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Structure of the Scattering Matrix*
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It is shown that in field theory the structure of the scattering matrix for a certain variety of processes,
such as those between a meson and a nucleon, a photon and a charged particle, etc., can be analyzed making
use of relativistic invariance and microscopic causality. General formulas have been obtained which enable
one to express scattering matrices for real as well as virtual processes explicitly by means of a parametric
representation. The ideas are closely related to those which have been used by several authors in the analysis
of the Green's functions for interacting fields.

I. INTRODUCTION relativity and causality more thoroughly than has been
done so far, and try to get more detailed information
on the nature of some scattering matrices in field theory,
such as that between a nucleon and a meson. This is
made possible by virtue of a convenient formula which

expresses the scattering matrix as a product of two
operators in the Heisenberg representation at different
space-time points. Relativistic invariance and the
causality condition, which demands commutativity of
the two operators outside of each other's light cone,
then enable one to write down the general form of the
matrix element as a parametric integral representation
involving certain unknown functions.

This phase of considerations is closely related to that
concerning the so-called Ap' or Sp' functions which,
originally introduced by Dyson4 and Schwinger, ' and
studied along an interesting line by Kallen and
Lehman, ' are fundamental in the current quantum
field theory. In fact, the present results may be in-

structive not only as a theory of the scattering matrix,
which has direct bearing on observation, but also for
throwing some additional light on the fundamental
character of quantum field theory.

Although we shall not attempt here any application
of the results to particular problems, a brief discussion
of their physical significance will be made in the last
section.

~ ORMAL aspects of scattering matrices, apart from
the dynamical characteristics of the individual

cases, have been studied extensively. Generally speaking,
a scattering process may be described either by means
of the S matrix of Heisenberg, or by means of the E
matrix of Wigner, and each has its own advantages as
well as disadvantages. In nonrelativistic quantum
theory of nuclei, the latter has proved of great use,
while in quantum field theory the former has mainly
been exploited so far. It remains to be seen whether an
E matrix formalism can be developed successfully in
the relativistic case. '

The structure of these matrices is restricted a priori
by various formal requirements which reflect the
structure of the underlying theory. In Geld theory,
relativistic invariance and invariances under other
transformation groups must be imposed. This has been
widely utilized in analyzing the S matrix. Another
remarkable and important requirement is causality,
which also seems to be a fundamental property of our
physical world. Recently, Gell-Mann, Goldberger, and
Thirring' have applied it to the scattering of p rays by
charged particles in field theory with interesting con-
sequences of practical use.

Like relativistic invariance, causality in the present
field theory may be called microscopic causality, in the
sense that two simultaneous measurements at different
points (on a space like surface) should not interfere
with each other, however close they may be. This
enables one to draw some conclusions on the analytic
behavior of the scattering matrix as a function of energy,
which expresses itself by a relation between absorptive
and dispersive parts of the matrix elements of different

energies, a relation obtained by Kramers and Heisen-
berg' a long time ago.

The purpose of the present paper is to exploit bot

II. DERIVATION OF THE SCATTERING MATRIX

Formal but exact expressions for certain types of the
scattering matrices, such as that for the scattering of a
gamma ray by a particle, have been obtained recently

by several authors. ' Indeed this can be done in various
different ways, either by using perturbation theory
explicitly or without it, but leading essentially to the
same result. Since our purpose is to study the structure
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p&n —1

(dx„)H;,(xi) H;„„(x.)

=P exp i —H; i,(x) (dx), (2)
—00

where (dx) =dxdydsdi —and A= c= 1. P stands for the
time-ordered product of the operators. The matrix
elements for the meson-nucleon scattering can be ob-
tained from the expression

limF p(x, x') —= lim (+g,P(S,q (x), happ(x'))+. ). (3
t —++ oo

&~ —+ —oo

+, and %f are the initial and final states of the nucleon
(without the meson interaction) which we assume to be
realized at 3= —~ and t=+~, respectively. Taking the
limits indicated in (3), we get the initial and final states
of the combined system of a free meson and a nucleon,
since ip(x) operating directly on 4' creates one meson
states.

The expression (3), being of the typical time-ordered
form, may be converted into the so-called normal form:
we divide p(x) into creation (negative frequency)
part ip (x) and annihilation (positive frequency) part
p+(x), displace them all the way to the left and right
of S, respectively, and avail ourselves of the relations
@+4' =Sfy =0.7 Knowing the structure of S, this can
be carried out without difhculty, and one arrives at the

~A convenient formula for this procedure is given in Y.
Kinoshita and Y. Nambu, Phys. Rev. 94, 598 (1954), Appendix.

of such scattering matrices, it may be appropriate to
show the derivation of the starting formulas more or
less in our own way.

