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Scattering of Mesons by Light Nuclei
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An improved optical model is used to study the scattering of mesons by light nuclei, C" in particular.
It is found that the differential cross section can be fit reasonably well if a nucleus is used which has a
diffuse edge; the Gaussian shape seems to work well for C".

I. INTRODUCTION

A N optical model is one that describes the scattering
of an incident particle by a nucleus by means of

an interaction potential which is independent of the
coordinates of the individual nucleons, and which
depends only on the coordinate of the incident particle
with respect to the nucleus as a whole. In the conven-
tional optical model' the nucleus is considered to be a
continuous medium with an index of refraction e,
with the incident particle having a wave number ko

outside and eko inside the nucleus.
The scattering of particles by complex nuclei has

been treated by Watson' and Francis and Watson'
where it was shown that the multiple scattering
formalism for elastic scattering leads to an optical
model to order 1/A, where A is the number of scatterers.
In II, it was demonstrated how an approximate
interaction potential can be obtained from the equations
describing the multiple scattering, this potential having
the simplicity of the conventional optical model. This
model seems more general than the older optical
model in that both the form and the magnitude of the
potential reQect the scattering of the incident particle
by the individual nucleons bound in the nucleus. As will

be seen later, the resulting potential is no longer
restricted to have the same form as the nucleon distribu-
tion, an inherent characteristic of the older optical
potential.

A good region in which to test this model is that of
light nuclei, where the eGect of the disuse edge is
certainly important and the description of the older
optical model is not correct. In particular the scattering
of mesons by nuclei should provide a convenient
example, as the meson-nucleon scattering is now rather
well known in the 100-Mev range, and there is some
experimental investigation of meson-nuclear scattering.

One experiment, in which the scattering of 62-Mev
mesons by carbon was measured, ' was analyzed by
Peaslee. 5 Peaslee, neglecting the multiple scattering
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and absorption, was able to fit the di8erential cross
section, which is more than twice as large at 180' than
at 90'. On the other hand the older optical model failed
to predict this large backward scattering. 4 Now the
meson-nucleon differential cross section is quite highly
peaked in the backward direction, a fact which enabled
Peaslee to obtain his result. It was hoped that this
improved optical model would be able to retain this
feature for light nuclei.

II. THE POTENTIAL

A. Derivation of the Potential

Francis and Watson define a wave matrix for elastic
scattering, Q„which is obtained from the wave matrix
by keeping only those matrix elements which leave the
nucleus with a final energy equal to the initial energy.
In analogy to the definition of the ordinary scattering
operator T, they deftne T. such that 0,=1+(1/a)T„
where a=8,+irt Hs, E,be—ing the total energy before
collision, and Ho the nuclear Hamiltonian plus the
kinetic energy operator of the meson. Then they
investigate the existence of a potential V„which is
related to T, as the ordinary interaction potential is
related to T, i.e.,

T,= V,+V, (i/g) T,.

Starting with an interaction potential composed of the
sum of interactions of the incident particle with the
nucleons, they show by taking the coherent part of the
multiple scattering equations of I that to order 1/3
there does exist a solution of (1) of the form V.= T,+et
+6; where T.=P t~(t ), (t ) being the coherent
part of 5, the scattering operator for the o.th nucleon
bound in the nucleus, e& depends on nuclear correlations
(allowing several collisions to leave the nucleus in its
initial state), and 6 gives the contribution of true
absorption. In the present calculation such nuclear
correlations were neglected, leaving vI=0. Also it is
expected that the contribution of true absorption is
small for the lighter nuclei, so the Born approximation
was used for this part of the potential. Then

U,=T,.

The meson-nucleon scattering amplitude in the energy
range of interest is given by the 3=0 and E= 1 contribu-
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tion.

where g=e" sinb; g+, g correspond to l=0, isotopic
spin ~ and —,

' respectively, while those scattering
amplitudes with two indices correspond to /= 1 with
the first index giving the isotopic spin and the second
the angular momentum (+ stands for ss and —for rs).

