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' 'NFORMATION on properties of coupled fields may
~ ~ be obtained by considering equations satisfied by
quantities of the type

(out(O(x) ( in)

[0(x) Heisenberg operator,
~
in) state of incoming par-

ticles,
~
out) state of outgoing particlesj.

The main diGerence between such quantities and
"covariant wave functions" previously used' 4 is that
(1) contains only one Heisenberg operator and several
creation and annihilation operators for outgoing and
incoming particles.

As an example, let us consider two Dirac fields if' (x)
and tv(x), interacting through a pseudo-scalar 6eld
A(x), corresponding to particles of rest-mass tt. The
interaction term in the Lagrangian is then

We introduce the quantity of type (1)

tt (x,y) = (o I
0~'""(x)W~(y) IP),

where
~
0) is the true vacuum, and j P) is an eigenstate

of the total energy-momentum four-vector of the inter-
acting fields, corresponding to eigenvalues I'„.It is easy
to show that

q (x,y) = q (x—y) e'~o,

where p(x) = (0)f)r'"'(x)lb) (0)
~
P).

The equation satisfied by p(x) will be nonlinear. The
interaction of lowest order in g gives, however (as is
most easily seen by starting from the Bethe-Salpeter
equation), a linear equation,

g mg
(P.v"—P.v"+)I)~ x(P) =

(2)r)s

=P'=0, P'=M), we obtain

g2

(ctp+mP+E„" M—)r iP(p) =
(2)r)'

t P~( p)—P~P~v~v~Px( «)—4(«)x ~ d'q, (3)J (p «)s+ (E )s E )s)2+ps

where P~(p) = (Eo~+ap+mP)&/2E„~.
Equation (3) may be checked by applying it, suitably

modified, to the problem of the hydrogen atom. It then
reads

(~p+~P+E')4 (p) =
2m'

C P~(—p) (~~~.—&)P~(—«)
lb(«)d'q,

(p—«)'+(E. —E.")'

where the subscripts e and P indicate electron and
proton quantities, respectively.

The first term of a development with respect to
rr4/s)ts gives, in the coordinate space, the familiar
Dirac equation for a particle in a Coulomb field.

The advantages of Eq. (2) are: first, it contains the
eigenvalue parameter 3f linearly; second, it is mani-
festly covariant; third, it can be handled, in principle,
by the same methods as the usual one-body Dirac
equation; fourth, it can readily be extended to many-
body problems.

In a forthcoming paper, Eq. (2) will be discussed in
more detail, and higher-order equations for p(x) will

be considered.
' E. E. Salpeter and H. A. Bethe, Phys. Rev. 84, 1232 (1951).
s M. Gell-Mann and F. Low, Phys. Rev. 84, 350 (1951).' W. Macke, Z. Naturiorsch. 8a; 599 (1953).
4 S. M. Dancoff, Phys. Rev. 88, 382 (1950).
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' 'T has been pointed out by Wolfenstein that triple-
~ ~ scattering experiments can give information beyond
that obtainable with simple double-scattering polar-
ization measurements. The difference between these
varieties of experiments can be stated as follows: in a
typical double-scattering experiment a polarized beam
is incident on a hydrogen target and the intensities of
the scattered protons in various directions are measured,
whereas in a triple-scattering experiment the change in
the state of polarization caused by the scattering on
hydrogen is measured.

and

dtr(p) =d'p/E " E "=(Q p'+))tiv')&

Using nonrelativistic notation, iver( p)=x(p)/Eo~, —
and working in the center-of-mass system (P'=P'

where

yoyr+y"go= —2go", g = —1, Qiv(p) = (rrt p„qo)&/2rrttr, —

x(p) is defined by

4o(x) = (2)r) & exp[ipx/X(p)da(p),
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FIG, i. Scale drawing of targets and counters for measurement
of the depolarization parameter D. Target 1, a beryllium target
inside the cyclotron, is not shown in this figure.

The two simplest independent cases are those in
which the triple-scattering experiments are performed
as indicated schematically in Figs. 1 and 2. In the con-
figuration represented by Fig. 1 all the scattering
processes occur in the same plane and, in an over-
simplified schematization, one measures the probability
of Ripping the spin in the collision occurring at target 2.
Targets 1 and 3 act as a polarizer and analyzer, respec-
tively. The asymmetry e3„observed after the scattering
on target 3 is connected with a coeKcient D (for
depolarization) defined by Wolfenstein as

es„——Ps(Ps+DPi)/(1+PiPs), (1)

where P; is the polarization generated by scattering an
unpolarized beam on target i.

Figure 2 represents the triple-scattering experiment
in which the second scattering plane is perpendicular to
the first. The scattering on target 2 rotates the spin in
a complicated way and by analyzing the polarization
by scattering on target 3 we find the component of the
spin P, in the direction e3 perpendicular to the plane x".
The asymmetry after the scattering on target 3 is
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FIG. 3. Depolarization factor D plotted against center-of-mass
scattering angle 8 for proton-proton scattering at 310 Mev.

given by
e3, ——PgP3R,

which defines the rotation parameter R.
The experiments have been performed by use of the

polarized beam of the 184-inch Berkeley cyclotron and
will be described in a later paper. The average energy
of the protons incident on target 2 was 310 Mev in the
laboratory system and their polarization was 0.74.