As an example, let us consider the scattering of a
pseudo-scalar meson by a nucleon. Ke assume that the
latter can be described by the Dirac spinor field which
may interact with any other fields in addition to the
meson field under consideration. In order that the
theory yield meaningful results in the current field
theoretical sense, however, it is further necessary that
the fields and interactions be of the renormalized type.
Understanding this, we shall assume that the meson-
nucleon interaction is given by the interaction Hamil-
tonian:

3

H;„i —Q gigv——sr Pip'„ (1)
a=1

where f and P are the nucleon field operators, y the
meson field operator, and the ~ are the conventional
isotopic spin matrices.

In order to pay particular attention to this inter-
action, let us take an interaction representation in
which the entire Hamiltonian has been eliminated
except for the above part, Eq. (1). Then we construct
the S-matrix which describes the meson-nucleon inter-
ation only:

S=—S(~, —~)=P(—s)" (dxi) (dxs). . ..=s ~ „J

following result:

F.p(x,x') =h.pAp(x x'—)+ t) Ap(x —y)Ap(x' —y')

y1+„P1 s, —i(
~~-(y)

5H;„, )i, I@. 1(dy) (dy )
siop(y') & )

=~.p~, (x—x')+
~

t ~, (x—y)~, (x'—y')

&&(+~ P(S, gled
—-4(y),

g4»r—A (y'))+-)(dy) (dy') (4)

Ap is the Feynman propagation function for the meson.
In the limit t~+oo, t, +~, the—hp's describe the
propagation of real meson waves in the wave zone.
Omitting the first term corresponding to the direct
propagation without interaction, the scattering matrix
for a meson of four-momentum k„, isotopic spin P to
that of four-momentum l„, isotopic spin n is obtained as

f
M.p(l, k)= e"*'e " (dx)(dx')M p(x,x'),

J

apart from some trivial factors.
We can convert M p(x, x') into a form which looks

more useful for our purposes. The ordered operator
appearing in Eq. (5) is in the mixed representation, one
side being referred to t= —0o, and the other to t=+ ~.
A Heisenberg representation (referred to t= —oo) will
be obtained by writing

M p(x, x') =(S '4'g, S 'P(S, gPysr P(x),
gled rA (x'))+.) (6)

Since +f is a stationary state of the nucleon, however,
S %f—0 f apart from a phase factor which may be
neglected. ' On the other hand, it is easily seen that

S 'P(S, gPysr. P(x—), gPysrpP(x'))

S(—~, ~)$(~,x)ggysr. g(x)$(x,x')

y g~,«P(x'), S(x', —

S(—~, ~)S(~, x')gPy, ryk(x')S(x'x)

&(gPysr P(x)$(x, —~), t (t'
-S(—0o, x)gPysr P(x)S(x, —~)S(—~, x')

ygPpsrpP(x'), S(x', —~), t& l'

S(—"x')g4»rp~t(x')S(x', —~)$(—~, x)

Xgy, r.y(x)S(x, —~),
=P(gars~-0(x) g4Vs~pC(x'))

Actually the phase factor is to be removed by renormalization
as stated below.
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vrith

Qys~ Q(x)=S(—oo, x)pysr tp(x)S(x, —co), etc. (7)

The boldface operators are in the Heisenberg repre-
sentation which coincides with the interaction repre-
sentation at t= —~. The last condition, however, is
irrelevant, and we can write in general:

M s(xx')=(~'f P(ger & 0(x) get ~p(x'))C') (8)

with the C's being the rigorous Heisenberg state vectors
for the nucleon including the meson interaction.

