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where we have used pz' ——MK This integral has been by Deser et al fo.r the effect from scattering is:
evaluated, using the Gaussian wave function of Eq (.2), AE"
to give a ratio of (taking E=ts) (16)

This result completely specifies the real and imaginary
parts of the energy shift associated with the absorption
process, if the absorption rate is known. To determine
the rate, we use directly the results of BSW or, equiva-
lently, their results for the mean free path for absorption
of the mesons in nuclear matter, which is simply
related to the absorption rate. The result for the ratio
of the energy shift to the E-shell binding energy
&z= rstt(trZ)' is
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It is interesting to note that the equivalent potential
felt by the meson in uniform nuclear matter at normal
density is

V*= (3.66+1.68i) Mev.

To the energy shift associated with absorption is to
be added the effect from scattering. The result given

where a1 and u3 are the scattering amplitudes for the
isotoPic sPin sr and ss states, with values of 0.16/tt and
—0.11/tt respectively. There can be no contribution to
the level broadening from this term, contrary to the
result of Deser et al. since the charge-exchange scatter-
ing is energetically forbidden in most light nuclei.
Combining these. results, we find (for E=Z)

AE Z' Z'i

Eg 456 2150

This 6nal result for the level shift is about twice as
large as the result obtained when absorption is neg-
lected; in addition, as remarked above, almost all of
the level width comes from the absorption effect
leading to star formation.

The experiments' seem to show a somewhat smaller
shift than calculated here;. the discrepancy may arise
from the assignment of the low-energy meson scattering
phase shifts which have been used.

The author is indebted to Dr. Norman C. Francis
for several helpful discussions.
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The optical dispersion relations are extended to the scattering of massive particles and are applied to the
nuclear interaction of the pion-nucleon system. The sign of the forward scattering amplitude is unambigu-
ously inferred from measured total cross sections and found to agree with that determined from Coulomb
interference.

INTRODUCTION

'HERE is a considerable history of investigations
on those relations among cross sections and scat-

tering amplitudes which are independent of the under-

lying model. For quantum mechanical systems it has
proved convenient to remove all reference to the details
of the interactions by expressing these relations in
terms of Heisenberg' s' S-matrix. The requisites of
special relativity and of conservation of probabilities
then are succinctly stated as the Lorentz invariance
and unitarity of the S-matrix. Unitarity leads to the
familiar relation

' W. Heisenberg, Z. Physik 120, 513, 673 (1943).

where f is the amplitude for elastic scattering in the
forward direction, o- is the total cross section, and k the
wave number of the incident particle.

In recent years there has been a renewed interest in
the consequences for scattering of causality, ' ' the fact
that signals cannot propagate faster than with the
speed of light.

Kramers4 and Kronig' showed the consequence that,

' R. Kronig, Physica 12, 543 (1946);W. Schutzer and J.Tiomno,
Phys. Rev. 83, 249 (1951); N. G. van Kampen, Phys. Rev. 89,
1072 (1953); 91, 1267 (1953); J. S. Toll, Princeton thesis, 1952
(unpublished).

'Gell-Mann, Goldberger, and Thirring, Phys. Rev. 95, 1612
(1954); M. Goldberger (to be published).

4 H. A. Kramers, Atti. congr. intern. tss. Corno 2, 545 (1927).
e R. Kronig, J. Opt. Soc. Am. 12, 547 (1926).
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for electromagnetic waves in matter, the real and
imaginary parts of the index of refraction are not inde-
pendent. For any frequency co they satisfy the equation

t."2oi' Im e(ce)
Re LN(or) —N(0)]=P '

0 ~ CO
—+

(2)

Equation (2) implies that m(cu), defined for complex
values of co by analytic continuation from its measured
value when ~ is on the positive real axis, is an analytic
function for Imcv)0 with at most a simple pole at

According to Gell-Mann, Goldberger, and Thirring'
such an analyticity property is valid for field theoretic
systems and for quanta with mass: the S-matrix for
forward elastic scattering is analytic as a function of
the energy E of the incident quantum if Im E)0. The
poles of this function on the real axis are simply related
to the energy and asymptotic wave function of any
bound states that may exist. In directions other than
forward the S-matrix will in general have the same
analytic behavior except for an essential singularity at
infinity. '

The analytic behavior for forward scattering enables
one to express the real part of the forward scattering
amplitude as an integral over the imaginary part similar
to Eq. (2). For this to be as useful as the analogous
Kramers-Kronig relations for optical systems it is
necessary to know from experiment the imaginary part
of the scattering amplitude for all energies, real and
virtual. It will be shown that this information is directly
available from experiments and that it leads to a rela-
tion between the forward elastic cross section and the
total cross section for real processes.

