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Using a second metric tensor p„,as proposed by Rosen, Gupta's
supplementary condition for the gravitational field (which has the
form of De Donder's coordinate condition} is written in general-
covariant form. This supplementary condition appears to be of
physical importance because of the use made of it by Gupta in
the quantization of Einstein's gravitational field. This physical
significance of the supplementary condition singles out a manifold
of coordinate systems, which contains as sub-manifolds in6nitely
many metric spaces each allowing only "Lorentz transformations"
leaving the y„„constant. A particle is called "at rest" if it is not
accelerated with respect to some of these "Lorentz" frames.
Although the p»-metric may be important in the formulation of
the quantum theory of gravitons, it does not enter in the line
element describing the results of physical measurements of time
or distance, which are described by a line element containing as
metric the gravitational tensor g„„,so that space, Oat with respect
to hypothetical measurements by unrealistic rods keeping their

y-metric length on displacement, is actually found to be curved
by physical measurements by realistic rods keeping their g-metric
length on parallel displacement.

The static spherically symmetric gravitational 6eld g„„ in
empty space around a singularity "at rest" is 'obtained in terms
of conventional polar coordinates in its "Lorentz" rest system, in
a form satisfying the supplementary condition. A simple relation
is established between this new solution and the Schwarzschild
solution for this static central field. The radial coordinate p used
in the Schwarzschild solution, which is a convenient variable in
the discussion of planetary motion, divers by a constant from the
polar coordinate r in the "Lorentz" frame in which the point
source of the 6eld is at rest. Neither r nor p is equal to the radial
distance R measured from the point source. If a picture of space
is made on the y scale, then space has holes where masses are
located. ("Swiss-cheese" model of space. ) This fact may be helpful
in eliminating divergencies of 6eld theory.

1. COVARIANT FORM OF THE SUPPLEMENTARY
CONDITION

' "N his papers on the quantization of the gravitational
-- held, Gupta' ' has stressed the importance of im-

posing the supplementary condition

BA" —Q

on the contravariant gravitational tensor density. 4

Here, 8„=—ct/Bxv, and

g"" = g&"(—g)'*; g = Det(g „) = Det(g""). (2)

Since the Schwarzschild solution for the static field
around a point mass at rest does not satisfy the con-
dition (1), it is of interest to investigate in what way
the conventional expression for the gravitational field
around such a point source is to be modi6ed in order
to satisfy the supplementary condition imposed by
Gupta.

This condition (1) in form is identical with the coor-
dinate condition suggested by De Donder, ' and used

by Papapetrou' in deriving a new form for the gravi-
tational equation. Its importance for creating a simi-
larity between the formulas of the theories of gravita-
tion and of electromagnetism was 6rst suggested by
Gupta. ' '

As the condition (1) apparently is not generally
covariant, it singles out a category of coordinate
systems in which it is valid. In one of these coordinate
systems, ~ we introduce a symmetric tensor p„„, which
in this chosen coordinate system shall have the com-
ponents

happ
= 1, p&s = 8&, (tt = 0,1,2,3; k = 1,2,3). (3)

We call this tensor the y metric or "Rat-space metric. "
We also follow Rosen' in defining in every (arbitrary)
coordinate system the "Qat-space Christoffel symbols"

-r
Fa, av = s (cia'yva + r)vVaa c)aVav)v

where y" is de6ned by

* Publication supported by the National Science Foundation.
' S. N. Gupta, Proc. Phys. Soc. (London) A65, 161 (1952).
s $. N. Gupta, Proc. Phys. Soc. (London) A65, 608 (1952).
s S. N. Gupta, Phys. Rev. 96, 1683 (1954). I thank Professor

Gupta for letting me read this paper before its publication.
4Di6'erent methods of quantizing the gravitational 6eld, in

which no such condition need to be imposed, were developed by
Bergmann and collaborators, and by Pirani and Schild. However,
since in those papers an interpretation of the commutation rela-
tions or an expression for the quantized fields in terms of anni-
hi1ation and creation operators is not given, an application of
those quantum theories of gravitation as yet is not directly
possible. See P. G. Ber mann and J. H. M. Brunings, Revs.
Modern Phys. 21, 480 1949); F. A. E. Pirani and A. Schild„
Phys. Rev. 79, 968 (1950);87, 452 (1952); P. G. Bergmann et al
Phys. Rev. 80, 81 (1950).' T. De Donder, La Grasifiqae E&ssteirijerirte (Gauthier-villars,
Paris, 1921).

