspond precisely to these zeros rp of the g(r, T)'s at
which g(rp e, T—) &0, e/rp«1.

That the G(r, T) values do not join smoothly in going
from T~&2.75 to T~)3.01'K was expected on the basis
of the approximated structure factors, which are poorer
in the transition region 2.50~& T~&3.25'K than outside
of it. This was brieRy discussed in Sec. II.

In the evaluation of those properties of liquid helium
which involve an integration of some function of the
atomic separation r, with the correlation functions
g(r, T) as weight functions, one may expect that the so
calculated quantity would be as well approximated as
the approximation achieved by the G(r, T) functions
on their limit G(T). The latter may be said, according
to the present work, to amount to a few percent, at
worst, in the relevant range of r, that is F15A. This
will hold, provided that the quantity calculated is
associated with a rigorous analytical expression of r.
If, however, the analytical expression in question is
only an approximation itself, then the accuracy with
which this physical quantity has been obtained, after
integration with g(r, T), will be determined essentially
by the over-all precision with which the analytical
expression used in the calculations approximates the
actual and correct expression of the physical property
under consideration.

As discussed brieRy in the preceding section, in those
calculations of quantities which involve integration of
the correlation function out to separations r& 15—20 A,
where the representation here obtained is either
de6cient or not available, as would be the case in the
direct calculation of the positive even moments of the
g(r, T)'s, one could not expect satisfactory results. This
is, of course, an important limitation of the correlation
functions here derived.

A method to obtain indirectly the lower order even
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positive moments of the correlation functions g(r, T)
has been discussed previously' and there is no need to
consider it here again. A second indirect method exists
also and we shall brieQy describe it here. This consists
in the fitting, by the method of least squares, for
instance, the experimental structure factors or the
difference,

Fr,s(Ak T)—Fr,s(0 T)

=FI.s(ak, T) N(T)—kTxr

=P (—)& (Ak)s "Lygis "&/(2~+ 1 ) !), (27)
1

where use was made of the definition of the moments

(6), (8), and (10). A relatively low-order polynomial
in (Ak) should yield, in principle, with a fair degree
of approximation the moments r6.&'").

We should like to turn now to the second type of
control of the correlation functions mentioned above.
This concerns the numerical evaluation of the general-
ized structure factors, or

t" sin(rhk)
F '(Ak, T&r) =1+ 4rrr'g(r, T)dr, (28)

~s rAk

with the correlation function obtained here and modified
at small separations r as discussed in Sec. II. These
generalized structure factors depend on the upper limit
r of the integral through which they are defined. The
actual structure factors at liquid temperatures T not
too close to the critical. temperature, are the limits
r moo o—f the Fi,'(Ak, T,r) functions. The latter have
been calculated at two liquid temperatures, 2.06 and
4.20'K, at intervals of Ak of 0.25 A ', and at intervals
of 0.05 A in r, from the origin to 20.0 A. These integrals
do not change practically beyond about 12 A and
evidently belong to that class which should be fairly
well approximated by the correlation functions derived
here. We give in Table IV the values of Frs(hk, T,20 A)
and compare these calculated structure factors with
the original experimental ones (Fr, ),„n given in Fig. 1.
It will be seen that the agreement, in spite of the
modification of the g (r,T) functions, is satisfactory and
these calculations provide us with a control of the
internal consistency of the method of derivation of the
g(r, T) functions as well as of the numerical methods
used in obtaining the generalized structure factors
Fis (Ak, T,r). The values at vanishing Ak are the
arithmetic means at the three largest r-values of G(r, T)
at 2.06 and 4.20'K. A glance at Table IV shows that
the modified g(r, T) functions give rise, at hk)3 A ',
to structure factors which are smaller than the experi-
mental ones. Still these calculated structure factors lie
well within the estimated & (5—7) percent mean errors
given on the experimental values. At the smaller hk-
values the calculated structure factors Fr,'(hk, T,r) are
larger than the experimental ones. It is to be remem-

TAnLE IV. The experimental (F'),„~(Ak) and the calculated
Fr.'(haik, T,20 A) structure factors at 2.06 and 4.2'K.

