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Nuclear Dispersion Contribution to High-Energy Electron Scattering*
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An expression for the contribution of virtual intermediate states of the nucleus (nuclear dispersion) to
the elastic and inelastic scattering of high-energy electrons is obtained. The closure relation for the nuclear
states is used to put this in a form which depends only on the properties of the initial and final states. An
estimate of this contribution in comparison with the first-order scattering shows that it is expected to be
small but not negligible for the light elements and somewhat larger for the heavy elements, when the
electrons have several hundred Mev energy. The estimate is only valid for large scattering angles. More
detailed knowledge of the one- and two-proton transition charge densities would be required in order to
extend the range of validity. It seems likely that the bulk of the dispersion correction would be taken into
account if the correct electron wave functions in the static Coulomb field were to be used in place of plane
waves.

I. INTRODUCTION

~CALCULATIONS of the elastic scattering of high-~ energy electrons from nuclei have for the most
part regarded the nucleus as a rigid structure with no
internal degrees of freedom. Such calculations have been
done exactly for spherically symmetric charge dis-
tributions, ' and approximately for spheroidal charge
distributions that can be set into rotation. " The
internal degrees of freedom of the nucleus, which
manifest themselves in the existence of excited nuclear
states, give rise to inelastic scattering and to dispersive
contributions to both elastic and inelastic scattering.
Inelastic scattering has been considered in a number of
papers. ' Dispersion effects, caused by transitions to and
from virtual intermediate states of the nucleus-electron
system, have recently been discussed in a general way
by Lewis. 5

The object of the present paper is to reduce the rather
complicated formula for the dispersion contribution to
a form in which an estimate of its order of magnitude
can be made in some situations. In doing this, some of
Lewis' results are rederived. The following approxi-
mating assumptions are made. (1) The electron inter-
acts only with the charges of the nuclear protons. (2)
The matrix element is calculated only to second order
in this interaction. (3) The sum over intermediate
nuclear states is estimated with the help of the closure
relation; this means that a suitably averaged virtual
excitation energy of the nucleus must be assumed.

(4) The reduced wavelength of the electron is taken to
to be small in comparison with the nuclear radius.

The resulting expression involves integrals over one-

and two-proton transition charge densities between the
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' See Yennie, Ravenhall, and Wilson, Phys. Rev. 95, 500 (1954),
and earlier papers cited there.

s L. 1. SchiG, Phys. Rev. 96, 765 (1954).' Downs, Ravenhall, and Yennie, Bull. Am. Phys. Soc., 29, No.
8, 29 (1954).' See reference 2 and earlier papers cited there.

Robert R. Lewis, Jr., thesis, University of Michigan, 1954
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initial and anal states of the nucleus. The order of
magnitude of this dispersion contribution in comparison
with the 6rst-order scattering can then be found from
simple assumptions concerning these densities.

II. EXPRESSION FOR THE CROSS SECTION

The hrst-order matrix element for the transition
from an initial state Pp of the nucleus and electron
energy and momentum Ep, Akp, to a final state fr of the
nucleus and electron energy and momentum E~, Akf, is

Z

Vrp
" ——P Pf exp( —ikr r)arse'[r —R, [-'Po

;=lJ ~

Xexp(iko r)drNdr, (1)

where ajo is the matrix element of the Dirac unit
operator between initial and Anal electron spin states,
and J'drtr denotes integration over the coordinates of
the Z protons and A —Z neutrons. We add and subtract
i(ko —kf) R; in the exponent, and integrate over the
new variable r—R; in place of r, to obtain

Z

Vf &' pi(4rre'a~p/q')P Pr exp(iq R )Podrtr, (2)
i 1 J

where Aq—=A(kp —kr) is the momentum transfer from
the electron to the nucleus. The di6erential scattering
cross section is

o &"= (kf/27r Ac)'-'SfSp
i Vapo l i

' (3)

o&"=(4e'Ef' cos'(-,')8/Ac' q)

Z

X Q gr exp(iq R,)gpdrtv . (4)

where S denotes a sum over the two positive energy spin
states. In the extreme relativistic region, rsSrSptarp~s
=cos'(-', 8), where 8 is the angle between kp and kf, so
that the first-order cross section becomes
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It is convenient to write Eq. (4) in terms of the one- and Eqs. (5) and (7) into (2):
proton transition charge density

a &"= —(k~/2vrhc)'(4ze'/q') F(q)

pgp& '(R.)—= yi(Ri Rg)g 8(R.—R,)
i=1 X (dk„/Sz') -'Q(E' —E ')-'

which has the property

Xfo(Ri Rx)dri dry, (5)
X I E„(1+COSH)+ I E„l (COSHp, +COSH', ))

z
pge'lr —R;I 'P„

(1)pp)
' (R.)dr. =Zopf p

In terms of the form factor
Xexpl i(k„—kr) r)drivdr

F(q)—= pro&" (R,) exp(iq R,)dr, (7)
Xexpl i(ko —k„) r')dry&'dr'+c. c. (12)

XZ
I

&exp( ikf —r)ar, e'Ir R'I '0'-
i=1 Q

Xexp(ik„r)drivdr
r~

XP '

P
' exp( —ik„r')a„ep'

4=i J

X I
r' —R

I
'lip' exp(ikp r')dry'dr'. (9)

Here, the subscript v refers to the intermediate electron
state, and e to the intermediate nuclear state of energy
e„.P„consists of a summation S' over all four (positive
and negative energy) spin states, and an integration
Jadk„/84r', where the contour & passes under the pole
on the positive k„-axis.