Then, the quantities

gXo( g gXs + Fx gas + Fv gxa Fa gxo ({))

will form a tensor under general coordinate transforma-
tions. This "covariant y differentiation" of the tensor
density g~& has the same form as the usual covariant
derivative of such a tensor density, except for the use

e A. Papapetrou, Proc. Roy. Irish Acad. A52, 11 (1948).
~ The arbitrariness introduced by this choice of coordinate

system is discussed in the next section.
s N. Rosen, Phys. Rev. 57, 147 (1940).' We write g", I "„„etc., in boldface because we use g"" for

raising indices without change in print.
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of the flat-space Christo6'el symbols F"„„instead of
the gravitational (curved-space) Christoffel symbols

X
defined by

where
[P&)&j = s (~sgva + ~agua Bagsv))

We form the covariant y-divergence

gkv —g Axv + gnppx (9)

In the special frame of reference in which y„„was first
introduced, the I'~

p by (4) with (3) obviously vanish.
Because in this same coordinate system also (1) was
assumed to be valid, we obtain for Gupta's supple-
mentary condition Papapetrou's covariant expression"

gXv 0 (10)

The category of coordinate systems in which (1) is
valid therefore are those for which the last term in (9)
vanishes. Apparently this term does not vanish in polar
coordinate systems. Therefore, we shall have to use (10),
and not (1), when we want to apply the supplementary.
condition in a polar coordinate system as usually is used
in expressing the gravitational field around a point mass.

2. GAUGE MANIFOLD OF THE THEORY OF
GRAVITATION

In the preceding section we have defined the tensor

p„„by giving its components the special-relativistic
values (3) in one selected frame of reference in which
the gravitational tensor density A&" satisfied De
Donder's coordinate condition (1). By writing the
latter equation in the generally covariant form (9), all

restrictions on the coordinate system could then be
dropped, and Eq. (9) could be interpreted as a covariant
supplementary condition imposed on the tensor density
A&" in combination with the tensor field p„„and quan-
tities derived from the latter.

The special coordinate systems for which De Donder's
coordinate condition is valid can then be characterized

by the property that in these frames of reference

AaP~X 0

Since the 1"
p form no tensor, this equation is not

covariant: while it is satisfied in the special frame of
reference selected for defining y„„by (3), it will not
hold in general after an arbitrary coordinate trans-
formation. It will, however, remain valid after appli-
cation of any coordinate transformation from the group
of transformations that leaves (11) invariant. We shall

call this particular group of coordinate transformations
the "coordinate gauge group. " The collection of coor-

' Reference 6, Eq. (29b}.

dinate systems obtainable from our original especially
selected one by means of coordinate gauge transforma-
tions we shall call the gauge munifotd

There is a subgroup of the coordinate gauge group
of considerable interest to us."This is the "Lorentz"
group which leaves y„„ in its special-relativistic form
(3). Obviously this leaves the I"

p
= 0 and therefore

is part of the group leaving (11) valid.
The coordinate gauge group is much wider than this

Lorentz group. It allows transformation to a new
(primed) frame of reference, in which the I "' .p. need
no longer vanish identically anymore, while yet Eq.
(11), with primes, is valid at every point:

g
'~'r~' p. ——0.

In such a coordinate system the components p„, will
no longer have the simple values (3). On the other
hand, Eq. (1) with primes will still be valid, on account
of the primed equations (10), (9), and (11).This shows
that the flat-space metric tensor y (with components
y„„), and the "Lorentz manifold" obtained by our
Lorentz group from our originally selected coordinate
system, both were not unambiguously determined. We
might have selected the primed frame of reference as
the special one, in which a tensor y' might have been
defined in such a way that its components p'„„would
take the special-relativistic values (3). While this
would make y'„„=y„„, it would also make y'„„
W y„„, (thence, y'„„A y„„),so that the tensors y and
y', looked upon as "geometric objects, " are diGerent
from each other. The new tensor y' will then determine
a new Lorentz manifold, consisting of the primed coor-
dinate system and of all other "Lorentz frames" ob-
tainable from it by the Lorentz group that leaves the
components of y' invariant.

As the tensors y' and y were diferent, there must also
be a difference between the new Lorentz manifold (for
which the components of y take the special-relativistic
values) and the original Lorentz manifold (for which
the components of y took the special-relativistic values).
Yet, in all regards, the new Lorentz manifold is as good
as the old one, and the new y' is as good a selection of
a flat-space metric as the old y was.

This freedom in choice corresponds to what may be
called an arbitrariness of "gauge" of the gravitational

"We use here the word "manifold" in the meaning of "col-
lection of coordinate systems obtainable from each other by a
certain transformation group. " As the word "manifold" is often
used with a different meaning, maybe somebody can invent a more
appropriate name for such a collection of coordinate systems.