Ak
A '

0.0
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00
2.25
2.50
2.75
3.00
3.25
3.50
3.75
4.00
4.25
4.50
4.75
5.00
5.25
5.50
5.75
6.00

(FL').*I (~k~
2.06 K)

0.0820
0.0875
0.116
0.172
0.255
0.383
0.575
0.909
1.32
1.27
1.13
1.04
1.00
0.978
0.979
0.999
1.04
1.09
1.11
1.10
1.08
1.06
1.04
1.02
1.00

2.06'K, 20 A)

0.089
0.128
0.157
0.208
0.277
0.392
0.565
0.891
1.28
1.26
1.12
1.02
0.974
0.946
0.938
0.947
0.984
1.02
1.04
1.03
1.02
1.00
0.990
0.985
0.986

(F& )«p(~ks
4.2 K)

0.458
0.381
0.300
0.265
0.313
0.448
0.665
1.02
1.28
1.23
1.09
1.01
0.970
0.959
0.970
0.990
1.01
1.05
1.07
1.08
1.08
1.07
1.06
1.02
0.990

FL,~(sk,
4.2 K,20 A)

0.478
0.429
0.337
0.284
0.317
0.431
0.639
0.990
1.25
1.21
1.07
1.00
0.972
0.961
0.964
0.974
0.984
1.00
1.01
1.02
1.02
1.02
1.01
0.987
0.970

bered here that the uncertainties on the experimental
structure factors are the largest at small and large hk-
values.

In closing this section. on the verification of the
correlation functions derived in Sec. II, it appears
reasonable to say that, on the whole, the analysis
performed in this work on the basis of the data of one
of us'' has led to a picture of the indirect atomic
correlations, expressed by the g(r, T)'s, which should be
rather good approximations to the actual correlations,
at least out to separations r~j5 A. It is, indeed, felt
that the checking of the limiting large r-values of the
G(r, T) 's at all the liquid temperatures here investigated,
as well as the structure factors, Tables III and IV,
constitute reasonable grounds for this belief. Clearly,
the preceding method of checking does not provide us
with a proof for the completely correct character of
the correlation functions derived above. We are unaware
of any existing methods of supplying for these functions
a closer check than the one used by us.

IV. THE MEAN POTENTIAL ENERGY PER LIQUID He'
ATOM, CONFIGURATIONAL HEAT CAPACITIES.
A PROOF OF THE KINETIC ENERGY ORIGIN

OF THE LAMBDA TRANSITION

In any applications of the atomic distributions de-
rived from x-ray scattering data in liquids, one has to
keep in mind the inevitable limitations of the corre-
lation functions g(r, T) or the pair distribution functions
ts(r, T). In addition, the physical property of the liquid
under consideration, which is to be evaluated, has its
own limitations. Such evaluations of elementary physi-
cal properties involve functions depending on inter-
atomic or intermolecular separations r, their spatial
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isotropy being actually realized or assumed. Here one
has to face, in general, the contingency that the ele-
mentary physical property in question has only a more
or less well justi6ed analytical form, the latter being an
approximation of its unknown correct analytical ex-
pression. In spite of these limitations which cannot but
decrease the degree of quantitative or numerical
approximations achieved on any elementary or atomic
property in liquids, it is felt that unless the distribution
functions derived are made use of in furthering the
knowledge of elementary physical quantities in liquids,
the derivation of the distribution functions per se, or
for the sole purpose of comparison with distributions in
the solid phase, tends to lead to some kind of a scienti6c
impasse.

The first important application of the distribution
function data has been made by Hildebrand and his
collaborators. " They first used the distribution func-
tions determined by t'hem in liquid mercury for an
investigation of the classical potential energy of this
liquid. Subsequently, Hildebrand studied the potential
energy in diferent liquids.

In these studies it is assumed that the total potential
energy of the liquid formed by S atoms, or molecules,
is the sum of the spatially isotropic potential energies
of 'all its N(N —1)/2 pairs. In the present work on
liquid He' this assumption will be retained. We have
defined by Eq. (4), dN(r, T) as the differential proba-
bility to find an atom in the volume element de(r),
whose center is at a distance r from the origin atom.
The differential potential energy, per atom, of the pair
of atoms at the origin and at r, is

of a possible series expansion representation of the total
potential energy of the liquid.