In the above derivation the problem of renormaliza-
tion has been omitted. In order to take account of it,
we would have to start from a renormalized Lagrangian':

I int gZls4' ts&aiPpa+ sZ85ti pa'pa

+ZsbmiPP+)F4(y y )' (9).

since
= expL —i(p —q)„a„]M,

P. I p;&=p. l p;&, P.lq, t&=q. lq, t&

(13)

(2) Under a homogeneous I.orentz transformation R:
x„—+y„=P, c„,x„without time reversal, the state
vectors transform contragrediently to the operators, so
that

I p,s)~RI p,s&=p, eC„Ic„.p„t)

=elRp, Rt&,
(14)

A (x)~RA (x)R '=+pe'C pAp(c„„x„)

=.'A,.(Rx),

where I'„ is the energy-momentum operator of the
total system. 3f transforms accordingly as

M+M'=(q, t
I
exp(iP„a„)A (x)A p(x') exp( —iP„,a„) I p, s)

where C, ~ and C p are the spinor or tensor transforma-
tion coeKcients corresponding to E; e and e' are the
intrinsic parities which take the values &1 or &i (the
latter is possible in case of spinor quantities). It follows
then that 3f transforms under R as

The eBect is that we can eliminate all the infinities and
interpret the masses and the coupling constant as the
observed ones in the actual calculation of Eq. (8) by
means of perturbation theory. Since, however, we are
not primarily concerned with such explicit calculations,
but rather interested in finding out the general structure
of M, we shall simply use Eq. (8) supposing that the
renormalization has been carried out.

The results obtained in this section can be extended
to other scattering problems such as the scattering of
l ight by charged particles.

M (s)~M'(.) = (qt I

R-i RA. (*)A, (*')R-'R
I ps)

4 =aM(Rs) =M(s), (15)

with s standing for all the arguments appearing in 3f.
In other words, if we denote by N„v&, n, mp the unit
spinors or tensors representing the direction of polari-
zation of the state vectors and operators, M is a scalar
or pseudo-scalar quantity made up of p, q, x, x', I, e, e,
and m. Especially it must be linear in each of the
polarization tensors u, v, I, and nt in view of Eq. (14).

(3) Other invariances. If the theory also is invariant
under other types of transformations such as gauge
transformation, charge conjugation, or isotopic spin
transformation, they must be reflected in the nature of
3f in a similar way. It will not be necessary to enter
into details here.

(4) Causality. Apart from the invariance under
various transformation groups, the conventional field
theory requires another property which may be called
(microscopic) causality. We use the term here in a
well-specified sense that two measurements at spatially
separated points do not interfere; or in other words, a
disturbance in the space-time does not propagate faster
than the light velocity. This entails the property that
two Heisenberg operators at space-like points x and x'
commute (or anticommute) each other except possibly
when x=x'." We shall call such operators local
operators.

' Rigorously speaking, not all Hermitian operators are physi-
cally observable. A spinor operator like P(x)+P (x) cannot be an
observable quantity. LE. P. Wigner, Z. Physik 155, 101 (1952);
Wick, Wightman, and Wigner, Phys. Rev. 88, 101 (1952).g
However, we may modify the causality statement by saying that
two spinor operators should anticommute for space-like points.
In the following we assume that the A's contain even numbers of
spinor operators. However, extension to the general case is easy.

III. STRUCTURE OF THE SCATTERING MATRIX

According to the last results, the scattering matrix
(of a meson-nucleon system) can be obtained from the
quantity M defined by Eqs. (5) and (8). We want to
study in this section the general properties of expres-
sions of the form

M=(q, tl A (x)Ap(x')
I p,s). (10)

Here
I p,s) (or

I q, t)) is the eigenstate of a real particle
(fermion or boson) with the four-momentum p„(or q„),
spin and other internal coordinates s (or t). A (x) is a
local operator (defined below) at point x with spin and
other indices n in the Heisenberg representation.

From the requirements of the quantum 6eld theory
we know offhand that M should have the following
properties:

(1) Under the translation

ys =xi+au) xs ~ys =xs +as,

the operators A (x), As(x') are transformed according
to

A (x)~A (y)=exp(iP„a„)A (x) exp( —iP„a„),
(12)

A s(x') —+A s(y') =exp (iP„a„)A s(x') exp( iP„a„), —
' See for example, P. Y. Matthews, Phil. Mag. 62, 221 (1951);

J. C. Ward, Phys. Rev. 84, 897 (1951).
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We now define the following four quantities:

M, = (q, t
I {A.(x), A e (x') }I p,s),

Mp ——(q, t
I [A.(x), A, (x')]

I p, s),

Mp ——p (x—x') Mp,

1
p(x —x')= 0—1

M, =(q, t
I
P(A. (x), A, ("))I p,.&=-;M,+-;M, .

It is the consequence of causality that (a) Mp and M,
are zero if (x—x')') 0; (b) M, and M4 do not depend
on the choice of the time axis (except possibly for
x=x', which case needs special consideration). Thus all
these M's must share the invariance properties de-
scribed in 1. In addition, we note that (c) Mi, Mp, and
3E4 are symmetric, while 3f2 is antisymmetric, under
the simultaneous exchange x ~x' and u +-+P. Moreover,
if A and Ap are Hermitian, 3f~ and M3 are Hermitian
matrix elements, while M2 is anti-Hermitian.