"Another subgroup of interest is the "one" group, of linear
transforrnations with arbitrary constant coefficients. It is the fact
that the gravitational Lagrangian density LEq. (2) of reference 37
transforms as a scalar density under arbitrary infinitesimal a%ne
transformations, that leads to the important Yolman relation
[R. C. Tolman, Phys. Rev. 35, 875 (1930), Eq. (7), and footnote
10 of reference 6g, on which the derivation of Papapetrou's gravi-
tational equation )Eq. (9}oi reference 3j is based. In the "affine
manifold" obtained by the aKne group from our initial frame of
reference, I "„„=0.A gauge transformation of y as discussed in
the text following Eq. (11')will be accompanied by a change-over
to a different affine submanifold of the same gauge manifold.
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field. There are two different ways of looking at the
transformation from one gauge to another.

The first point of view deals with the purely geometric
aspect of this transformation, and has the added ad-
vantage of showing a certain degree of analogy to the
gauge transformations in electromagnetic theory. We
first note that the gravitational metric tensor g (with
components g„„) is a geometric object with a well-
defined physical meaning, as in any given coordinate
system its components can be determined uniquely by
physical measurements. Similarly, the electromagnetic
field tensor F (with components F„„=—F„„) is a
geometric object with a well-defined physical meaning.
Therefore, these geometric objects g and P cannot be
tampered with in a gauge transformation. On the other
hand, in gravitational as well as in electromagnetic
theory we also introduce auxiliary geometric objects
which are subject to a certain arbitrariness and there-
fore may be submitted to gauge transformations. They
are the potential fourvector A in the electromagnetic
case, and the Oat-space metric y in the gravitational
case.

In the gravitational as in the electromagnetic case,
therefore, we may look upon a gauge transformation
as an alteration in an auxiliary geometric object.
Whether one wants at the same time to perform a
coordinate transformation is, from this geometric point
of view, completely irrelevant: Just as one can change
the gauge of the electromagnetic potential fourvector
without altering the coordinate system, we can alter
y„„ into y „„without introducing at the same time a
primed coordinate system. The p'„„must, of course,
satisfy the same covariant differential equation (10)
with (9) and (4) as the original y„„did. And, before all,
they must satisfy the second-order di6erential equations
which state that the curvature tensor derived from the
metric p vanishes identically. These conditions, to
some extent, are comparable to the condition, imposed
in electromagnetic theory, that the four-dimensional
divergence of the potential fourvector shall vanish also
after a gauge transformation.

However, in the gravitational case there is no relation
between the g and the y, comparable to the relation
between the field strengths and the potentials in elec-
tromagnetism; except for the relation (10), which is
considerably diferent in form.

In the second way of looking at the gauge trans-
formation of the theory of gravitation, one confines
oneself, before arid after the gauge transformation, to
coordinate systems taken from the Lorentz manifold
in which the Rat-space metric y takes the special-
relativistic value (3). Then, contrary to the electro-
magnetic case, a change of gauge of the gravitational
field necessitates a corresponding (non-Lorentz) coor-
dinate transformation, from a frame of reference be-

longing to the Lorentz manifold with the metric y in
special-relativistic form, to some coordinate system
belonging to the Lorentz manifold with y' in special-

relativistic form. " This coordinate transformation, of
course, causes a corresponding transformation of the
tensor components g„„ into g„„.On the other hand, it
leaves the new components y'„„of the new tensor y'
equa1. to the old components p„„of the old tensor p.
From this point of view, where one is not much inter-
ested in "geometric objects" and more in components
with respect to chosen coordinate systems, one therefore
says that the p„„matrix is left invariant, and that the
gauge transformation essentially consists of a non-
Lorentz coordinate transformation within the coor-
dinate gauge group admitted by De Donder's coordinate
condition, together with the corresponding tensor
transformation of g„„. This non-Lorentz coordinate
gauge transformation, from the old Lorentz manifold
to the new one, is for a given gauge transformation
determined but for arbitrary Lorentz transformations
which may precede or follow the coordinate gauge
transformation.

We have been very explicit on this point in order to
prevent a confusion of the tensor transformation of g„„
with corresponding coordinate transformation within
the coordinate gauge group, on the one hand, with the
gauge transformation of the geometric object the Aat-
space metric y on the other hand. The latter was
defined in such a way that the combined effect, of the
coordinate and tensor transformation stressed in the
second point of view, and the gauge transformation of
the geometric object p stressed in the first point of
view, is just to keep p'„„=p„„.

