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In both He' and He' there are two types of excitation, a Debye type involving large numbers of molecules,
and a localized type of excitation. The latter type is considered in this paper. In the case of He' the localized
excitations of lowest energy can be discussed rather successfully by means of a pair-rotator model, with
hindered rotation in a plane. The pair-rotator model breaks down in the case of the next higher group of
excited levels; their energy is about right but there are more such levels than would be expected on the
pair-rotator model. The reason for this is considered. In the case of He4 the so-called roton excitations are of
much higher energy than the excited levels in He', on account of the statistics and also on account of the
effect of the higher density on the hindering of the rotation. These effects can be understood with the aid
of the pair-rotator model. The model, itself, however, breaks down for these levels, and the nature of the
break-down and the probable character of the rotons are discussed. The results are also of interest in con-
nection with mixtures of He' and He4. Some remarks are appended on the possibility of a ) transition in He'.

S UFFICIENT is now known about the excitations in
liquid He' and He4 so that a comparison of the two

cases should lead to new insights. In some respects they
are quite similar. In each case the thermodynamic
properties can be accounted for by assuming that there
are two types of excitation; 6rst, a Debye or phonon
type involving simultaneous vibration of large numbers
of atoms, and, secondly, a localized type of excitation
involving only a small number of atoms (but in general
at least two, and partaking of some of the character of
a rotation —' localized vibrational excitations would
involve higher energies than need to be considered at
low temperatures). It is the latter with which we wish
to deal in this paper. The localized excitations in He'
(rotons) involve much more energy than is the case
with He'. This diGerence is due principally to the
difference in statistics, but, as we shall see, there is also
an indirect efI'ect arising from the difference in mass,
which is sufFicient to give He' a considerably higher
zero-point energy than He4 for any predetermined
density and which consequently results in a much
lower equilibrium value of the density for He'.

Liquid He' has recently been treated with some suc-
cess by means of what may be called a pair-rotato
model, ' in which E atoms are considered to form X/
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pairs which can undergo rotation, among other types of
motion. If the pair-rotator model is to have validity,
the cells in which the pairs are to rotate will be fixed

by the surrounding molecules. Thus a molecule does
not, at a particular instant, have a choice as to which
other molecule it will pair with, but on the average is
much more likely to exchange places with some one of
its neighbors than with the others, this exchange being
associated with a certain average energy L0.4' times
the Boltzmann constant, according to Eq. (1)J. Al-

though the pairing will change from moment to mo-
ment, this may be considered to be a part of the zero-
point Quctuation and does not contribute to the entropy.
If this were not the case, the pair-approximation would
not give good results.

Temperley' has proposed a partition function for a
pair whose logarithm is given by

In(1+3e 'st +8e "t )

so that the partition function of He' per tttotrt is given
(after a Debye term is added) by

In(p. f.) ~= —' In(1+3e 's'r+8e ' "r)+0.0108T'. (1)

The data on the nuclear paramagnetism, the specific
heat, and the entropy can be reproduced by this par-
tition function (and apparently only by one whose form
is close to this). The weight, 3, of the energy level at
0.4k (about 0.8 cal per pair-mole) arises from the
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where p is the reduced mass, rp the interatomic distance
for the rotator, and 5' is the value of the energy. This
is Mathieu's equation, and can be written

where

and

dg/d8'+ (4cr+ 16' cos28)lt =0,

u= (2~perp'/h') (8'—Vp)

q= ~'prp'Vp/2h'.

' O. K. Rice, Phys. Rev. 97, 1176 (1955).' See L. Pauling, Phys. Rev. 36, 430 (1930).

FIG. 1. The 6ve lowest energy levels for the restricted rotator
as functions of q. Solid curves, symmetrical rotational states;
broken curves, antisymmetrical states. q3 is the estimated value
of q for He'.
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fact that this state is a triplet state with respect to
the nuclear spin of He' (hence, also, it contributes to
the paramagnetism). This state, then, has no spatial
degeneracy.

Ke have pointed out' that the weight of three is
exactly what would be expected on the pair-rotator
model if the pair-rotator acts as a hindered plane rota-
tor. The lowest state of rotational oscillation is sym-
metrical in the space coordinates, hence antisymmetric
in the spin coordinates and a singlet, while the next
excited state is antisymmetrical in the space coordi-
nates and hence a triplet. The normal twofold spatial
degeneracy of the plane rotator (due to clockwise and
counterclockwise rotation) is lifted in the hindered
rotator. The existence of a hindering potential is of
course to be ascribed to the interactions of neighboring
molecule s.