We now go over to the momentum representation of
the M's and try to study their nature. For this purpose,
it must further be assumed that such Fourier trans-
forms really exist and are meaningful. It is not always
the case, however, for an arbitrary operator A (x) in
the present field theory. So we explicitly assume here
that the M's are such quantities that, at least after
renormalization, they are finite and have Fourier
transforms.

The Fourier transforms are as follows:

M, (k,l) 54(k —t+p —
q)

1
te "*e'" 'M;(x, x') (dx) (dx'). (17)(2-)»

The delta function on the left-hand side, expressing
energy-momentum conservation, is a consequence of
Eq. (13). We can define, therefore, three independent
vectors:

P= p(p+q), Q=—p—(p —
q) =2(t—k), K—=p(k+t);

p=P+Q, q=P —Q, k=EQ, /=K+Q,
' — (18)

of which only E will be regarded as variable. Further,
we get

(2~)4Mi, p(K)6'(k t+ p q)— —

=(q, t
I
A. (—t)A, (k)aA, (k)A. (—t)

I p, s)

=Z*((q,t IA-( —t)
I
s&(slAe(k) IP;&

(19)
~(q, t

I
Ae(k) I z&(el A-( —t) IP,s&),

A, (k)=) e'"*A (x)(dx), etc. ,

the summation being over a complete set of orthogonal
states; and with the aid of the formula

co e i8$0

p(x) =— P ds, (P=—principal value),
J712 ~ S

we have
1 1

Mp(E) =— bP(K —K')Mp(K') (dE'). (20)
~i " Ep—Kp'

Corresponding to (c), we observe that Mi, Mp, and M4
are symmetric, while M& is antisymmetric against the
change E + E,—n —~P.

Our main task is now to see the implications of (a)
and (b) on the nature of the Fourier transforms.
Equation (20) already suggests the dependence of Mp
on the time component of E. As a function of Eo, M3
should go to zero at most as 1/Ep as IEpl~pp if

,
I M, (r, t; r', t)Mp(Ep)dEp ——

(2~)'

&&exp (ilr+ikr')dy, y = r—r',

the integrand of which is- the commutator of two opera-
tors with equal times, is assumed to be finite. Naturally
M2(Ep) goes to zero more strongly than 1/Ep.

On the other hand, we have requirements of rela-
tivistic invariance for the M s, whereas Eq. (20) is not
an invariant expression since there enters a special time
axis which has nothing to do with the intrinsic nature
of the system. Thus we are led to expect that the frac-
tion in Eq. (20), which gives the Ep dependence of Mp,
could effectively be transformed into inverse poly-
nomials of the scalars EP, (PK), and (QE), and that
such inverse polynomials could be decomposed into
partial fractions of real values if considered as functions
of Eo.

To see this, it is convenient to construct the quan-
tities

Mg =3E2&3f3. (21)

( —~')a, (x) = —b4(x),

A~(0) =0, BA~(0)/Bt= ab'(r),

t(0 (23)

A~(x) =0 for
t)0,

and a„, b„are arbitrary vectors. The G's therefore share
the same property of being zero except in one of the
light cones. The Fourier transforms of the G's are

They have the property that M+ (M ) is different from
zero only in the future (past) light cone: t) t' (t') t).
The corresponding Fourier transform M~(Ep) can be
continued analytically into the upper (lower) complex
plane, and has no singularities there. Let us then take
the function

1
1 a

G+(x) =exp(ia„x„)
I

1+ b„ I 6+ i(~x),— (22)
i ax„

where 6+(x) is the retarded (advanced) propagation
function for a field with mass m:
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G~(k) = L1+ (b,k)) P
(k+a)'+m'

Him o(k+a)b((k+a)'+m') (24)

1+ (b, k)

(k+awiv))'+m'

with an infinitesimal time-like vector g pointing to
future (qo) 0).

Let 5K~ be a set of functions G(x) which are nonzero
only in the future (t)0) or past (t &0), and such that
G(ko) =0(1/ko) for ~ko~~oo. Then such functions have
the following properties:

(1) If G~(x) and G2(x) belong to 5K+, thenGo(x) =—aG~(x)
+bGo(x) also belongs to 9R+.