E, and E; are the projection operators for 3=1, J= ~3,

and J=—', ; T; and T; are the projection operators for
isotopic spin I=—,

' and —', respectively. According to
the results of recent experiments' ' the meson-nucleon
scattering can be fit by using only p++, q+, and p . After
a sum over spin and isotopic spin in which the spin
dependence disappears because the ground state of C"
has both spin and isotopic spin zero, the scattering
operator then takes the form

energies larger than this the form (3) breaks down. In
the Q.rst place, the phase shift 6++, which gives the most
important contribution to the scattering, no longer has
an energy dependence of k', and moreover in this region
of higher energy the phase shifts are of such magnitude
that g begins to differ considerably from 8; Probably
in the carbon nucleus the momenta that occur are of
such magnitude as to make the form (3) somewhat
inaccurate. In this calculation the small imaginary
part of the scattering amplitude was lumped with the
imaginary part of the potential coming from pure
absorption. This form is then assumed for the energy
dependence of the scattering operator with s and t
constant, representing an average over m.+ and m with
sum taken over spin. It might be noted that even with
a nucleus of nonzero spin the spin contribution would
be of order 1/A.

In coordinate space

where

(a,) =(t )=s+tk k',
(2s)se,

1

( )
(slT.q)= I ex p(i 'q. z)(q'l Tlq)

(2s.)s~

Xexp(iq z') it (s')d'qdsq'd't'. (4)
s= (2rl~+ri —)

(2s)se,
9++l

(2ir)'e, 3

k and k' are the initial and final wave numbers, and
e, is the energy of the meson. According to the energy
dependence of the phase shifts given by both Glicksman
and Bethe-de HoGDian, s and t are approximately
constants for the energy region 50—125 Mev. For

Xexp[—i(q' —q) z.)p(s„)d's, (5)

where p(s ) is the nucleon distribution normalized so
J'p(s)dV= 1. Using (2), (3), and (5), (4) becomes

IOOO
(sls, p) = (s+tq q') s (s') exp[iq'. (z—z„)g

(2s)s~

Xexp[—iq (z' —z )$dsqdsq'dss'dss

IOO

4Ls

40

Ch
E

FIG. 1.Elastic differential
cross section for uniform
distribution (a) with change
in slope factor, (b) without
change in slope factor.
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where B= (2s)sAt and B'= (2s)sAs. Since B')0 the
last term in (6) is repulsive corresponding to the
repulsive s-wave contribution from the meso'. -nucleon
scattering. The other two terms arise from the p-wave
contribution to the Ineson-nucleon scattering and are
essentially different in character. The first term is
ahvays attractive, and is equivalent to a mass change
inside the nucleus. The second term, depending on the
gradient of the nuclear shape, is essentially a surface
term. For large nuclei, which according to current



B. Uniform. Distribution

If we use the Schrodinger equation with a uniform
distribution, this potential divers from the form of the
old optical model essentially only in that it contains
the gradient term, which is nonzero only at the bound-
ary. To estimate the effect of this term for a square well,
the radial Schrodinger equation with p= p(r),

1 d'R 1 2dR d dR
+ +Bp(r) — +8 p(r)—

2e, dr~ 2e, r dr dr dr

l(l+1) 1
+ 8'p(r)—

. 26q
+Bp(r) R+ER= 0,

is examined. Assuming the nuclear density goes to zero
in a distance 26 about the assumed nuclear radius, the
equation was integrated through this region, giving in
the limit as 5 goes to zero:

models have a rather constant density in the center,
this term contributes only in the small region at the
surface. However, in light nuclei, where the entire
nucleus is surface, this term is quite important. In fact
the strong l-dependence of this part of the potential
will be seen to be the property which enables us to
6t the back-scattering of mesons from light nuclei.

fts given by Hill and Ford. s This gives a region of
constant potential 0&~&6.19X10—", and in the region
6.19X10-13&r& 7.59X10-13

2esV = {2esps/L1+2eap&8 (5.42 —0.714r)j}L0.7148d/dr
+ (2e,88+8') (5.42 —0.714r)j.

In the scattering by large nuclei it is expected that the
tendency for back-scattering will not be observed, as is
predicted by the present calculation with the disuse
edge. The uniform distribution, however results in the
phase shift for /=-6 to be about twice the size of that
for )=5; that is the partial wave corresponding to the
impact parameter approximately that of the radius
of the nucleus is strongly affected by the square edge.
As seen in Fig. 2, this effect is most noticeable in the
backward direction where there is interference between.
alternate waves. By this it is seen that the uniform
distribution is quite a poor approximation for the
elastic scattering from even a large nucleus when this
potential is used.