3. ASYMPTOTIC BEHAVIOR OF THE GRAVITATIONAL
FIELD, AND THE RESTRICTED

GAUGE MANIFOLD

There is one point which still needs clarification, and
this concerns the asymptotic behavior of the metric
tensor g„„.In proofs of the conservation of (matter plus
gravitational) energy, it usually is assumed that asymp-
totically (= for increasing spacelike distances) the
curvature of space tends to zero, and then it is postu-
lated that the coordinate system asymptotically shall
become a Lorentz system with special-relativistic value
(3) for the gravitational metric g„„."The total energy
and momentum then become components of a "free"
fourvector with respect to Lorentz transformations of
that Lorentz frame. The purpose of postulating a
Lorentz frame in the outer regions is for avoiding the
existence, in those regions, of gravitational energy or
momentum with respect to the frame of reference used,
as the existence of such energy or momentum in the

"As the Lorentz manifold is determined entirely and merely
by the geometric object p, and not by the potential fourvector A,
a similar restriction to a Lorentz manifold imposed in electromag-
netic theory does not necessitate a modihcation of this Lorentz
manifold after an electromagnetic gauge transformation, and
therefore electromagnetic gauge transformations even from our
second point of view need not be accompanied by a coordinate
transformation.

'4 See, for instance, C. Mttller, The Theory of Relativity (Claren-
don Press, Oxford, 1952), pp. 339—340.
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outer region would upset the proof of the conservation
of total energy and momentum.

As we selected, for our original definition of p„„by
(3), a frame of reference in which the laws of nature
supposedly took their simplest form, we may then
assume that the components of g„„just in that frame
of reference asymptotically will take the values (3)
wanted for the validity of the conservation laws for
total energy and momentum. That is, in this particular
frame of reference, g„„and p„„asymptotically become
equal. As they both are tensors, this means that the
geometric objects the tensors g and p asymptotically
become identical.

This desirability of keeping the metric g„„atspacelike
infinity in the special-relativistic form (3) imposes an
additional constraint on the allowable coordinate trans-
formations, in addition to the postulate that the trans-
formation shall belong to the coordinate gauge group
leaving (11) invariant. The more restricted group of
transformations, which throughout space leaves (11)
invariant, but which asymptotically become Lorentz
transformations leaving the values of. the components
of the metrics y„„and g„„ invariant, in the region at
spacelike infinity where these two metrics become iden-
tical, we shall call the "restricted coordinate gauge
group. " The allowable coordinate systems obtainable

by this group of transformations make up the "restricted
gauge manifold. "

Now, if in a new (primed) coordinate system obtained

by such a restricted coordinate gauge transformation
we replace the geometric object p (components y„.„.)
by a new geometric object p' (components p'„„) in
such a way that p'„„=y„, is given by (3), then it is
true that the tensors y' and ~ diGer at finite distances.
Asymptotically, however, the primed coordinate system
divers from the unprimed one by a Lorentz transforma-
tion only, so that asymptotically the p„„components
of the original tensor p were still equal to the old
special-relativistic values y„„, and therefore the change
to the new p'„„was no change at all, or, asymptotically,
y' = y. In other words, on account of this restriction
imposed on the coordinate gauge group, all gauge trans-
formations of the geometric object p will leave this

object unaltered at spacelike infinity, and not only p
but automatically also p' will asymptotically be equal
to the tensor g. Thus, gauge transformations of the
gravitational field are restricted to those which vanish

at spacelike infinity. If our second point of view is taken,
this manifests itself in the fact that the components of
the tensor g„„, after as well as before the tensor trans-
formation accompanying the restricted coordinate gauge
transformation, asymptotically keep the special-rela-
tivistic values without change.

4. POINT PARTICLES AT REST

Although general relativity suggests complete equiva-
lence of all coordinate systems, the importance of using

the supplementary condition (1) in attempts to keep
the quantum theory of Einstein's gravitational field
reasonably simple suggests that the category of frames
of reference in which the condition (1) is satisfied is
singled out by the simplicity of form of certain laws of
nature in such coordinate systems. "We have seen that
this category of more or less fundamental or "absolute"
frames of reference constitutes what we have called the
gauge manifold, and that there were also reasons to
restrict it further to what we have called the restricted
gauge manifold, in which a special-relativistic Qat-space
metric given by (3) was determined by the asymptotic
behavior of the gravitational metric g„„. Further we
found it expedient to restrict our choice of coordinate
system even more, to one out of an infinite number of
Lorentz manifolds, which are submanifolds of the
restricted gauge manifold, and which can be obtained
from each other by restricted coordinate gauge trans-
formations, with a simultaneous gauge transformation
of the geometric object the Bat-space metric y, which
determines each Lorentz manifold by its special-
relativistic form (3). The main advantage of confining
oneself to one of such Lorentz manifolds is that it
enables one to use the choice (3) of the y tensor
throughout space.