(2) If G~(x) and Go(x) belong to OR~, then Go(x)
—=J'G&(x—y)Go(y)(dy) also belongs to 5K+, and
Go(k) =Gg(k)Go(k).

The same is true for the set 5K . Since the function
(22) obviously belongs to FK and cannot be factored
further without impairing the relativistic invariance,
we may conclude that the set 5R+ can be generated by
elementary functions of the form (22) according to the
above rules (1) and (2). We further observe that

(k+a+ig)'+m' (k+a'wig)'+m"
fl

dxL((k+a+iq)'+m'}x

+{(k+a'&irt)'+m"} (1—x))—'

( 8 8
+ ~ ~

dxL(k+xa+ (1—x)a'+iri)'
&Bm' Bm") ~o

+x(1—x)(a—a')'+xm'+ (1—x)m"] ',
(25)

1

(k+aaiq)'+m' (k+a'+iq)'+m"

1(8 8
+ i dxl (k+xa+ (1—x)a'wig)'

2 ~ Ba~ Ba~ ) Lj o

+x(1 x—) (a a—')'+xm'+ (1 x—)m")
1tt' 8 8

+-~ +
~

dx(xa„+ (1—x)a„')
2 (Bm' Bm") "o

XL(k+xa+ (1—x)a'mid) o

+ x(1—x) (a—a')'+ xm'+ (1—x)m")—',

which enables one to reduce a product of two G~'s into
a linear combination of single 6+ s. Thus an arbitrary
function belonging to BR~ may always be expressed as

1
G(k) = ~ p&'&(m', a„)dm'(da)

(k+amid) '+m'

k„
+ — p„~"(m-', a„)dm'(da), (26)

(k+a+ig)'+m'

provided that we formally understand by the p's func-
tions of the variables m and a„with sufficiently general
character, including perhaps derivatives of delta
functions.

The integrand of Eq. (25) is not exactly of the form
Eq. (22) since the corresponding mass term x(1—x)
X(a—a')'+xm'+(1 —x)m" is not necessarily positive
definite. If it is negative, the corresponding G~(x) will
be superficially nonzero also outside of the light cone.
In the physical consideration below, however, it is
natural to assume that such a contribution does not
arise actually. This situation is related to the fact that
the representation (26) is not unique, a point which will
be discussed later.

In order to apply the above results to the case under
consideration, let us for the moment assume that there
are no spin or tensor variables involved. We have then
three vectors E, P, and Q available, on which the M's
should depend. Thus the vectors a„and p„must be
linear combinations of P and Q. It is then easy to write
down formulas for the M's explicitly:

t' t' t' pi(m', n,P)+po(m', n, P) (E,P)+po(m', n,P) (E,Q)
M+(K)=

~

dm'dndP. (27)JJJ (E+nP+PQ+ig)'+ m'

The p s are taken to be equal for both M+ and 3E, since otherwise it leads to inconsistencies as we shall see.
From Eq. (27) it follows that

Mo(E) =7r o(E+nP+PQ)8((E+nP+PQ)'+m')$pg+po(K, P)+po(E,Q))dm'dndP,

Mg(K) =~
4

8((K+nP+PQ)'+m') +~+p2(K,P)+po(K,Q))dm'dndP,
(28)

f f
Mo(E)=P ' Qg+Po(E, P)+Po(E,Q))dm'dndP,

(K+nP+PQ)'+m'
1. f

M, (K)= i- [Pg+P o(K,P)+Po(K,Q))dm'dndP.
(E+nP+ pQ)'+m' —io
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We see from this also that the second (first) term of
Eq. (19) does not contribute if (E+nP+PQ) s is positive
(negative), and so Mr=Ms (—Ms) accordingly. This
proves the formulas for Mi and M4 in Eq. (28). If we
took in Eq. (27) different p's for M~, we would get for
M2 an additional term similar to 3f3. The above argu-
ments rule this out.

(3) If we take a E such that (E,Q) =P k'=—0, then

In the last formula, e represents a small positive con-
stant.

In Eq. (28), Ms and Ms are the immediate conse-
quences of Eq. (27). Before proving the formulas for
M~ and M4, let us first note restrictions on the p's."

