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An attempt to explain nuclear properties with the help of a classical nuclear potential whose quanta are
7 mesons leads to involved nonlinear interactions. We therefore used a potential whose quanta are neutral
scalar mesons. Saturation properties, empirical binding energies, and observed nuclear densities are obtained
if the potential depends on the velocity of the nucleons. This velocity dependence accounts for a number of

additional nuclear properties.

1. NUCLEAR POTENTIAL

HE nuclear shell model' explains certain nuclear
» properties in terms of the independent motion of
nucleons in an appropriately chosen potential. This
theory differs significantly from the Hartree model in
atomic physics. In the latter, a central body establishes
a first crude approximation of the atomic potential,
whereas, in the former, the nucleons themselves com-
pletely determine the nuclear potential. Bohr and
Mottelson® have worked out the consequences of this
difference; the agreement between their theory and
experimental data provides further support for the idea
of an average potential within the nucleus.

The energy difference between the last nucleon in a
closed nuclear shell and the first nucleon in the next
nuclear shell is approximately 3 Mev. Therefore, colli-
sions between the independently moving nucleons
should not disturb energy states by as much as 3 Mev;
otherwise, the ordering of states predicted by the shell
model would be altered. Gamma-ray absorption® indi-
cates that the energy corresponding to the frequency
of nucleons in their oribital motion is approximately 20
Mev. Thus, the average distance traversed by nucleons
between collisions appears to exceed 20/3 nuclear radii,
a conclusion that cannot be easily reconciled with the
cross section for collisions between free nucleons.*

The study of the two-body problem in atomic physics
led to an understanding of complicated atoms in terms
of simple two-body potentials describing electrostatic
forces. The corresponding study in nuclear physics has
not been so successful. Nuclear interactions, in contrast
to atomic interactions, are strong, which has the conse-
quence that at high energies, the multiple production
of nuclear quanta (mesons) is the rule, whereas the
multiple production of electromagnetic quanta is a rare
event. Consequently, in nucleon-nucleon collisions,
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several mesons may be expected in virtual states and
the description of a nucleus in terms of additive two-
body interactions may well be impossible.

On the other hand, the simple regularities exhibited
by heavy nuclei encourage the belief that the many-
body problem of nuclear physics might be treated more
easily than the two-body problem. For a heavy nucleus
in which the expectation value for the number of
mesons present is considerably greater than one, the
mesons obeying Bose’s statistics will tend to occupy
the same quantum state. The wave function of this
quantum state will correspond to a classical potential
of nuclear forces. The greater the number of mesons
present, the closer the approach to the behavior of a
classical field. Thus, strong interactions may validate
the classical limit and thereby simplify the theory in
the many-body case.

The empirical facts of the shell model show that the
potential—and therefore the meson wave function—has
the following properties. It is constant inside the nu-
cleus. It does not depend on the mass number 4 except
for the lightest nuclei. It extends roughly over a sphere
of 1.24¥X 10~ cm radius.® It falls to zero within a dis-
tance of 1 or 2 times 10~ cm.

This potential forms the basis for the remainder of
our discussion. We shall disregard its connection with
two-body interactions between free nucleons or between
nucleons within the nucleus. We see at present no way
in which a smooth potential can be derived from inter-
actions between elementary particles. Having postu-
lated the existence of a classical potential, the explora-
tion of its propertiesleads to some surprising conclusions.

2. TYPE OF THE MESON FIELD

We shall assume an interaction of the nucleons with
the meson field in the form

2 O®i(9)- )

Here  is the nucleon wave function, O; a linear opera-

tor, ¢ the amplitude of the meson field, and ®; an arbi-

trary function of ¢.
Expression (1) is bilinear in ¢ and y*. Higher powers
8V. L. Fitch and J. Rainwater, Phys. Rev. 92, 789 (1953);
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of the wave functions would imply that nucleons inter-
act with the meson field only if they are in contact with
each other. Such an interaction will not lead to inde-
pendent motion of nucleons.