From a general-relativistic point of view, there is no
such a thing as a "particle at rest. " From a special-
relativistic point of view, a particle can be called "at
rest, "at least with respect to a properly chosen Lorentz
frame, if, and only if it is not accelerated with respect
to any Lorentz frame.

The above considerations suggest an intermediate
point of view. In gravitational theory, we shall call a
particle "at rest" (with respect to a properly chosen
frame of reference, of course) if within the restricted
gauge manifold there is a Lorentz submanifold with"¹Rosen, Phys. Rev. 57, 150 and 154 (1940), suggests that
the y metric could perhaps be used in measuring the velocity of
light. Such a use of y„„is not clear to me, and seems rather doubt-
ful, as Rosen himself assumes the g„„ to govern physical motion
of objects, and therefore also of clocks and measuring rods. As
measurement means a comparison of an object and a measuring
rod, and a measuring rod compaxed to itself always has a length 1,
a measuring rod a fortiori keeps its length in physical parallel dis-
placement, and so does ds = (g„„dg"dg")&,bu—t not do =—(~„ggsdg„)&.
(See small letter on page 152 of Rosen's paper. ) I cannot under-
stand Rosen's alternative "point of view" that the length of the
rod could change, unless he means by "length" something dif-
ferent from the result of a measurement by a rod of physical
reality. —For a more accurate description of the relation between
g„„and the results of physical measurements Lsee Eqs. (62)—(64)
on page 238 of reference 14$, and for an explanation of the neces-
sity of identifying the metric g„, governing in this way the results
of measurements, with the metric g„, governing Lby Eq. (85) on
page 244 of reference 14) the geodesic describing the paths of
planets and light rays, the reader is urged to read chapter VIII
of reference 14 in full. The basic hypothesis underlying these
reasonings there is italicized on page 223.—The mere fact that
the conditions (1) for (11)g and g„„~v„, (for r —+ co), used for
selecting the frame of reference in which y» takes the special-
relativistic form (3), allow for gauge transformations, is a strong
indication that the y„, cannot have as much physical meaning as
the metric determining the results of physical measurements.
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respect to which the particle is not accelerated. It is
then possible to think of the particle as fixed in the
origin of some frame of reference, of which the fiat-
space metric has the special-relativistic value (3), while
the gravitational metric in this frame of reference satis-
fies the supplementary condition (1).

S. FLAT-SPACE POLAR COORDINATE SYSTEMS

From some frame of reference with coordinates
T, x, y, s, in which the p„„components are still taking
the special-relativistic values (3), we transform to
polar coordinates T, r, 8, p by

x = r sin8cosp, y = r sin8sinq, s = r cos8.

gravitational field is at rest "at the origin. " We then
transform by (12) to polar coordinates. We ask for the
spherically symmetric static gravitational field g„„
surrounding the source at O.

For reasons of symmetry the expression for the
square of the line element ds or time element dr in.

this field will be given by

s' = g„„dxI"dxv

N2dr2 + v2 (d82 + sjn28d022) w2d7 2 — dr2 (2P)

where 23, v, and w are functions of r only. From (20),
(13), and (2) we obtain

In the following, let us denote by x', x', x', x' these
polar coordinates:

x'= 7(= ct), x'= r x'=8, x'= p. (13)

(—g)& = Nv'w sin8; g" = —23v'w ' sin8,
g»1 ~—i@2~ sjn8 g22 g~ sjn8
g" = 23w(sin8) '.

(21)

+00 ~7 +»1

One easily finds

+22 ~ 7

Inserting this in the Eqs. (19), we find that Eqs.
(19-0), (19-2), and (19-3) are satisfied automatically,

„2 s,n28. (14) while the condition (19-1) takes the form

y» = 1/y» (no sum!);

8»y~2 = 2r, 8»y33 = 2r sin'8,

Bg 33 ——2r' sin8 cos8;

(15) d(33 'v'w)/dr = 2-r23w. (22)

This condition is not satisfied by the Schwarzschild
~ ~ ~ ~

(16) solution

—~», 33—I"~, 33

F2, »2 —.I 2, 21—
I'3, »3 = F3, 3» = r sin'8,

= I', 3~ = r'sin8cos8;

&'22 =

F2- =3

—r F» = —r sin'8
7 33 7

j. '33 ———sin8 cos8,
&2»= ~»3= & (18)

j.'&2 ——cot8.