One of the major obstacles in the path of the extensive
use of Eq. (30) is the general unavailability of the
mutual potential energy function q (r) of two stationary
atoms or molecules of the liquid under study.

In our case of liquid He', two approximate analytical
expressions are available" " for the tota1 mutual
potential energy of two stationary He4 atoms. These
two differ only in their attractive parts, the one in-
cluding the mutual induced dipole-quadrupole inter-
action, " beside the dipole-dipole one, leads to a dis-
tinctly lower total potential energy. These two potential
energy expressions are, respectively,

yi(r)=Ae " Bir—s,

qri(r)=Ae —"—Brir '—Cirr '. (31)

The approximate range is (1/n), with n equal to
4.60A ', r is in angstrom units, and the various
constants are the following, in units of 10 "ergs:

77
&x

0,149
&u

0.139
Cir

0.370

Using the forms (31), we have calculated Ci(T) and
Cii(T) at the various liquid temperatures at which the
pair distribution functions e(r, T) have been obtained.
The mean potential energies per atom C(T) had, of
course, to be studied as a function of the upper limit r
of the integral in their definition of Eq. (30). In view
of the rapid convergence of the potential energy inte-

dC (r,T) = ', q (r)dN(r, T-)

= 2rrcp (r) ri(r, T)r'dr, (29)

0

where q (r) is the isotropic mutual potential energy of
two stationary atoms in the system, separated by the
distance r. The total potential energy, per atom, in the
whose system is thus, exchange energy included,

-IO

-20

C (T) =2w q (r)e(r, T)r'dr, (30)

where the integral extends over the volume V of the
system. At liquid temperatures T(T„T, being its
critical temperature, the integration may be extended
over the whole space. The remarkable and simple
formula due to Hildebrand" is rigorous within the
limitations of the above mentioned assumption on the
representation of the total potential energy of the
liquid. At any rate, it seems reasonable to say that
(30) is expected to be at least a first approximation to
the classical potential energy, per atom, of the system
in the case where the linear superposition of the pair
potential energies turned out to be only the hrst term

' J. H, Hildebrand and S. E. Wood, I. Chem. Phys. I, 817
(1933). For the literature of the work of the Berkeley group see
the book quoted in reference 19.

«40
P {r,2.06 K)~T'

«50 $ {r,2.06'K)

r. A

IO l2

"J.C. Slater and J. G. Kirkwood, Phys. Rev. 37, 682 (1931).
~ H. Margenau, Phys. Rev. 56, 1000 (1939).

Fio. 7. The mean potential energies per lictuid He' atom Cr(r, T)
and @rr (r,T), s,t 2.06'K, as a function of r, for the two analytical
approximations of the mutual potential energy of two stationary
isolated He4 atoms.
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grals (30), the limiting large r values of the potential
energies are reached already at the relevant separations
r~10—12 A. This is seen in Fig. 7 which gives
Cr(r, 2.06'K) and Crr(r, 2.06'K). We give in Table V the
values of @r(T) and Crr(T) at the various liquid
temperatures at the extreme separation of 20 A. It will
be seen that Crr(T) is about (5/4)Cr(T). In part of the
present investigation, however, the actual numerical
values of the mean potential energies are of no im-
portance. What is, however, of major qualitative signifi-
cance is their decreasing trend with increasing liquid
temperature in the He II region, and their increasing
trend with increasing temperature in the He I region.
The potential energy functions 4»(T) and 4»(T) have
a cusp at the lambda point. This result is in agreement
with what one might have expected on the basis of the
observed peculiar contraction of liquid He II, at T
»&1.25'K, with increasing temperature and the normal
expansion of liquid He I with increasing temperatures.