C. Gaussian Distribution

There is some evidence that the nuclear distribution
of C" resembles a Gaussian" pg

——ps exp( —r'/o'). Ps
and o. were determined by setting J'pde= 1 and making
(r')~„——J'r'p(r)de the same for this distribution''as the
uniform case. This gave o=1.45rs and ps ——1/(ops. )s

(dR/dr)+= (1+2e,Bp ) (dR/dr) (7)
l000

where (dR/dr)+ and (dR/dr) are the outside and inside
derivative respectively at r=R. The phase shifts are
found by matching logarithmic derivatives at the
boundary, including the factor given by (7). Figure 1

shows the differential cross section for C"- with and
without this change in slope factor, where the phase
shifts of Bodansky et a/. ' have been used to determine
8 and 8'. (2e,Bp„=—0.32, 2c,B'p res= 0.15.)

Just the presence in the potential of the term depend-

ing on the derivative of the nuclear shape indicates
the square distribution is not useful. However, a better
test of this distribution is found in a heavier nucleus,
where more partial waves enter into the problem and
the effect of the discontinuity of the potential is more
clearly illustrated. Since the effect of absorption is
the major one in this region, the application of (6) is

clearly incorrect as far as the description of meson
scattering by a heavy nucleus is concerned; however,
to investigate the properties of this potential the
following calculations, were done. First a phase-shift
analysis was made using a uniform distribution with a
radius of RO=6.93X10 " cm, corresponding to Pb
and ro ——1.17X10—"cm. The other nuclear distribution
used was uniform in the center and dropped linearly
to zero in one meson Compton wavelength with a
nuclear volume equal to that obtained with the uniform
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FIG. 2. Elastic diAerential cross section for large nucleus using
(a) diffuse edge and (b) uniform distribution.
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=2.97p„. In order to avoid some of the inaccuracies
present in the potential (6) the problem was set up in
momentum space where the Schrodinger equation
takes the form

2xA
(ep—lV~) p ~(q) = L~(q, q')

A variational principle in momentum space" was used
to get an approximate solution. The trial wave function
used was of the form of the first Born approximation.

To check. the accuracy of this method, the 5=0 phase
shift for the potential

where
+P(q, q') q A(q q')—p (q')d'q']

1.5 1
V= —.exp[ —(r/o)']

26q fp

2x
((qI t-

I
q') &=—[~(q,q')+P(q, q') q q']

u and P now take the place of s and i which appeared in

(3). Their form is chosen to fit the experimental data
for elastic scattering. ' The same form is used for the
oG-energy-shell scattering, not a very good approxima-
tion but the natural one to make with no other experi-
mental evidence. Also, because of the rapid decrease of
the magnitude of the distribution away from the most
probable value, the scattering near the energy shell
will be most important. Upon breaking the equation
into component waves, the resulting one-dimensional
equation is

(e.—~'~) p ~(q) = — &~(q, q') ~ i(q') dq',

where
(2m)' t'

«(q, q') = — ~~(~)
6q —1

x I ~(q, q')+p(q, q') qq'I ]expL ——:o'Iq —q'I']@.

There will also be two imaginary contributions to
the potential, one coming from the imaginary part of
the scattering amplitude, a term —ip /2X„where v

is the velocity of the incident meson and ), is the
mean free path for scattering in the nucleus, and the
other given by —in /2X„where X, is the mean free
path for absorption. Using A as given by Francis and
Watson "

1 Z (qi'1—=4pr
I I

—[1.2X10 ' cm'],
Vg ( Bzc) 'v~

and taking A, as an average of scattering from protons
and neutrons

1 1 A (o„+oN) A

(ques

16.6I —
I

&&10 'r cm', (10)
X, 2 Vg 2 V~ Ek)

where O.„and 0.~ are obtained from the curves of
Anderson et al. ,

" and the factor —,
' is an estimate of

the exclusion principle eGect. Because of the approxima-
tions going into the derivation of Eq. (8) it did not
seem worthy of solution by lengthy numerical methods.

"Norman C. Francis and Kenneth M, Watson, Am. J. Phys.
21, 659 (1953).