We shall show that ®, must be a simple scalar and
an isotopic singlet; otherwise simple nuclear properties
cannot be represented with a potential such as de-
scribed above. The main purpose of the present section
is to prove this proposition.

For the sake of simplicity, we shall test the inter-
action on closed-shell nuclei with equal numbers of
protons and neutrons.

In the strict sense of the shell model a nuclear state
is defined by filling definite orbits by nucleons which
move in a classical potential. This means that the total
wave function can be written as a product of two factors.
One is the antisymmetrical orbital function of the
nucleons and the other is the dependence of a proba-
bility amplitude on the meson occupation numbers. In
the classical limit a single smooth spatial meson state
is occupied and the probability amplitudes can be re-
placed by average occupation numbers.

A more general function is the sum of several such
shell-model states. The terms will differ both in the
orbits filled by nucleons and in the average occupation
numbers of mesons. In this case the common spatial
meson functions can still be called the classical nuclear
potential.

The nuclear binding energy is the average value of
(1) over the sum of products. It differs from the strict
shell-model value by matrix elements of (1) connecting
different shell-model states. Due to the smooth spatial
dependence of the meson function and to the exclusion
principle, only the orbits near the top of the momentum-
distribution will contribute. Such terms cannot be pro-
portional to A4 but rather to A% Therefore the average
of (1) over shell-model states in the strict sense must
account for the main part of nuclear binding.

The invariance of the Hamiltonian requires that (1)
be a simple scalar. If &; is a pseudoscalar the same is
true of the factor multiplying it. A pseudoscalar ex-
pression ¥*Op/ gives a vanishing average over any
pure shell-model state. Therefore a pseudoscalar ®;
can be ruled out.

The same conclusion holds if ®; is a component of
any vector or tensor. The factor y*On) must then be a
similar component and will give a zero average over
any closed-shell nucleus.

Therefore ®; must be a simple scalar.

The conservation of isotopic spin means that (1) is
an isotopic singlet. Since ¥* and ¢ are isotopic doublets,
their product is either a singlet or a triplet. If y*Ou is
a singlet ®; is also a singlet. Similarly, if Y*Oy is an
isotopic triplet the same is true of $;.

If y*Ou is a triplet, it will have components in which
the nucleon charges change. These do not contribute to
average values over strict shell-model states. One com-
ponent is not connected with a change of charge. It can
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be shown that the contributions of protons and neu-
trons to this term are equal and opposite and cancel
when the same orbits are occupied by protons and
neutrons.

Therefore ®; must be an isotopic singlet.

We have made calculations with a nonlinear inter-
action y*y®(¢), where ® is an algebraic function of the
isotopic singlet ¢?. We obtained saturation and proper
binding by an appropriate choice of ®. However, we
found excessively larger nuclear surface energies which
we might possibly avoid by introducing into the
Hamiltonian a term depending on ¢ alone to a higher
power than two. Such a term corresponds to a direct
interaction between w-mesons. While we do not see
that this series of assumptions is necessarily wrong, it
seems preferable to keep simple linear interactions and
to introduce ® as the amplitude of some appropriate
meson field.

3. LINEAR COUPLING

If ® is considered as a meson-amplitude, we obtain
the following simple picture. According to the above
results, the meson is scalar and neutral. Furthermore,
the interaction (1) is linear in the meson field.

The scalar neutral meson need not be an elementary
particle in any sense of the word. It may be a virtual
state composed of other mesons. It may be even a
superposition of such virtual states. It may decay into
7 mesons so quickly that it cannot be observed. It
may be related to mesons like a sound-quantum is re-
lated to electrons and nuclei. In any case, we assume
that nuclear interactions follow in first approximation
from a linear coupling with the meson field.

The simplest Hamiltonian valid for the interior of
nuclei can be written in terms of a meson wave function
and of a properly antisymmetrized product wave
function constructed from single nucleon functions ¢;:

= [#em L (74,1
+uct'—tcgp 3 |¥i]*dr.  (2a)

In the interaction term, the constant g has the dimen-
sions of an electric charge. The nucleon mass and the
meson mass are designated by m and . Since ¢ is an
isotopic singlet, nucleons retain their charge and identi-
cal potentials act upon neutrons and protons.® The
kinetic energy of the meson field, proportional to
(Ve)?, will be included later in a discussion of surface
effects.