In treating the problem of hindered rotation it is
commonly assumed that the potential energy is given
as a function of the angle 8 of rotation by an expression
of the form' Vp —Vpcos28, where Vp is a constant
parameter. This leads to the wave equation

dQ/d8'+ (Sm'harp'/Is') pV —Vp+ Vp cos28)lt = 0, (2)

If Vp is zero, Eq. (2) reduces to the equation for the
plane rotator with energy levels given by

8'=j
'h'/Sm'harp',

where j is an integer. The quantity 16q+4x is the
energy expressed in terms of the unit h'/Sasprps. By
finding the characteristic values of Mathieu's equation
for periodic solutions, the allowed values of 16q+4ce
can be determined4 as functions of q. These values are
shown in Fig. 1.

In attempting to apply these results to the pair-
rotator model, we assume that rp is equal to the average
interatomic distance in He', which we estimate' to be
3.46 A. Then hs/Sa'prps= 2.68 cal per pair-mole. How-
ever, according to Temperley's equation LEq. (1)],
which also agrees roughly with our own conclusions,
the actual energy gap between the lowest singlet and
the next triplet state is about 0.8 cal per pair-mole.
Using the hindered plane-rotator model, we conclude
from Fig. 1 that q must be about 0.145 (Vp=6.2 cal
per pair-mole), as indicated on Fig. 1. With this value
of q we see that there is a triplet level at an energy of
roughly 7 cal per pair-mole above the ground state.
This is close to the average energy of Temperley's
suggested second group of excited energy levels, namely
5.4 cal per pair-mole. At first glance, however, the ex-
pected multiplicity is three, which contrasts with
Temperley's multiplicity of eight. Temperley suggested
that his eightfold level consisted of two triplets and
two singlets. Exactly this composition is not required,
however, and if the hindered pair-rotator picture has
validity, it appears from Fig. 1 that the singlet states
are rather high to be Included. 6 On the other hand, it
seems possible that some spatial degeneracy might
appear in the higher energy levels. As mentioned above,
the pair-rotator model implies that an atom pairs with
a particular neighbor, determined by the instantaneous
configuration of the system as a whole. It seems likely
that this restriction would break down for excitations
involving higher energies, so that an atom would select
its partner at random regardless of the configuration,
implying at least the possibility of several distinct,
geometrically distinguishable states with comparable
energy. " If there are not too many of these excitations
they will not, furthermore, interfere with each other.

4 S. Goldstein, Trans. Cambridge Phil. Soc. 23, 303 (1927).
This estimate is obtained from the average distance, 3.15 A,

in He4 [J.Reekie and T. S. Hutchison, Phys. Rev. 92, 827 (1953)]
and the cube root of the ratio of the density of He' LW. H. Keesom,
Heleem (Elsevier Publishing Company, Inc. , Amsterdam, 1942),
p. 207] to that of He' LE. C. Kerr, Phys. Rev. 96, 551 (1954)].' It should be stated that the term "degeneracy" should not be
given too literal an interpretation. As Temperley quite explicitly
mentions, it is not to be supposed that all the energy levels in a
group coincide exactly. It is merely supposed that they constitute
a fairly closely-spaced group, which can be considered as a group
in which the degeneracy has been lifted by the perturbations only
to a relatively small extent. The singlet states do appear too high
to be included with the second triplet.' This difference in the degeneracies of the various energy levels
is discussed in an Addendum.
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It seems probable from the case of He' (see Reekie and
Hutchison'), that each atom has on the average four
nearest neighbors with which it could pair. Such a pair,
however, would involve two atoms. Therefore, the
eGect of random pairing would be to introduce a de-
generacy of 4/2 per atom into the corresponding term
of the partition function, or a degeneracy of 4 per pair.
Taking into account the fact that we are dealing with
a triplet state, the total possible degeneracy becomes 12,
whereas the observed degeneracy is about 8. It appears,
thus, that the random-pairing degeneracy is not fully
developed, but the order of magnitude observed appears
to be about right. With this amendment, the hindered
pair-rotator model seems not to do badly in the case
of He'. It is not to be denied that, in spite of this ap-
parent success, it is a highly idealized model, and must
be accepted with some reserve. Indeed, we have already
mentioned certain eGects which may result from inter-
actions between the pair-rotators, or from cooperative
eQ'ects involving all the atoms. ' However, the usefulness
of the hindered plane pair-rotator in the case of He'
tempts us to accept it tentatively as an aid in the
comparison of He' with He4.