THEORY

The elastic forward scattering amplitude f(E), con-
sidered as a function of the total energy E of the incident
particle with mass m can only be measured for E real
and greater than the rest energy m (h=c=1). For
complex values of E, f(E) is defined by analytic con-
tinuation. This function of a compl'ex variable j(E) is
now taken to be analytic in the entire upper half plane,
ImE&0, with the exception of the point at infinity
where f(E) may have a pole.

If g(z) is a function analytic in the upper half plane,

g(1)
g(z) =

27rz t—z

That the S-matrix for each angular-momentum states sepa-
rately has this property follows from the completeness of the
asymptotic wave functions as discussed without reference to
causality for interactions that vanish outside some 6nite radius.
See W. Heisenberg, Z. Naturforsch. 1, 608 (1946) and N. Hu,
Phys. Rev. 74, 131 (1948).

for any contour around the point z in the region of
analyticity. If, in addition, g(z) is at most of order 1/z

To carry out the limiting process, we must have some
information about g(z) on the real axis. It is sufhcient
to treat a g(z) that has simple poles at the points x;
(i= 1, 2, .) and branch points. If the latter are con-
nected by cuts in the lower half-plane, then they make
no direct contribution to the integral when it is taken
along the real axis; they only determine the relative
phase of the function on the two sides. The poles, how-
ever, do contribute as follows:

1 t
"Im g(x')

—', Re g(x)= P~ — dx'
2~ ~ „x'—x

2 ~ g' —s
Re [Res g(x')

~
* =*,j. (5)

To obtain useful consequences from this equation, we
must be able to apply it to the forward scattering am-
plitude and we must have enough information about
this function to be able to carry out the indicated
mathematical operation.

We shall assume in the following that the total cross
section and therefore, by Eq. (1), the imaginary part of
f(E), are known from experiment in the range m&E
& ~. Since f(E) may not vanish suKciently rapidly at
infinity to satisfy the requirements on g, we introduce
a convergence factor and consider

g(E)= f(E)/(E' —Es'), (Es real). (6)

One can now see from Eq. (5) that Im f(E) in the
range —~ &E&m, f(Es), f(—Es) and the residues of

f(E) at its poles E; on the real axis must be known.
First, we observe that if f(E) is calculated as the

matrix element for forward elastic scattering according
to a relativistic field theory, then the replacement of E
by —E gives the scattering amplitude for the inverse
process. * We therefore take

(7)

on the real axis. We next remark that that

Im f(E)=0, 0&E&m

if the scatterer is in the ground state. This requirement
is satisfied for scattering -by elementary particles. The
identity is easily verified by inspection of the partial

*Note added ie proof.—We are indebted to Professor Marvin
Goldberger for pointing out to us that this assumption applies
only to the scattering of neutral particles described by real fIelds.
Therefore, the subsequent equations can be used only in this case.
The application of the dispersion relations to the scattering of
charged mesons has been described to us by Professor Goldberger
in a private communication.

for large z then

g(z)
g(x)= lim dz, x real. (4)i'~'&~ 2~i ~ —w+e z—x—se
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wave expansion of the forward scattering amplitude,

f((k'+m')'*) =Q (2&+1)(o""'"'—1)/2ik,
l=0

for the scattering of a particle by a potential. Since
8&(k) is an odd function of k, it is imaginary when k is
imaginary or E&m and f(E&m) is real. A more
general argument is based on the form of the matrix
element for forward scattering due to a Hermitian inter-
action B. It is the sum of terms each of which is of the
form