4. VELOCITY DEPENDENCE OF THE INTERACTION

The Hamiltonian H; has two shortcomings. It does
not explain saturation and it predicts too large a neu-
tron excess in heavy nuclei. _

8 This has the consequence that the protons occupy a smaller

sphere than the neutrons [M. H. Johnson and E. Teller, Phys.
Rev. 93, 357 (1954)].
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Treating the nucleons as a degenerate Fermi gas, the
first term in H, is proportional to p3/3, where p is the
number of nucleons per unit volume. When the inte-
grand is minimized with respect to ¢ for fixed p, the last
two terms give a negative contribution proportional to
p% The nucleus therefore tends to high p values; in the
absence of surface effects p becomes infinite.

The Coulomb energy which must be added to H,
plays an essential part in fixing the proton to neutron
ratio. If p is held fixed and the proton to neutron ratio
is varied, the energy minimum occurs when the kinetic
energy at the top of the proton Fermi distribution
differs from the energy at the top of the neutron dis-
tribution by the Coulomb potential. This minimum
occurs in heavy nuclei for too large a neutron excess.’
Therefore “symmetry forces” were introduced® which
stabilize nuclei with a small neutron excess. These
forces are compatible with pairwise interactions be-
tween nucleons. However, a potential based on neutral
mesons leaves no room for symmetry forces.

Both difficulties can be remedied by adding to H; a
velocity-dependent term.® The Hamiltonian becomes

Ho=tt [ @cs S V01, ()

where another coupling constant f has been introduced
which again has the dimensions of an electric charge.
The new term, proportional to the kinetic energy of the
nucleons, is equivalent to an effective nucleon mass,
et;, which depends on ¢. Thus the Hamiltonian H»
follows from H; if m is replaced by e,

egs/m=[14+2mhfou—2c 1] 3)

The velocity-dependent term in H, is positive and
increases more rapidly than p?. The nuclear potential,
therefore, has a minimum at a finite p value. In our
present formulation, the minimum is not absolute; for
very high p values arbitrarily low energies can be
reached by making ¢ negative. The Hamiltonian H.
can no longer be valid when p becomes high and the
motion of the nucleons relativistic. At the actual
densities prevailing in nuclei, we hope that H is a
good approximation.

The empirically known nuclear radii and the exclu-
sion principle fix the nucleon momenta. For #s.e<m
nucleon velocities and kinetic energies will be increased.
Therefore, a smaller neutron excess produces the dif-
ference in kinetic energies at the top of the Fermi dis-
tributions necessary to balance the Coulomb potential.

7W. G. McMillan, Phys. Rev. 92, 210 (1953).

8 E. Wigner, Phys. Rev. 51, 947 (1937).

9 A velocity dependence was introduced by K. A. Brueckner
(unpublished) and he was led to similar values as those we find.
Brueckner started from pairwise interactions with repulsive
cores (see reference 4). His approach is therefore quite different
but the consequences seem to be effectively the same.
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5. THE COUPLING CONSTANTS

Various authors have summarized the binding energy
of nuclei in semiempirical formulas® which separately
itemize the Coulomb and surface energies. According to
the same formulas, the binding energy of a nucleon in
the nuclear fluid is 15.5 Mev. The last number, together
with latest measurements® of nuclear density, 1.4X10%
cm3, suffice to determine the coupling constants fand g.