(1) In the first place, the symmetry properties (c)
require that

pr(ms, n,p) =pi(ms, —n, —p) =pi*(m2, n, —p),

p2(ms, n,P) = —ps(m2, —n, —P) =p2*(m2, n, —P),

p, (ms, n,P) = ps—(ms, n, ——P) = —ps*(m2, n, —P). so that pr and p2 are functions of P'. When this equation
is combined with Eq. (29), we then see that

(29)
(E+ P+Pe) +m'=K+2 (EP)+ P+Pe'+m'

7

(2) According to Eq. (19), Mi and M2 are zero for a
given value of E unless a real process is possible in the
intermediate state s, the energy-momentum of which is
either p+k=P+K or p /=P E—with —positive time
components, and each factor 8((E+ Pn+pe) +2m)2in
M2 of Eq. (28) should correspond to some such process.
Since, on the other hand, the particle considered is
assumed to be stable, the mass of the intermediate state
cannot be less than that of the initial state p. We have
thus two relations:

pi(m', n, P), ps(m', n,P) are real. (34)

For the particular case Q=p —g=0, which corre-
sponds to the forward scattering of real or virtual
mesons, 3E~ must be positive definite:

(2 )'M ~'(e) =E.C(PIA(-k) I )( IA(k) IP)
+(PIA(k) Iz)(zlA( —k) lp)) (35)

=Z*CI(PIA(k) lz) I'+ I(PIA( —k) lz) I') &o

This should hold for an arbitrary E=k, so that
(E+nP+PQ)'+m'= 0,

(PaE)2+fs2&0, Pp+Ep&0,
(30) f

~JJ Cpi+yps)ti((1 n')m—s+x+2ny)dmsdndP &0 (36)

which must be compatible with each other. From Eq.
(30) we get

p,
s ms+P' —(nP+P—e)'&2(E, (1&n)P&PQ) &0,

ol

p2 —m'+C(1 ~n)P~pe)'
a2(E+nP+Pe, (1an)PWPQ) &0. (31)

Equation (31) is satisfied for any possible E only if
(1&n)P&Pe= 0, or if E, E+nP+PQ, and (1%)P~PQ
are all time-like vectors with

&sgnEs=+sgn(E+nP+pe) =sgnC(1+n)P&pe),

and

for Q= 0 and any x and y.
The formulas Eq. (28) have been obtained on the

assumption that there are no spin or tensor variables
involved. In case there are such variables, we must con-
struct the p's with the correct transformation properties.
For example, in the case of Sec. 2,

A =gigysr f,
so that M p is a scalar, but we have four vectors E, I',
Q, and y„available; of course it must also depend on
the 7 spin. Thus we have

m+ {—C(1wn)P wpQ)'} ' &p, . (32)

Considering Eq. (29) and the properties of P and Q:
P2 —~2+Q2 &p2

we conclude that

&&{~-eCp+(E»)p +(EQ)p +(E»)p )
+r e[ps+ (E,P)ps+ (E,Q)pi+ (E,y)ps)}, etc. ,

(37)

I-I+ I pl(Q/"+e)&&1 (33)
1

r e= (r re rer ). — —
2i

FIG. 1. The lowest (second-) order
Feynman diagams for the scattering
process between a s meson (full line)
and a.x meson {wavy line).

"As was mentioned above, the p's may contain derivatives of
the delta function up to infinite order. But in order that the
Fourier transform M2 in Eq. (28) have no extraordinary behavior,
arbitrarily high derivatives clearly should not occur. We assuine
here that this is actually the case.

Scalars like (P,y) and (Q,y) have been eliminated by
means of the equation of motion for the free nucleon.

A little care is needed, for example, in the case of the
current operator for a scalar particle:

i eC q *(8„ieA„)—p (8„+ie—A„)y*te)—,
where A„ is the electromagnetic Geld. In this case the
commutators of the J„'s at the same point do depend on
the coordinate system, so that the previous invariance
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BEp BE 1 BE
+a„

Bb 2 Bup,

=0
7

BE„1BE„
P—(b'+ a') K]+a +— =0

Bb BfÃ 2 Buy

From this follows that if the p's are de6ned as

(39)

arguments cannot be applied directly, although the
gauge invariance enables one to overcome the dif-
ficulty. We will not go into details here.

In concluding this section, it seems appropriate to
point out that the representation Eq. (26) is not a
unique one. We first observe that the quantities

K= 1/—[(k+ a)2+bj, E„=k„K— (38)

satisfy the relations

should appear. Since, however, we have been treating
3E as a function of E only, and not of P or Q, such argu-
ments as these cannot be complete.