Lim
I

". di dl+g
p o+ (J J

continuum
states

discrete
states

olali&(ilail ".lulls&(llalo&
(10)

(W,—W p
—i5) (W ( Wp—i5)—

where 8'0 is the initial total energy of the system and
the 8';, . are energies of intermediate states. This
expression contains an imaginary part contributed by
energy conserving intermediate states in the con-
tinuum. Under our supposition of incident particles
with E(m the only energy conserving states could be

- discrete states in which the incident particle is bound
to the scatterer. The imaginary part therefore vanishes.
The discrete states only give rise to the poles at E;.
The imaginary part does not vanish when the scatterer
is initially sufficiently excited to supply the energy
deficiency of the incident particle. Then Eq. (8) must
be revised to read

Re I f(k) —f(kp)j

kp'
E

2x 4p
dk'o (k')

k~2 k2 k~2 k 2

+P; 2E; Re
I
Res f(E) I

s =z;)

x — . (»)g.2 k2 ~2 g.2 k 2 ~2

The evaluation of Re f(k) therefore depends on the
knowledge of this function at some momentum kp as
well as on the asymptotic behavior of the bound states.
The latter information can be replaced by knowledge
of Re f(k) at as many points as there are bound states

Im f(E)=0, 0&E&m AW, (8')—

where 68' is the initial excitation of the scattering
center.

When Eqs. (6), (7), and (8) are used in conjunction
with Eqs. (5) and (1) one may change from the energy
variable to the momentum variable k= (E'—m')1 with
the result

For complicated systems such as enter nucleon-nucleus
scattering this procedure becomes cumbersome.

Equation (11) is most useful when there are no
bound states. With the choice kp=0, the equation
becomes

k' p" o (k')
Re f(k)=Re f(O)+ J'

~

dk'
2+2 ~0 k"—k2

(12)

For comparison with experiment one may evaluate the
forward scattering cross section

do (0') k'
= If(&) I'=LRe f(k) j'+ L~(k)l' (14)

dQ 16+2

APPLICATION

Equation (13) can also be useful in another way.
Since the experiment measures only the absolute magni-
tude of the scattering amplitude, there are always two
solutions, say f(k) and —f*(k), which have opposite
signs for the real part. These correspond to the two
possible choices for the signs of all the phase shifts.
Both must have a positive imaginary part in accordance
with the conservation law Eq. (1). The remaining am-
biguity may be resolved by a study of interference
sects with the scattering due to a known interaction
such as Coulomb scattering.

The causality condition, however, must exclude one
of the two alternatives, because only one is analytic in
the upper half-plane; the other is analytic in the lower
half-plane. Equation (13) gives that real part which is
consistent with causality requirements. Evaluation of
it will lead to the correct forward scattering amplitude
so that Eq. (13) will distinguish between two possible
sets of phase shifts which diGer only in sign. This
diGerentiation is particularly simple in the neighborhood
of a sharp maximum in the cross section. If 0- changes
rapidly with k, the integral in Eq. (13) is large and
positive before the maximum and large and negative
after it. For sufiiciently small f(0) or a suKciently
narrow peak, this is also the behavior of Re f(k). This
property of the dispersion relation enables one to show
that the phase shift of the strongly interacting isotopic
spin 3/2 state of the pion-nucleon system is an increas-
ing function of the energy. Therefore, it must be posi-
tive and does not have a maximum or cusp near the
"resonance. "

Since the m meson is spinless the amplitude for meson-
nucleon elastic scattering is of the form A+Be (kX Ak).
When Ah=0, there is no spin dependence so forward
scattering is all elastic. The measured forward dif-

Since a constant cross section contributes zero to the
integral, one can increase its convergence by subtracting
the limiting value for high energy, o (~),

k' p" ~(k') —o (~)
Re f(k)=Re f(0)+ P ~ dk' . (13)

2x2 ~p k"—k'
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FlG. 2. Total cross section, 21 +p, as a function of
momentum in the center-of-mass frame.
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Fro. 1. Total cross section, x++p, as a function of
momentum in the center-of-mass frame.