Treating the nucleons as degenerate Fermi gases with
equal numbers of neutrons and protons, (2a) and (2b)
become

H,/A=1.80572m"1p3+3.61%3u % "p?fo
+ulcto i —hogd.  (4)

The explicit appearance of the meson mass may be
removed by introducing the quantities

w= pc’P, (52)
F= (u'c)*f, (5b)
G=nu"'cg. (5¢)

Hy/A=1.8057mpt+3.61ptFw+w?p~'—Gw. (6)

The energy, (6), reaches a minimum when p and »
satisfy the conditions

1.2072m o4 2.41p3 Fo=w?1, )
3.61p Fw=Guw— 2w’ 8

By eliminating w?/p between (7) and (8), we find
2. 4172w ¢+ 8 44p Fw= Guw, (9)

H,y/A=0.60%2m"1pt—2.41p3Fuw. (10)

We can now make use of the empirical results, Hy/A
=—15.5 Mev and p=1.4X1038 cm=3. We find from
(10), (9), and (7) in succession

piFw=9.22 Mev, (11)
Gw=104.8 Mev, (12)
w?/p=35.1 Mev. (13)

Finally from (13), (12), and (5¢) and from (13), (11),
and (Sb), we have

@ (he) ' =2.97[p A 1c1)* T, (14)
F2(he)—1=0.0236[p (e 1) T2 (15)

We shall later estimate from the surface energy that

L2500 Mev. (16)
Equations (14) and (15) then give

g2 (he) =271, @an

F2 (k)31 18)

N, Bohr and J. A. Wheeler, Phys. Rev. 56, 426 (1939);
E. Fermi, Nuclear Physics (University of Chicago Press, Chicago,
1950); A. E. S. Green, Phys. Rev. 95, 1006 (1954).
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We are, therefore, dealing with strong coupling.

6. COULOMB AND SURFACE ENERGIES

Simple electrostatics determines C, the Coulomb
energy per nucleon. -

C=0.602Z AR, (19)

In (19), Z is the nuclear charge and R the nuclear
radius. We have neglected the nonuniformity of the
charge distribution and the correlation between proton
positions produced by the exclusion principle. Eliminat-
ing R by means of the empirical density, 1.4X10%8
cm~3, (19) becomes

C=0.73224—4 Meyv. (20)

Green’s semiempirical binding energy formulal® gives
for S, the surface energy per nucleon,

S=184-} Mev. (21)

To minimize Hs/A+S+C, we must know how C
and .S depend on p and w for a nucleus with Z and 4
held fixed. It is then clear

Cr~ph, (22)
We take

S~p=hu?. (23)

In (23) we have assumed that the surface energy is
proportional to the surface area, that the thickness of
the surface layer does not change when p is varied, and
that the main contribution to .S is proportional to
(Vw)?, the kinetic energy of the meson field. None of
these assumptions is accurately valid.

As C+S is small compared to H,/A4, a first-order
perturbation calculation suffices. We find the new
value w* of the meson field amplitude which now
satisfies the minimum conditions

w*/w=1— (Gw)~'[ (540.838)C+ (5+6.63£)S]
X (1.665— 18511, (24)

E=N"2mp—Gw. (25)

We also find the new value p* of the nucleon density
produces insignificant changes. With numerical values
of the previous section, we have

£=9.34. (26)

Taking as examples the light nucleus Ca® and the
heavy nucleus U8 Egs. (20), (21), (24), and (26)
now give

Gw*(Ca®)=77 Mev, (27)
Guw*(U%8) =83 Mev. (28)

The effective nuclear potential is nearly independent of
A at a value of 80 Mev. This high value reflects the
large kinetic energy which is a consequence of the
small effective mass. In fact (3) may be written

Mest/m=[ 14 2mAFw* 1= 0.435. (29)
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A Hamiltonian capable of describing surface effects
must contain the kinetic energy of the meson field.
Such a Hamiltonian is

H3=H2+f62hzlv¢l2d7’
—Hot f ()2 | Vool 2. (30)

The presence of |Vw|? in the integrand prevents w
from dropping sharply to zero at the surface.