IV. CORRESPONDENCE TO PERTURBATION THEORY

It is not dificult to verify the preceding formulas with
the perturbation theory, at least in the lowest few orders.
To avoid unnecessary complications, let us take a
neutral scalar field q of mass p, interacting with another
neutral scalar Geld x with mass ~ according to the
interaction

Knt= g(p X

The quantity to be calculated is

~4=(vIP(g~'g~") I p)

BX B 1 Np
p = (b'+a') —+—(X„a„)——

Bb Bb 2 Bu„

BX 1 BX N,„
,+ +-

BR' 2 Bug Bb

where ) and )„are functions of u„and b, and if

),X„—+0 (41) so that

1 1
;g~l !(,(P+K)2+p~ jg (P—K)i—+p, 2

(43)

which describes, according to Sec. 2, the scattering of
a x meson by a p meson. The lowest order perturbation,
of order g', corresponding to the two Feynman dia-

(40) grams in Fig. 1, gives immediately
"'(0+k)+~ '"'(p f)3

uniformly on the boundary of the domain of u„and b,
then Eq. (26) is identically zero after partial integra-
tion. In other words, the p's are indeterminate to within
arbitrary additive functions (40) with the condition
(41). Thus the restrictions found before for the p's
should not be interpreted as necessary consequences of
the representation (26), but rather as a specification to
a certain extent of the "gauge" by means of physical
considerations. The precise meaning of such a "gauge"
transformation is not clear. It may also be suggested
that this freedom could be used to eliminate one of the
p s explicitly, but it is not clear whether we can in gen-
eral satisfy the boundary condition (41). It should fur-
ther be noted that Eq. (39) implies

B B
/K=/K„=0, g—=Q +4b

Buy Bb

so that each of the p's by itself is not unique either.
On the other hand, the degree of freedom of a scat-

tering matrix can be checked easily. A scattering matrix,
which is a complex quantity, depends in the spinless
case on three parameters: total energy, relative mo-
mentum, and scattered angle if we let the mass of the
scattered particle be arbitrary; if we let both the in-
cident and outgoing particles be separately arbitrary,
we need four parameters. In the 6rst case we have
(K',Q)=0, so that 3I4 in Eq. (28) contains two real
functions pi, p2 of three parameters m', n, and P; this
is reasonable. In the latter case, we have a greater degree
of freedom, and it is natural that a new function p3

pi (2) ~ g~$ (~'i —p2)$ (1 —
I
~

I )b (P) p2
(~)

p3
(&) —0

In the fourth-order approximation, there are eight
corrections to each of the second-order diagrams, which
are classified into 6ve kinds in Fig. 2.

(a) Represents the self-energy correction to the
initial or final meson line, which amounts only to the
renormalization of the amplitude.

(b) Is the self-energy correction to the intermediate
meson-line. This can be obtained by replacing the
Az-functions in Eq. (43) by the modified ones Az'. As
has been shown by several authors, ' Dp' has the
structure

aors

1
A&'(~~ (PWK) = —i, p(nP)dm',

4 (PWK)'+m' —ie

which is also clear from our present argument. Thus, for
this part,

p~"'=f(~')b(1 —l~ l)b(P)»"'=»"'=o (44)

FIG. 2. Typical fourth-order corrections to one of the lowest order
diagrams.
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where f(m2) may be calculated in the g4-approximation.
(c) Is the self-energy correction to the incident

g-meson line. This can a~ain be obtained by multi-
plying Eq. (43) by

k +K
(k2+K2) A~ ~.) (k) I P (2222) d18".2 k2+2222

Now

The correction to the outgoing p line is obtained by
replacing Q by —Q. Hence

Pi '"—— f k' 42'—P' 22—2'+ ((1+ I P I)'—42')Q')
8m

8 8—
I 2+I~I -+(&+III) I f (~', l~l, f&l),

(P~+)2+p2 k2+ 4i22 (P~ it)2+~2 (g Q)2+ 2222

1 (222 42 44

f =~(1
I
~I ——

I& I) ~.l I, (43)

dx
{xl (p+&)'+P']+ (1 x)l (&—e)'+222']}'

dx
~ p ((K+xP (1—x)Q—]'+xpy2+ (1—x)m2)'

p2 (4) —pe (4) —0)

which satisfies the inequalities (32) and (33).
The corrections (d) and (e), although more com-

plicated, can be calculated in a similar way. We give
below only the results.