In order to fully exploit the numerical results in
Table V, it is necessary to write down formally the
expression of the total energy of the liquid. In so doing,
we shall still be on very general grounds. Indeed a
rigorous quantum mechanical solution of the liquid He4

problem is expected to yield, after ensemble averaging,
an expression of the type

Z...(T)=Z„„(T)+4(T). (32)

The total energy of the liquid at temperature T, E&.&(T)
is the sum of the classical kinetic, Ei,;„, and potential
plus quantum-mechanical exchange, 4 (T), energies. In
forming the ensemble average of the energies in (32),
the term E&;„will depend critically on the momentum
space distribution of the system. I et us now define the
configurational heat capacity of our system by

I'(T) =dC (T)/dT. (33)

All heat capacities to be considered will be associated
with the saturated liquid. With (32) and (33),we obtain

C...(T)= LdEr, ;./dT J+r (T), (34)

for the total calorimetrically measurable heat capacity
of the liquid. Experimentally, C&,&(T) is a rapidly
increasing function of the temperature below the
lambda point and a decreasing function above the
lambda point, over some small temperature interval. "
The characteristic lambda anomaly is expressed by

ACi, i ——Ct,i„—Ci.i (0, (T= Tr,), (35)

the + and —subscripts referring to the high- and low-

temperature sides of the transition temperature T~. In
contrast with the lambda anomaly of the total heat
capacity, the configurational heat capacity has an
inverted lambda anomaly. Since 4(T) has a cusp at
the lambda point, one finds I' or r(T(T&,) (0, and

r+ or r(T) Tz))0, as shown by the potential energies

s4 See the monograph of W. H. Keesom, Heleeiia (Elsevier
Publishing Company, Inc. , Amsterdam, 1942), pp. 211—226.

TABLE V. Mean potential energies Cr(T) and 4'rr(T) per atom
in liquid helium at various temperatures.

ToK

1.25
1.50
1.75
2.06
2.25
2.50
2.75
3.01
3.25
3.50
3.75
3.97
4.20

C I(T) cal/mole

—43.04—43.08—43.10—43.25—43.30—43.08—42.77—40.15—39.71—39.18—38.55—37.91—37.12

+II (T) cal jmole

—53 95—54.00—54.03—54.29—54.34—54.02—53.58—50.69—50.07—49.33—48.48—47.58—46.47

(36)

Its sign is opposite to that of the total heat capacity
(35). Hence, independently of the actual numerical
values of the configurational heat capacity r(T), one
has to conclude that the observed lambda anomaly of
the total liquid helium heat capacity is strictly of
kinetic energy origin. It is thus connected with the
temperature variation of the distribution of the liquid
He4 atoms in momentum space.

With the aforementioned behavior of r(T), it will
be seen that at 1.25'K(T(T), the kinetic heat
capacity is larger than the total heat capacity. Also,
in a limited temperature range beyond Tz, the decreas-
ing kinetic heat capacity is still larger than the in-
creasing positive con6gurational heat capacity.

The proof given here of the kinetic energy origin of
the lambda anomaly in liquid helium appears to be
quite general though involving the derived pair distri-
bution functions and the use of the approximate mutual
potential energies of a pair of stationary He4 atoms.
The proof obtained seems to provide a solid foundation
for the development of the theory of liquid helium
concerning its momentum space behavior.

It is also of interest to consider the approximate
numerical values of the con6gurational heat capacity
r(T) resulting from the approximate potential energies
Cr(T) and Crr (T). In order to obtain I'r (T) and. rrr(T)
associated with the potential energies Cz and Czq, we
have fitted these with parabolae of the form

4.(T)=a.+b.T+c,T' o= I, II. .

These yielded at once the heat capacities:

r.(T) =dc./dT
= b,+2c,T,

(37)

(38)

linear in T over the restricted temperature ranges where
the parabolic 6ts have been obtained. The various
constants of the parabolas (37) are given in Table VI

4(T) of Table V. This was the behavior of major
qualitative significance pointed out in the aforemen-
tioned. The discontinuity of the conlgurational heat
capacity is

hr(Tr, ) =r~(T),)—r (Tr))0.
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TABLE VI. CoeKcients of the parabolic 6ts of the mean potential
energies per atom in liquid helium.