To estimate roughly the connection between surface
energy and meson mass, we suppose that ¢ and p are
constant in a sphere of radius R, that p drops suddenly
to zero at the radius R, and that ¢ goes to zero with a
constant slope in a layer of thickness L(L<KR). Then
(30) gives

SA= 3L/ R)[3+ (e L] f wdr. (1)

For L=V3#u'c!, the right side of (31) assumes its
minimum value,

SA= (2L/R)Aw?/p=116hu"cp34? Mev. (32)

In (32) the value of %?/p from (13), reduced according
to (24), has been used. Comparing (32) with (21) and
using p¥=0.52X 10" cm~, we obtain

p= (116/18)%cp}= 660 Mev. (33)

The termination of p on a sharply defined surface is
not very realistic. The fact that p and ¢ will decrease
together near the surface should reduce the surface
energy for a given value of u. To compensate for this,
w should be decreased. Therefore, 660 Mev is an upper
limit which should be reduced to perhaps 500 Mev.

Equation (32) with u set equal to the = meson mass
(140 Mev), gives an excessively large surface energy.
This conclusion has been verified by detailed numerical
integrations.

According to (13), the total meson rest energy within
a nucleus is 35.74 Mev. The actual value should be
lower in the ratio (*/w)? which reduces 35.74 Mev to
214 Mev. The meson rest energy reaches the value
500 Mev at approximately 4 =24, that is magnesium.
For 4 <24, the expectation number of mesons is less
than one, for 4>24, it is greater than one. Hence, for
nuclei heavier than magnesium, classical ideas should
begin to apply.

7. INFLUENCE OF THE EFFECTIVE MASS
ON NUCLEAR PROPERTIES

The kinetic energy of a neutron at the top of the
momentum distribution in a nucleus is given by

Pmax (2m) 1= (9m/4)H2 2mRH) N, (34
where N is the number of neutrons in the nucleus.

Equation (34) holds for protons with N replaced by Z.
The difference between maximum kinetic energies is
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10.7 Mev in U%8 if the normal nucleon mass is used
for m. The Coulomb potential, on the other hand, is
21 Mev. To reconcile this difference, #.¢ must be 0.51
times the normal mass, which compares reasonably
well with ¢ found in (29).

In addition to the proton-neutron ratio, a small effec-
tive mass can reveal itself in several other ways. The
interaction terms containing g and f in the Hamiltonian
cancel for a nucleon whose momentum is 1.86X10~
g cm sec™!. Such a nucleon with a kinetic energy of 65
Mev in a free state has the same momentum inside
and outside the nucleus. Consequently, it will not be
refracted by the nuclear field. Therefore, the potential
scattering for nucleons of 65 Mev should vanish.
Actually" the potential scattering decreases above 60
Mev and vanishes at considerably higher energies. Our
theory predicts this effect at too low an energy. Further-
more, our theory indicates that at high nuclear energies
the repulsive term proportional to f should cause a re-
appearance of the potential scattering which has not
been observed.

It seems that the repulsive effects of the f term do
not continue to increase proportionally to the momen-
tum square as we have assumed. We have indeed
remarked earlier that such a continued increase would
lead to a collapse of the nucleus and we must assume
that the quadratic term describes the momentum de-
pendence only at low energies.

11 T, deJuren and B. Moyer, Phys. Rev. 81, 919 (1951); A. E.
Taylor and E. Wood, Phil. Mag. 44, 95 (1953).
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The momentum distribution of nucleons in the
nucleus is fixed by the nuclear radius and the exclusion
principle. A small effective mass therefore means a
high nucleon velocity and high frequencies for resonance
processes. According to calculations,”® the principal
resonances for gamma-ray absorption should occur at
#iw values somewhat below 10 Mev. The observed fre-
quencies are approximately twice the calculated ones.
We expect that a value m,;/m=0.5 will remove most
of the disagreement between experiment and calculation.

It has been pointed out'® that the Thomas precession
will cause a spin-orbit coupling of the correct sign with
nuclei. The precession, however, gave too small value
for the spin-orbit coupling. The strength of the coupling
is crudely #%w?/c?, where o is the orbital frequency of
the nucleon. Both w and v are proportional to #. !
and therefore the Thomas precessions will suffice in
our model to explain the spin-orbit coupling. In fact,
#w seems to lie between 15 and 20 Mev and #%/¢? is
approximately 0.2 so that the spin-orbit coupling
should be almost 4 Mev.
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