P —g0vi —8 g0v

p glP 8 glP r(g22 + g33 sjn28)

0 = g2~~„= B„g2"+ 2r 'g" —g" sin8 cos8,

0 = g'"~„= B„g'"+2r 'g" + 2g" cot8.

(19-0)

(19-1)

(19-2)

(Components not listed vanish. )
By the above transformation (12) to polar coor-

dinates, we have introduced a curvilinear coordinate
system not belonging to the gauge manifold. Therefore,
in this frame of reference we must use the supple-
mentary condition in Papapetrou's general-covariant
form (10). With the above values of the Qat-space
Christoffel symbols F"„„, the four conditions (10)
become

ds2 = —dr2 = (1 —2m/p) 'dp'

+ p (d8 + sin'8d02') —(1 —2m/p)d7. ' (23)

if we would interpret p here as the coordinate r occurring
in (12) and (22), and then would find p(p —2m) for
(23 'v'w) and 1 for (Nw) in Eq. (22). Therefore, the
coordinate system for which the Schwarzschild solution
is valid is not the coordinate system obtained by con-
ventional transformation to polar coordinates from
the Lorentz frame in which the source of the field is
at rest, and in which the supplementary condition takes
the simple form (1).

7. NEW SOLUTION FOR THE STATIC FIELD AROUND
A PARTICLE AT REST

Ke want to find the static spherically symmetric
field g„„corresponding to the line element given by (20),
and satisfying the supplementary condition (10), that
is, (22). This field, around a possible singularity in the
center, must satisfy the gravitational equations for
empty space, that is,

0. STATIC CENTRAL FIELD SATISFYING THE
SUPPLEMENTARY CONDITION AROUND A

SOURCE AT REST AT THE ORIGIN 8 ln( —g). (24)

We start by using the Lorentz frame, belonging to
the restricted gauge manifold, in which the source of a Prom (20) with (13) and from (7)—(8) we find, if
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gpp = —BP, g1j = I ) g22 = 'v
q g33 = 7J sin 0 j

primes indicate differentiations with respect to r: We postulated that g„„~p„„for r ~ ~, so, asymp-
totically, we should 6nd e2 —+r2, thence r —+n. Ex-
panding (30) for large» in powers of (m/w), we obtain

10 01

1
i

ww

ool

» ~ C,[——', (m/v)'+ ]+ C2(v —m), (32)

so that the best we can do is putting

vv' sin'0 C2 ——1. (33)

22

t2
l33

112

I 33

21 13l

= —sin0 cos0, (26)

While the term with C1 is unimportant for r ~ ~,
it becomes predominant near the singularity at v = 2m,
where u', by (28a), would go through infinite and invert
sign, so that R would become imaginary for r & 2m.
If p is the "effective" radius of a circle around the
origin, defined as (2i») '

&& the circumference of such
a circle, then, by (20),

|3
123 32

= cote.

Thence, the Eqs. (24) take the form

p = 'D. (34)

Apparently, among the real circles around the origin,
the one with smallest circumference is the one for
which ~ = 2m, for which

I
0 = —E.00

'N

'V K
E = 0, p = 2m, ("zero circle" around 0). (35)

(27-0) If we want to keep» = finite for this zero circle, we see
from (30) that we must choose

Q 'V

—2
C1 ——0.

(27-1)+2—,
Since for large values of r we want to find gpp ~ happ,

we should have w' —+ 1; therefore, by (28b),s 833

~2 sin'0

I= ——+
'V 55)

Q0= —822=
~2

E=1. (37)

1 I Il Combining (28), (30), (33), (36), (37), and (20),
(27 2) We find

Q8 v=»+m,
12 = v/(v —2m) = (» + m)/(» —m), &(38)
w' = (v —2m)/v = (» —m)/(»+ m);

As shown in Appendix A, these equations are solved by

—(» + m)'(d8' + sin'8d y'). (39)

~' = p"v/(v —2m), w' = E'(it —2m)/v. (28a-b)
f» —mq )»+ mq

Here, v may still be an arbitrary function of »; d»' =
)

(dT' —
)

~d»'
i' = dn/d»: m and E are undetermined constants. ~» + m~

We now insert (28) in our condition (22). This yields

»=Ci 1+
w —m fn —2m'

I
+ C2(. —m). (30)

i

If we assume that measuring rods measure ds,"then
radial distances from the position v = 2m are given,
according to (20) with (28a), by

= [n(n —2m)]-: y m ln[. -'*y (v —2m)']

—m in[a' —(v —2m) '*7. (31)

d[v(i —2m)/v'] = 2»da (29)