Since He4 obeys the Bose-Einstein statistics and has
no spin, we need to consider only symmetrical, singlet
states, represented by the solid curves in Fig. 1. Since
the interatomic distance is so much less in He4 we may
expect the potential barrier against free rotation of a
pair to be much greater than in He'. Just how much
greater is of course dificult to say. If we suppose q to be
0.5 for He4, then we see from Fig. 1 that the energy gap
between the ground state and the next singlet state is
something like 17 cal per pair-mole, since the value of
h'/87r'pre' for He' is 2.45, taking' rs as 3.15; if q should
be 1.0, then the energy gap would be about 25 cal
per pair-mole. These energies are just of the order of
magnitude of the excitation for rotons. (Only the order
of magnitude and the fact that this level is higher than
the second group of excitations for He' can be of
importance —in view of the complications to be con-
sidered the rather close agreement with the roton ex-
citation energy must be a coincidence. ) An important
difference between He' and He4 lies in the degeneracy
of the excited state. The degeneracy in He' is much
greater, despite the fact that a singlet rather than a
triplet state is involved. We have estimated' from
specific heat data that the degeneracy is about 9; this
however, is based on atoms, not pairs of atoms, and the
pair model would require that the degeneracy of
pairs be 18.

In estimating the degeneracy, we assumed that rotons
were groups of atoms which formed an ideal solution
with the single atoms of superQuid. This, of course, is
an approximation at best, but it means essentially that
the groups of atoms can be definitely located with rela-
tion to the single atoms of the superQuid. This localiza-

' O. K. Rice, Phys. Rev. 96, 1460 (1954).

tion might be to some extent blurred by the zero-point
motion. This would mean that the entropy of mixing
was overestimated; if it had to be lowered, it would
have to be compensated by increasing the estimate of
the degeneracy. However, it seems probable that grolps
of atoms can be better localized among the other atoms
than these atoms can be localized with respect to each
other.

The high degeneracy probably arises from the fact
that a number of atoms (perhaps six or eight) seem to
be involved in the roton excitations. With the large
amount of energy required it appears likely that a pair
would have reached, so to speak, its "dissociation
energy, " it being held in its cell essentially only by the
repulsion of the surrounding atoms. In other words,
the individuality of the pairs would break down, and
we could expect some cooperative e6'ects in which a
number of atoms are involved; coordinated rotations of
several neighboring pairs could conceivably eGect a
lowering of the hindering potential, and such co-
ordinated rotations could occur in a variety of ways.
Of course considerable lowering of the effective hinder-
ing potential would be required in order for the total
excitation of a whole group of six or eight atoms to be
no higher, or only a little higher, than that expected
for a pair. It is also possible that rotations of the group
of atoms as a whole might contribute to the degeneracy.
This possibility was mentioned by Feynman, who,
however, carefully refrained from any categorical state-
ment that the roton excitations were necessarily of
this nature.

We think that there may be some experimental evi-
dence that the roton excitations are more likely to
involve mutual rotations of individual pairs than rota-
tion of the whole group. If rotation of the whole group
is involved it is not clear that the spacing of the atoms
within the group should be much affected; so it is not
too easy to see why the rotons are denser than the
residual Quid, i.e., the superQuid, as they presumably
are, in view of the negative coeKcient of expansion of
helium II. If, however, the individual excited atoms
move more freely through longer distances (i.e., have
greater "mean free paths, " as would be expected from
individual or pairwise excitation) than the atoms of
superQuid, then, as we have remarked before, the
excited energy levels should depend less strongly on
interatomic distances than is the case in the ground
state. This permits the roton atoms to lower their
potential energy by decreasing their average inter-
atomic distance. This may, in fact, be one of the ways
that cooperative effects in the excitation can lower the
total energy, and so make such excitations more prob-
able, though this effect is undoubtedly small.