'Anderson, Fermi, Long, Martin, and Nagle, Phys. Rev. 85,
934 (1952); Anderson, Fermi, Nagle, and Yodh, Phys. Rev. 86,
793 (1952); Fowler, Fowler, Shutt, Thorndike, and Whittemore,
Phys. Rev. 86, 1053 (1952); G. Goldhaber, Phys. Rev. 89, 1187
(1953); A. Roberts and J. Tinlot, Phys. Rev. 90, 951 (1953);
Bodansky, Sachs, and Steinberger, Phys. Rev. 90, 996 (1953);
93, 1367 (1954); Anderson, Fermi, Martin, and Nagle, Phys. Rev.
91, 155 (1953);J. P. Perry and C. E. Angell, Phys. Rev. 91, 1289
(1953); J. Orear, Phys. Rev. 92, 156 (1953); 96, 1417 (1954);
Fermi, Glicksman, Martin, and Nagle, Phys. Rev. 92, 161 (1953);
Fowler, Lea, Shephard, Shutt, Thorndike, and Whittemore, Phys.
Rev. 92, 832 (1953); Barnes, Angell, Perry, Miller, Ring, and
Nelson, Phys. Rev. 92, 1327 (1953); Homa, Goldhaber, and
Lederman, Phys. Rev. 93, 554 (1954); Ashkin, Blaser, Feiner,
Gorman, and Stern, Phys. Rev. 93, 1129 (1954); Orear, Lord, and
Weaver, Phys. Rev. 93, 575 (1954); R. A. Grandey and A. F.
Clark, Phys. Rev. 94, 766 (1954); M. Glicksman, Phys. Rev. 94,
1335 (1954); S. J. Lindenbaum and L. C. Yaun (unpublished);
Cool, Madansky, and Piccioni (unpublished); Kruse, Anderson,
Davidson, and Glicksman, Bull. Am. Phys. Soc. 30, No. 1, 49
(1955).

s J. Orear, Phys Rev. 96, 176.(1954).

ferential cross-section should be
~
f~' where the real

and imaginary parts of f are to be calculated from
Eqs. (13) and (1).

The observed7 dependence of 0 on the momentum in
the center of mass frame has been approximated in
Figs. 1 and 2 by analytic functions for which the
required integrals could be calculated simply. The extra-
polation of the cross section to zero pion momentum
was performed with 5-wave phase shifts determined by
Orear'. ns —0.11——ti aud nt ——0.16r), (r) = k/pc).

The proton is a state of the w'+p system with

energy less than the sum of the rest masses. Therefore
a contribution to f is expected in Eq. (11) from a
residue at E; g'/2M wi—th momentum dependence
k'/(k'+p'). If conservation of isotopic spin is assumed
then the proton can only acct the phase shift for a
state of even parity and J=l=-'„ i.e., o.». However
phase-shift analyses of observed angular distributions
indicate that o,11 is quite small at least up to 100 Mev.
Therefore any contribution to n» from the proton
state is probably negligible and we have omitted it.

The results of carrying out the integrations are listed
in Table I. As was pointed out above, the change of sign

TABLE L Re f(k) for elastic scattering, vs+p.

g =k/)M 0 0.25 0.5 0.75 1.0 1.5 1.75 2.0 3.0 4.0
p Re f(k) —0.02 —0.017 0.02 0.083 0.19 0.23 —0.36 —0.61 —0.34 —0,13

between = 1.5 and 1.75 is characteristic of the behavior
of Ref(k) near a sharp maximum iu the total cross
section. Hence the expression for f(k) in terms of the
phase shifts,

Re f(k) = (1/6k) [siu2nt+2 siu2nts+sin2n&t

+2 siu2ns+4 sin2nss+2 sin2n„7, (15)

must have the same property. This restriction rules out
those solutions for the pion-nucleon phase shifts which

have a cusp-like energy dependence near the cross
section maximum. Near resonance, where the isotopic
triplet phase shifts are dominant, a comparison of Eq.
(15) and Table I implies the same sign choice for sinn

(positive) as has been inferred from the interference of
the nuclear and Coulomb scattering.

We have pro6ted from conversations with Professor
M. Gell-Mann and M. Goldberger to whom we are also
indebted for prepublication copies of their manuscripts.