As shown in appendix 3, the general solution of this
equation is

8. "SWISS-CHEESE" MODEL OF SPACE

Now, imagine a picture of our space on the y scale,
that is, at T = 0, drawing points I'1 and I'2 a distance
f~P' da apart. , although their actual distance is Ji i ' dS.
(See footnote 15.) On the y scale, our space looks flat
and is an ordinary Euclidean ryan-space, with polar
coordinates»8y. (This flatness is, of course, due to the
distortion introduced by not drawing on the g-scale
with metric g„,.) Now, we have seen that, in our actual
space, points with v ( 2m (so by (38) with» ( m)
should be excluded as they would lie at imaginary
distance from the zero circle. In our flat picture of
space, this means that there is a spherical hole in space,
or a cylindrical hole in four-dimensional space-time
("Swiss-cheese" model of space). On the y scale, this
hole has a radius m and a circumference 2am. Actually
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where
gv" = (16~G/e4) Z&", (40)

(on the g-scale), it has a radius R = 0, but a circum-
ference 2vv = arm = 4vGMv/c'. LCompare Eq. (49)
of Sec. 10.j For instance, for a neutron, this circum-
ference would measure 1.55 &( 10 " cm. Because the
circumference consists of many points, it is not com-
pletely correct to call the source of our static field a
point singularity, and it is better to call it a singularity
at the origin, than to call it a singularity in the origin.

Papapetrou' has found that, on the y scale, the
gravitational equation on account of (1) may be written
in the form

form
d(N

—'v'w)/dp = 2(p —m)ew,

which evidently is satisfied by (42)—(43).

(44)

10. MOTION OF A PLANET IN OUR STATIC
CENTRAL FIELD

The variable p is not only the eBective radius used
in calculating the circumference of a circle around the
origin. To its importance adds its usefulness in the
discussion of the motion of a "planet" around this
origin. This motion is described in the well-known way
by the geodesic determined by

(41)
d'x&/dr' + (dx /dr) (dxe/dr) = 0. (45)

while the symmetric total energy density P&" includes
the spin as well as orbital energy density, of the gravi-
tational field as well as of matter. Gupta has stressed
the importance of this fact in the quantum theory of
gravitation. ' ' The result (40)—(41) indeed suggests use
of the p scale in defining the rules of quantization .of
the field. This, however, seems to imply that in mo-
mentum representation of fields we should expand
fields in terms of "plane waves" exp(ik„x&), where the
coordinates x&(= J do) form a fourvector with respect
to the I orentz group determined by the tensor p„„.We
now have found that this I.orentz space has holes
where matter is located. Consequently, there is a
natural cut-o6 radius for the fields around such a hole,
which will help to suppress high-momentum states in
the expansions of such fields. To what extent this will

provide a means of eliminating the divergencies en-
countered in the quantum theory of fields is a matter
which deserves careful investigation.

9. RELATION OF OUR SOLUTION TO
SCHWARZSCHILD'S SOLUTION

The reader will remember" that one integral of
motion is given by the angular momentum of this
planet,

L = Mcp'dp/dr, (46)

where 3I = mass of planet, and where we have assumed
that the plane of the motion is given by 8 = vr/2.
Another integral of motion is the energy, which is given
by

E = —Me ggpdx /dr = Me (1 —2'/p) (dT/dr). (47)

Notice that here we have to use p, and not r or R. Also,
Binet's method for obtaining the orbit of the planet
can be used if one introduces p ' (not r ') as a new
variable. In first approximation one thus finds Kepler's
elliptic orbits corresponding to a Newtonian central
field of force with potential energy

U = —GMM, /p,

where the "mass of the sun" 3f, is related to our con-
stant m by

If, instead of the polar coordinate

r = (x'+ y'+ s')'

m = GM,/c'.

In second approximation one obtains

(49)

p=v=r+m, dr=dp, (42a—b)

introduced in the transformation (12), we introduce
the effective radius p of Eq. (34) as our radial parameter,
then (38) gives

p
' = A(1 —ecosI'p), (50)

where A = e '(1 —e') ', if a = half the major axis
and e = eccentricity of the approximately elliptic
orbit, of which the advance of the perihelion per period
is approximately given by Einstein's

I' = p/(p —2m) = (1 —2m/p)
—',

w' = 1 —2m/p.
vl = 2v. (1 —I') = 6v-GM. Lac'(1 —e')j—'.

11. DISCUSSION

(51)

Inserting this in (20), we obtain the Schwarzschild solu-
tion (23). On account of (42b), the transformation
(42a) has not changed at all the values of g„„(ofI, v,

and w) in transforming from our to Schwarzschild's
coordinates. Schwarzschild's radial coordinate (the
effective radius p) is simply larger by the constant m
than our polar coordinate r obtained by (12) starting
from our I.orentz frame of reference.