The nature of the roton excitations and the smaller
volume of rotons as compared to superQuid are, of
course, intimately connected with the behavior of Hc4

' R, P, Feynman, Phys. Rev. 94, 262 (1954),
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at elevated pressures. It is found that the speci6c heat
at constant volume increases with increasing pressure. "
This means greater ease of excitation, hence relative
lowering of the energy of excitation. What we really
should conclude is that the rotons are less affected by
pressure than the superQuid. In the superQuid the zero-
point energy is raised by pressure more than the energy
of the rotons is raised, since the energy levels of rotons
depend less strongly on the density, as noted in the
preceding paragraph. Of course, the potential barrier
to rotation should increase with increasing density, and
if the hindered rotator model (and this may apply not
only to a pair-rotator model but to any model involving
rotation of groups of atoms as a whole) had not broken
down in the case of He', we should expect enhanced
pressure to have the opposite effect (i.e., more effect
on the roton energy than on the zero-point energy). But
if what happens involves "dissociation by rotation" of
the pair-rotator, then the observed effect is easily
understood if the zero-point energy of the superQuid is
raised more than the dissociation energy. In the light
of these remarks, a study of the eGect of pressure on the
thermodynamic properties of He' would be extremely
interesting.

If a roton is a group of atoms having excitations in-
ternal to the group and having a number of energy
levels (the excitation energy is, of course, an average
only, and we may expect in actuality a range of en-
ergies, as with He ), it should behave rather similarly
to a classical liquid. Liquid He' is certainly suKciently
highly excited around 1'K to behave like a classical
liquid. There is, therefore, some basis for the belief
that rotons and He' would mix and to a reasonable
approximation form an ideal solution, even at this low
a temperature. The deviation of He' —He4 mixtures from
ideality; according to Taconis' hypothesis, " arises in
large part from insolubility of Hes in super8uid He4,

which may be caused by eQ'ects on the zero-point
energy. '~ We have recently shown" that Taconis'
hypothesis, together with the assumed ideality of a
mixture of He' and excited He' and the perhaps some-
what questionable assumption that the average number
of atoms involved in a roton is not affected by the
presence of He', gives a reasonably good account of the
experiment of Sommers, Keller, and Dash" on the heat
and entropy of mixing at 1'K.

The picture of liquid He' and He4, which emerges
from the present considerations, requires some modi-
Qcations in the suggestion which we have previously
made" concerning the apparent lack of a X transition
in He'. We had proposed earlier" that the X transition

"See W. H, Keesom, Heleicra (Elsevier Publishing Company,
Inc., Amsterdam, 1942},p. 219.

"Taconis, Beenakker, Nier, and Aldrich, Phys. Rev. 75, 1966
(1949).

's O. K. Rice, Phys. Rev. 93, 1161 (1954), Sec. 4.
"O. K. Rice, Phys. Rev. 96, 1464 (1954).
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"O. K. Rice, Phys. Rev. 76, 1701 (1949).

in He' is connected with the appearance of clusters of
superQuid. In the later work we considered a possible
mechanism for the formation of such clusters, and
pointed out that the formation of clusters of appreci-
able numbers of atoms of superQuid might be expected
to result, in He4, in a lowering of the zero-point energy.
We explained the lack of such clusters in He' on the
grounds that an He' atom would always have some
neighbors in a spin state such that their relative angular
momentum could not be zero, at least if there was any
exchange at all. However, the pair-rotator model repre-
sents a situation in which the lowest energy of a pair
is attained, there being no exchange involving separate
pairs. If this picture is correct, it is quite possible that
clusters of "superfluid" He' (i.e., liquid He' without
excitations) might appear as the temperature was
lowered; in this case, also, there might be an energetic
advantage in clusters of appreciable magnitude. This
might then result in a X transition in He' at su%ciently
low temperatures. On the other hand, since the forma-
tion of large clusters of He' with all pairs of atoms in
their lowest states of restricted rotation would require
some special arrangement of atoms in order to keep
the atoms of a pair which had a mutually symmetrical
spin wave function relatively far away from each other, '
this might not be energetically favorable. The situation
in this case does not seem to be nearly as clear cut as
with He'. Temperley' has suggested that the alignment
of spins may involve a Curie-type transition, but with-
out suggesting clusters and without using the word

super Hurd.