Figures 3 and 4 give graphs of D and R as obtained
in our measurements. The differential cross section /0,
the polarization P, R, and D are connected with the
elements of the p-p scattering matrix as indicated by
Wolfenstein' [Eqs. (3) and (5)).

The information obtained from our investigation
should be sufficient to determine the phase shifts of
the various partial waves up to and including Ii waves.
Expressions for the observable quantities in terms of
the phase shifts have been obtained by Stapp' and the
numerical calculation with an electronic computing
machine has been initiated.

The two varieties of triple-scattering experiments
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FIG. 2. Perspective drawing showing the orientations of the
successive scattering planes in the triple-scattering experiment to
measure the rotation parameter R. The positions of targets 1, 2,
and 3 are indicated by spheres 1, 2, and 3. The plane of scattering
at target 2 (indicated x') is perpendicular to the plane of scattering
at target l{~). The plane oi scattering at target 3(s") is per-
pendicular to the plane ~'. The figure is not to scale.
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Fro. 4. Rotation factor R plotted against center-of-mass scattering
angle 8 for proton-proton scattering at 310 Mev.
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discussed here have in common the property that,
(a) the beam incident on the second target is polarized
perpendicular to the direction of incidence, and (b) the
direction of analysis of the polarization is perpendicular
to the scattering direction. Other independent triple-
scattering experiments would involve auxiliary mag-
netic fields that would alter in a known fashion the
relative orientation of the directions of the beam and
of the polarization.

*The contents of this letter were presented at the 1954 Winter
Meeting of the American Physical Society (Berkeley, December,
1954).

t This work was performed under the auspices of the U. S.
Atomic Energy, Commission.

r L. Wolfenstein, Phys. Rev. 96, 1654 (1954).
H. P. Stapp, University of California Radiation Laboratory

Report, UCRL-2825 (unpublished).
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Fin. 1. o& ss mass number A (best 6t). The curves E, F, and 1I
are based respectively on our formulas (2)—(2d), the Fernbach-
Serber-Taylor theory (uniform), and Heckrotte's theory (para-
bolic distribution). R=roAs)&10 " cm, where r0=1.36 for the
curve Ar and F. The values of E (in 10"cm ') for the curve $(E)r)
are given in Table I, and for the curve F the value of E'(A)p) is
taken to be 0.33. For the curve H Heckrotte's values were used:
ra=1.6, 110=0.32, and k1——0. The dots are the experimental
values (reference 4).
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fact that for incident neutrons E/E=(34+24) mb/
24mb=2. 4=2 permit us to determine the following
analytical formulas.

o g 7rR'(2 T.——Ts+ (1——y') '(T—,+Td)/2), (2)
where the outer zone gives the term T~ and the core
gives the other terms. In the limit of y~1 (uniform
distribution), T, gives the well-known F-S-T formula,
while the other terms vanish. 0-, and 0-~ will not be
considered here. The complete expressions for the terms
in (2) are too bulky to be listed here. High-energy
neutron scattering experiments show that the total
cross sections are nearly constant for the energies con-
sidered; hence, we may put k&=0 in our present
analysis. With this simplification, the formulas are as
follows:

T =4(ER) '{[1+-,'(1—y')&ER]

Xexp[ —-', (1—y') E'ER]—[1+-',(1+y)XR]
Xexp[—-,'(1+y)~ER]), (2a)

Ts= 16(ER)—'f 1—[1+—,'(1—y') 'ER]
)&exp[—-', (1—y') E'ER]), (2b)

exp[ —-', (1—y') IER]
2(1—~s) I

1 ER

i(1+ )' 2(1+ )

(ER)2 t$()+y) EcR

Td- J,,(, „.)&,

exp[ —-', (1+y)ER], (2c)

(2d)(e
—

/a)Ch.

'HE model of Johnson and Teller ' which deals
with the neutron and proton distributions in

nuclei, requires direct experimental evidence, which
should be possible by using suitable probe particles.
Courant' overed the first method to determine its
reality from the interactions of high-energy pions with
Pb nuclei. His proposal, however, has not been verified
experimentally.

This report gives evidence for the Johnson-Teller
(J-T) type model from the analysis of the total cross
sections for scattering of high-energy neutrons (275—410
Mev). The experimental data in these regions do not
agree with the Fernbach-Serber-Taylor' (F-S-T) theory
as discussed by Nedzel, 4 who suggested that the difIi-
culties originate from the assumption of uniform nuclear
densities in the usual models. The author has extended
the optical method of F-S-T to the J-T type non-
uniform nuclear model, and derived the corresponding
formulas for 0-&, 0-„and Od for the neutron scattering.
The division of a nucleus into an inner zone with radius
R~ and an outer zone extending to the whole radius R
is the same as that of Courant. We use the usual nota-
tion of the optical model, with quantities in the inner
and outer zones described as E, k~, and K, ki respec-
tively. Putting Ri/R = (Z/1l'/) '*=y, we will define

K=C((r „+o„„)3Z/47r(yR)s,
E=Co „„3(1V Z)/47rRs (1 ys), — —(1)

whereas in the usual F-S-T theory E is given as
Es C(Zo„„+1Vo„„)3/4=7rRs. C is a common factor
(independent of elements) of order unity, which reflects
the character of many-body problems and upon
the basic structure of the optical model itself. The