By (42), the supplementary condition (22) takes the

We have found that the coordinate p appearing in
the Schwarzschild line element (23) remains a most
convenient radial parameter in discussing such prob-
lems as planetary motion, and that by the simple
relation (42) it is related to the polar coordinate r
obtained by (12) from the "flat" Lorentz frame xysT

'6 See, for instance, P. G. Bergmann, Introduction to the Theory
vf Reletivvty (Prentice-Hall, Inc. , New York, 1947), pp. 212—217.
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in which the source singularity of the field is at rest.
By "Qat" we mean, of course, "p Qat, " that is, the
vanishing of the curvature which would follow from a
metric y„„.Judged after the identification of the plane-
tary motion (45) of particles in the g„„-field with
geodesics, as well as from the results of physical
measurements made in the g„„-field (see footnote 15),
spacetime notwithstanding the Qat metric y„„has the
curved aspect described by the gravitational metric
tensor g„„. In this regard, the Qat "picture"' of space
may be called distorted. However, this does not take
away the usefulness of this Qat picture in visualizing
space, as a help in calculations, and as a basis for a
simple quantum theory of fields. In particular, we have
noted that in the presence of electrically neutral'~

point particles (or, rather, "bubble particles" ) there
may be "holes" in this Qat picture of space, that is,
there may be real values of the orthogonal coordinates
xys in our "Lorentz frame, " to which no "real" points
correspond. (The "reality" of a point is here judged
after the reality of its g„„-measured spacelike distance
from other points. )

In discussing the eRect of a gravitational Geld g„„on
the motion of a planetary particle, we have not con-
sidered the eGect of this particle itself on the gravita-
tional Geld; that is, we have omitted gravitational self-
interaction. This may seem particulary serious as the
gravitational fields from various matter sources are not
really additive, due to the nonlinearity of Einstein's
gravitational equations. Gupta circumvents the latter

difhculty by considering the nonlinearity in the field

equations as the action of the gravitational energy
(including spin energy) as another source of the gravi-
tational field AI'" satisfying Papapetrou's otherwise
linear wave equation (40). This makes it possible in
principle to solve in successive approximations for the
gravitational Geld from given matter sources. '—'

or, by Eq. (28a),

w' = mEu/v', (A.8)

so that (A.6) is automatically fulfilled as a consequence
of (28a—b).

APPENDIX B

Introduce new variables x and y by

v = m(x+ 1), r = xy,

and take x as the independent variable, so that

(B.1)

d(x+ 1) (dr) -'d(x+ 1)

&dx) dx

dy- —1

y+x
dx

(B.2)

thence,
wvv'/u = E(v —2m), (A.3)

where m is some other constant. Again using Kq. (A.1),
we find from (A.3)

u'(v —2m) = E—'uwvv' = vv". (A.4)

This yields Eq. (28a). Squaring (A.1) and using (A.4)
we obtain

u'w' = E'v" = E'u'(v —2m)/v,

which gives Eq. (28b).
Finally, Kq. (27-0), multiplied by (—w/w'), yields

d/ln(u 'v'w'))/dr = 0, or w' ~ u/v'. (A.6)

This equation does not impose any restriction on v. In
fact, the derivative of the square root of Eq. (28b)
yields already

d "v —2m & mEv'( vw'= E— =
I I, (A.7)

dr v ~ v' (v —2m)

dI ln(wvv'/u)$/dr = u'/vv'. (A.2)

APPENDIX A

Adding Eqs. (27-0) and (27-1), and multiplying by
(—v/2v'), we find

dDn(uw/v') j/dr = 0; thence, uw = Ev', (A.i)

where E is some constant. Multiplying Eq. (27-2) by
v/v' we find

This changes Eq. (29) into

dL(x' —1)(y + xdy/dx) j = 2xydx, (B.3)

or, if we put dy/dx = p,

(4x' —2)p + x(x' —1)dp/dx = 0. (B.4)

Integration yields

Multiplying this by wvv'/u, and using (A.1) in the
right member, we obtain

d (wvv'i (wvv ) d (wvv ) dv

dr4u) Eu ~dr Eu) dr

thence,

p = C x-'(x' —1)—' = dy/dx-

-1 1 (x- iq
y=~i -+-»I

I
+~2'.

x 2 (x+12

(B.5)

(B 6)

"Fields surrounding interacting particles may prevent the
occurrence of holes in our Qat picture of space. By (B.1) this gives Eq. (30).