g' rl 1
Mg(4) =i +similar terms (dt),

(22r)' J I ((p I)'+44') —[(p t+k)'+—I4 ](t +K )[(p+k) +~ ]
g 1

+similar terms (d(),
(2~)4~ ((P—&)2+~2)[(P—&+k)'+42]l (q —&)'+4'](t'+K)

t'g'l 5'(2242 —f4 (n,x,y) )»4"'=
I

—
I

~(1—l~l- IPI) i
i' dxdy dxdy,

~p ~p (1—x)(1—y)

(1—lnl)x ( lnl 1 x
fp(»xy)=2(1 l~l)e'+ K'+ 1+(1 I&I)I 1— + +

(1—x) (1—y) 1—x 1—y y(1—x) &

1t'g')' ds
4i."'=-I —

I e(1—l~l —IPI) i
&'(~'—f.(~,x,y)),

2 &4~) (1—s)'

(46)

p
(4) —

p
(4) —0) x&0

8(x) =
0 x=o.

p2 and p3 have been found to be zero in the present
example. This is due to the special choice of the inter-
action, and may not be a general rule. Indeed, if the p
and g fields interact with another spinor 6eld f through
a Hamiltonian

fiA'&+f24'X

there will be a contribution to the scattering from
diagrams represented in Figs. 3, and p2 and p3 will not
be zero since the nucleon propagation functions contain
momenta also in the numerator.

The eGect of the renormalization has not been dis-
cussed so far. If we do not carry out renormalization,
what happens is that the p's get multiplied by the
renormalization constants Z introduced in Eq. (9), and

also in general a (divergent) constant term must be
added to 3II2 and M4 of Eq. (28), which makes our
causality considerations invalid. In the present ex-
ample, this occurs in the case of the diagrams in Fig. 3.

V. DISCUSSION

The present results are of interest for two reasons.
First, we see the general structure of certain types of
the scattering matrix in an explicit form. Second, it is
an extension of the work developed by Kallem, Lehman,
and others' who studied the structure of quantities

(47)

where the matrix element is taken with respect to the
vacuum rather than one particle states.
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As a theory of the scattering matrix, we can compare
the results with the dispersion relation of Kramers and
Heisenberg' between the real and imaginary com-
ponents of a scattering matrix:

I l
I l
I l
I l

Oe

l
I

I

2(o' t "d(u' Im(M((u')]
Ret M( )—M(0)]= P —,(48)

1P ~O M (0 —M FIG. 3. Scattering of two mesons through an intermediate
spinor 6eld indicated by broken lines.

where M(co) is the forward scattering matrix of a real
particle as a function of the energy co. If we put, corre-
spondingly, in Eq. (28): The implication in field theory is, among other things,

that renormalization is necessary not only to secure
convergence, but also to satisfy causality. For the
imaginary part of the radiative corrections to a process,
which simply corresponds to the occurrence of a new
reaction, is finite at least in the lowest order, while the
real part is divergent and indefinite. Since causal'ty
implies a definite relation between the real and imagi-
nary parts, we would get inconsistencies without renor-
malization. It also suggests that the infinities could also
be disposed of by the causality requirements, which
really seems to be the meaning of Lehman's procedure
of calculating renormalized quantities.

One of the limitations of our results is that the scat-
tering matrix is considered as a function of one variable
vector E only, so that the p's still depend on P and Q
in an unknown way. But now that the general method
of approach has been found, it does not seem too dif-
ficult to get the complete information about the scat-
tering matrix insofar as it can be obtained without
actually solving the equations of motion. Also this
would enable one to discuss a wider variety of matrix
elements involving products of more than two Heisen-

berg operators.

0= &—i =O &'= &'= —~'= const) (49)

and regard it. as a function of (P,E)= —p~ (in the rest
system of the scatterer), then it is easy to see that each
integrand,

)
n P +m —z —2npu ie —n P'+m ~ +2npcv ic—

satisfies Eq. (48) separately.
Our formula thus gives more information about the

scattering matrix in that it is not restricted to the
forward scattering of a real particle, and is in an
explicit form. On the other hand, it must be admitted
that this has been achieved at the cost of stronger
assumptions on the properties of M. For one thing, the
nature of the functions p is actually not clear. The same
seems to be true in the case of Eq. (47), although the
derivation there looks simpler and more convincing.

It may be stressed, on the other hand, that only
causality and the transformation properties of the
system have been utilized in deriving the results. As
long as these conditions are satisfied, the formulas
should apply to any system.

As a formula for the scattering matrix, its use may
perhaps lie in that it gives some insight into the relation
between real and virtual processes. One may also be
able to determine the scattering matrix or the p's by a
method other than the perturbation method.
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