In conclusion, we think it may be said that despite
the fact that it represents a highly idealized picture,
the hindered plane pair-rotator model seems to be
surprisingly successful in facilitating the discussion of
the properties of He, with due regard for its limitations,
and it appears also to give a semiquantitative under-
standing of the diGerences between He' and He4. The
differences, of course, arise principally from the much
higher excitations required in He', a property which is
to be traced to the fact that He4 lacks antisymmetrical
states. The difterences are, however, enhanced by the
resistance to relative motion of the atoms caused by
the smaller interatomic distance in He4. It is very in-
teresting that it appears to be possible to treat the
lowest excited energy level of He' very well by means
of the pair-rotator model with hindered rotation, but
that this model appears to begin to break down for
the next series of excited states. In He', on account of
the considerable hindrance to rotation, the lowest
excited states have a higher energy even than the second
set of excited states in He', and for them the pair-
rotator model breaks down even more completely.
The nature of these excited states can, however, be
tentatively inferred, and in making this inference the

, model is of considerable assistance.
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ADDENDUM: DISCUSSION OF THE DEGENERACY OF
THE ENERGY LEVELS IN Hes

Referring to Fig. 1, it is seen that in the case of
Vo ——0, i.e., pure rotation, the lowest energy level is
single and symmetrical in the rotational coordinates,
while all the other levels are double. As Uo increases,
and we approach the condition of pure oscillation, each
level is double, there being- one symmetrical singlet
state and one antisymmetrical triplet state. One of these
states connects with the rotational level just above
that with which the other connects. The multiplicity
of the energy levels is most readily understood by con-
sidering the case of Vo large. Let us consider all the
energy levels which can arise from the lowest pair of
symmetrical and antisymmetrical states, that is, from
the lowest vibrational state with Vp large. If Vo is large
we can consider that each particular position A in space
has a wave function f~ (excluding spin). Taking a
particular pair of atoms, if atom 1 is at position A and
atom 2 at position 8 the wave function is f~(1)f~(2),
while if they have changed position the wave function
is f~(1)f~(2). Of course, the wave function must be
properly symmetrized; the two energy levels, lowest
solid and lowest broken line in Fig. 1 correspond to
f~(1)P~(2)+P~(1)P~(2) and f~(1)f~(2)—f~(1g ~(2),
respectively, provided fz and fz are the lowest wave
functions for their particular positions, and therefore
identical except that one is centered at A and the
other at B.

Now consider the whole assembly of 1V atoms, each
having the wave function corresponding to the lowest
energy state. Each of these X wave functions, Pz, fz,

, has a particular spin function, either n, corre-
sponding to spin in one direction, or P, corresponding
to spin in the other direction, associated with it. Since
there are two spin possibilities for each atom, there are
altogether 2~ possibilities. Since these wave functions
contain both spatial coordinates and spin, each must
be made antisymmetrical to exchange of atoms. There
will be 2~ independent wave functions built up from the

set of lowest wave functions, P~, f~, Po, ~ ~, and the
spin functions. These, of course, do not all have to
have the same energy.

We turn now to the case of cV/2 pair-rotators, rotat-
ing in a plane. Each one of these pairs can have a
singlet and a triplet state built up out of the
proper combination of, e.g. , P~ and fs, and the spin
functions. Thus each pair has four states; altogether
the X/2 pairs will have 4~"=2~ states. Thus the
hindered-plane-rotator model, when its two lowest
energy levels are considered, gives exactly the correct
number of states built up from the lowest eigenfunctions
of individual atoms; and presumably it is the only
rotator model which will do this. Further, it can give
some idea of what the energies involved are.

A higher osci11ational level of the hindered rotator
with large Vo corresponds to higher individual energy
levels, with wave function p, let us say. If an atom has
wave function g it must, if the pair rotator model is
reasonably correct, have one nearest neighbor with a
similar function. If there are two atoms among the S
atoms which have a wave function g, and if each atom
in the system has on the average four nearest neighbors,
then there are 2Ã distinct ways in which two of the X
functions, fz, fz, pc, , can be replaced by p's. Once
this replacement is made, then the possible number of
states, including spin, can be found just as before.
However, it is seen that it is not sufhcient to say that
any one of E/2 pairs can have its wave functions re-
placed by p's. This gives only one-fourth the total
number of possibilities. %e thus see how it comes about
that the hindered-plane-rotator model can give a
reasonable account of the energies of the three lowest
sets of energy levels in He', and how it can give the
correct multiplicity for the lowest and next lowest set
of levels, yet may be expected to break down in giving
the multiplicity for the third set of levels. Of course,
strictly speaking, this means that the partition function
no longer has the form given by Eq. (1), but if not too
many P's are replaced by p's this should not cause
serious error.