's Anderson, Fermi, Lang, and Nagle, Phys. Rev. 85, 936 (1952).

was found in coordinate space and in momentum space
by use of the Kohn variational principle with a trial
wave function obtained in the same manner as the one
used in solving (8). The Born approximation result
is identical, but the phase shift found by the variational
principle was about twice the size as the phase shift
found by integrating the diGerential equation in
coordinate space. The source of the discrepancy is
probably the poor choice of trial wave function. A
comparison of the first Born approximation wave
function in momentum space and the Fourier transform
of the integrated wave function in coordinate space
indicates the high momentum components of the wave
function are considerably underestimated by the
Born approximation, a fact which would considerably
alter the integrals used in the variational expression.

Because of the uncertainty in the result of the varia-
tional principle calculation the problem was set up in
coordinate space for comparison, using the potential
(6) with the gaussian density. As mentioned before
this potential is not correct for a deep well, a situation
obviously present near the center of the nucleus when
a gaussian distribution is assumed. However the form
of the potential seems to have some measure of validity,
although the numbers 8 and 8' would not be correctly
given by the experimental data on elastic scattering.
Choosing the magnitude of 8, the magnitude of the
cross section in the forward direction and the forward
to backward ratio of scattering could be fit by using a
ratio of B'/B which is approximately that predicted by
experiment. Again the imaginary part of the potential
was taken in the Born approximation. The resulting
potential is (p=r/o. )

2p
2epV= (1+2e,pp exp( —p') ' 2epBpp exp( —p')——

0 dp

+2eq(2epEB+B')pp exp( —p') +Ai exp( —pp). (11)
J

Using the real part of this potential the l=0, 1 phase
shifts were found by numerical integration of the
Schrodinger equation. The contribution of the higher
waves was found by using the Born approximation
amplitude with the 1=0, 1 partial waves subtracted out.
The results in Fig. 3 are for 2eqBpp= —0.61 and 26qB pprp'
=0.3; A=0.5(T. A more exact treatment would have
included the imaginary part of the potential in the

"Walter Kohn, Phys. Rev. 84, 495 (1951).
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l=0, 1 phase shift calculation, but the front to back
ratio of the cross section is rather insensitive to this.

I000

III. DISCUSSION

The optical potential (6) is seen to have the ability
to predict the large backward scattering in light
nuclei, while indicating that the elastic scattering will

be monotonically decreasing for heavy nuclei. It is
the strong l dependence of the surface term which
produces this eGect. Near the origin the spherical
Bessel function has the well-known form p'/1 3 .
(2l+1), a form not too dissimilar to that of the wave
functions obtained by numerical integration. Assuming
this asymptotic expansion the real part of the potential
with the gaussian distribution near the origin is of the
form (lgO);

46qBp0
2e, V~= (1+2e,ps) ' l+ (2eEB+B')2eps

2

In this region the surface term is seen to be of increasing
importance with increasing /-values. In particular the
derivative of the l'=0 wave function is zero near the
origin and is negative for a considerable region where
the density is largest, resulting in a potential of smaller
magnitude. On the other hand the surface term adds
to the negative potential for l=1, increasing the phase
shifts. Now in describing the scattering of 62-Mev
mesons by a light nucleus only a few partial waves are
important, in fact only four phase shifts were found
large enough to eGect the cross section in the carbon
scattering. Since the surface term produces a marked
decrease of the s-wave scattering with respect to the
p-wave scattering, with these two partial waves being
certainly the most important, the scattering is greatly
increased in the backward direction. In heavier nuclei
this eGect is almost completely lost, for the surface
term is zero in the region where the l= 0 wave function
has a negative derivative, indeed this term only
contributes in the small region of the diGuse edge.
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FIG. 3. Differential cross section for the scattering of 62-Mev
pions on carbon with a Gaussian distribution. The experimental
points are obtained by Byaeld ei al (referenc. e 4) by an averaging
over x+ and m. , with the Coulomb scattering of a uniformly-
charged sphere subtracted out.

Since the scattering produced by a uniform distribu-
tion is so di6erent from that resulting from a distribu-
tion with a diffuse edge, it is suggested that this
potential could be used to investigate nuclear shapes.
A phenomenological treatment in the region where
absorption is not too strong might be successful, but
the treatment of the Coulomb eGect and of the imagin-

ary parts of the potential would have to be improved.
For heavier nuclei it is doubtful that a comparison with

experiment would select between the diffuse edge used

and other shapes which recently have been suggested.
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