temperature ar arr br brr cr i."rr

range cal/mole col/mole )&deg cal/mole X |,'deg) 2

1.25 (T(2.10 K —43.17 —54.39 0.3192 0.8234 —0.1710 —0.3765
3.05 (T ((4.20 K —36.77 —46.33 -3.711 -4.957 0.863$ 1.1705

in the two temperature intervals 1.25&~T &&2.10'K and
3.05&~T~&4.20'K. The parabolas in the liquid He II
range actually extend up to 2.25'K, which is the
"apparent" lambda temperature in these calculations.
Actually, if we had performed the calculation of the
correlation function at the empirical lambda point of
about 2.18 K, the pair distribution functions in Eq.
(35) would have led to the inverted cusp of the C (T)
functions at this correct lambda temperature. We give
in Table VII the conlgurational heat capacities
I', (T)/R, in molar units. The heat capacities at T
(2.25'K, refer to the decreasing negative branches of
the discontinuous functions I'z(T) and I'zz(T). It is
expected that the potential energy function Czz(T),
which is likely to overestimate the actual mean po-
tential energy, in absolute value„should give rise to
configurational heat capacities I'zz(T) in excess of their
actual values. A glance at Table VII shows that, in
the liquid He II range, 1.25'K&T&T&, the I'(T)
values are quite small in comparison to the total heat
capacities. "In the vicinity of the lambda point, on its
low temperature side, F& and F&z amount, respectively,
to about 3 and 6 percent of the total heat capacity.
While in the He II region, the F's are small fractions of
the total heat capacity, they tend to become dominant
at high temperatures, in the He I region. At T)3'I,
I'z(T) seems to have plausible values, while I'zz is quite
large, and at T&3.5'K it turns out to be larger than
the total heat capacity, whose experimental accuracy
may be low here. This indicates that Czz(T) is likely
to be in excess, in absolute value, of the actual mean
potential energy per atom at these temperatures. At
any rate„ there is a qualitative change in the roles
played by the configurational heat capacity in the
He II and He I regions, respectively, when compared
to the total heat capacity.

The anomalous behavior of I"(T) in the He II region
appears to be the manifestation of some elementary
property of this liquid, wherein this potential part of
the heat capacity tends to oppose the extreme anomaly
exhibited by the kinetic heat capacity. In terms of a
more elementary picture, not involving directly temper-
ature derivatives, the peculiar behavior of the liquid
density in the HeII region seems to correspond to
some kind of defense mechanism tending to counteract
the dominating anomaly which originates in the mo-
mentum space properties of the liquid. It is noteworthy
that the late F. London" has emphasized, through
qualitative considerations, that the peculiar behavior

"F.London, J. Chem. Phys. 11, 203 (1943).

of the density of liquid He II is a manifestation of the
opposition by the liquid to its assumed Bose-Einstein
condensation process. This opposition was presumed to
originate in the classical mutual atomic interactions.

The quantitative results obtained in the present
work which led to the picture just discussed by us, are
based on quite general grounds. In particular the details
of the mechanism of the dominant lambda phenomenon
were not needed at all, while a proof could be given of
its momentum space origin.

Finally, a few remarks may be of interest here
concerning the expected behavior of I'(T) below 1.25'K.
It is seen on Table VII that I'(T) increases with
decreasing temperatures. It may be expected that I'(T)
will vanish at some temperature below 1.25'K to reach
a positive maximum and to remain positive at low
temperatures, tending to vanish there, from positive

TAnLE VIL Coni'zgurational heat capacities Pz(T) and I'zz(T) in
units of R at various temperatures.

1.25
1.50
1.75
2.10
2.25
3.05
3.25
3.50
3.75
4.00
4.20

I'r (T)/R
—0.055—0.098—0.141—0.201—0.227

0.784
0.958
1.17
1.39
1.61
1.78

Frr (T)/R
—0.059—0.154—0.249—0.381—0.428

1.10
1.33
1.63
1.92
2.22
2.45

values, at the approach of the absolute zero. This
behavior would be similar to that of the expansion
coe%cient of liquid He II which, as predicted, "became
positive at low enough temperatures. "This expansion
coeScient should also have a positive maximum before
tending to vanish, from the positive side, at the ap-
proach of the absolute zero.
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