The di6erential cross section through second order
is a&'&+&r&'&, where o. &'& is given by Eq. (8) and a. &'&

arises from the cross terms between Vfo&" and Vfot."&:

a & i = (kr/2or)sa) —SrSpVyp& i Vrp& i+c.c. (1O)

here, "c.c."denotes complex conjugate. In the extreme
relativistic region:

zSrSoS„&srp (e„—«+Ep —Ep) &ifp&rpo

= z (E' E') 'SfSoS„'away„(E„+—E )&J.o

=-', (EP—E ')—'LE„(1+COSH)

+ I E„
I
(cosHp„+cosHr„)), (11)

where E„=Eo+« e, Hp„ is t—he angle —between k, and

k„, and Hf„ is the angle between kf and k„. We therefore
obtain from substitution of Eqs. (9) and (11) into (10),

Eq. (4) becomes

a&"= (4e4E ' cos'(-'8)/A4c4q4)
I
F(q) I

' (8)

The second-order (dispersive) scattering is obtained
along with the first-order scattering if Vrp&'& in Eq. (3)
is replaced by Vfp&'&+ V~p&" where

Vro"'= —Z Z(e- —«+E.—Eo) '

The two most promising methods for dealing with

Eq. (12) are (1) to first perform the r, r' integrations,
and (2) to first perform the k. integration. The first
procedure can be carried through by adding and sub-

tracting i(k„—k&).R; in the first exponent, and inte-

grating over a new variable r—R; in place of r. The
integration over the first set of nuclear coordinates then
gives a form factor with the argument k„—k~. The
second (primed) set of coordinates is treated in the
same way. The difhculty here is that the resulting
integration over k„cannot be performed analytically
even for extremely simple assumptions about the form

factor, ' and more important, we were unable to find

approximations that would enable us to estimate orders

of magnitude.
We have therefore investigated the second procedure.

The k„ integration is easily carried through with the

help of a convergence factor, and the remaining inte-

grations over space coordinates can then be estimated

by making use of the closure relation for the nuclear
states and the assumed disparity in magnitude between

1/kp and the nuclear radius. The k„ integration leads to

z z t
a &s) = —(cop s/Sz. s)Pcoqs)F(q)g P P

n i 1 j=1

X[E„(1+COSH+COSHp, +COSHf, )

+ (i/p) (COSHp, +COSH', ))
Xexpi(& p+ko r' —kr r) (p I

r R'I I
r' —R/I ) '

Xgfg„g Pp drivdriv drdr +c.c. (13)

Here, E„=E„/Ac, 8
—= r—r','H—p, is the angle between ko

and 8, and 8~, is the angle between ky and y.

4 The corresponding integrals with unit form factor (point
charge) are evaluated by R. H. Dalitz, Proc. Roy. Soc. (London)
A206, 509 (1951), who also cites earlier papers; this and other
cases are discussed in reference 5.
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III. ESTIMATION PROCEDURE

The closure relation for the nuclear wave functions
states that

4-4-'g(R ')dr~'= g (R ),

for any function g that is antisymmetric in the coor-
dinates of identical nucleons. This cannot be applied
directly to Eq. (13) since the summand there also
depends on e through the quantity E . However, we
assume that the main terms in the summand correspond
to moderate excitation of the nucleus, for which E„is
not greatly different from kp. Then E„and 'exp(iEp)
are slowly varying functions of e, and we assume that
we can write to good approximation:

The result is

—(e'k '/Spr'5sc'q') F(q) I ' [Ej
Xexp(i(EP+kp r' —kr r)}

x(plr —R.
l
Ir' —Rbl) '

Xpfp (Rg)Rb)dr~drbdrdr'+c. c. (19)

Equation (16) can be simplified by adding and sub-
tracting i(kp —k~) R, in the exponent, and replacing
the integrations over r and r' by integrations over new
variables s —= r—R, and s'—:r' —R,. Then with the help
of (7), Eq. (16) becomes

—(e'kf'/Sx'll'c'q')
I

E (q) I' ~ [E]

2 „ f(E-)0-0-'g(R ')d ~'=f(E)g(R ), (14)
n J

where we expect E to be of the order of and probably
somewhat less than kp. r With this assumption, Eq. (13)
becomes

Z g
o."'= —

(esker'/Sm')pic'q')

F(8)P P
7,'=1 j=1 6 eJ'

Xexp{i(EP+kp r' —kf r)}

X(p Ir—R'I I

r' R,'I) VrO—pdr~drd-'+c. c., (15)

where [Ej denote the square bracket of Eq. (13) with
E„replaced by E.

We now break up Eq. (15) into two pa, rts, according
as i= j or i'. The first (one-proton) part can be
rewritten with the help of Eq. (5) as

—(e kP'r/Swk' cqs')F(q), [E$

p( (Ep+kp r kf'r)} (pl r —R.
I I

r' —R.l)

Xpfpl i(RN)dr))drdr +c c. (16).
The second (two-proton) part can be expressed in terms
of the two-proton transition charge density

Z Z

prpt'&(R. ,Rb) —= ~ lt, (Ri R~)g P S(R.—R~)
J i=1 a+i

X5(Rb—R;)Pp(Ri Rg)dri dry) (1'1)

which has the properties

Xexp(i(EP+kp s' —k~ s)}(pss') 'drdr'+c. c., (20)

where g=s —s'. Equation (20), omitting the factor

I
F(q) I

', can now be recognized as being close to a special
case of Eq. (13).In the latter we assume for the moment
that only the m=0 term contributes to the sum, that
the initial and final states are the same, and that fp
represents a single point charge. This corresponds to
elastic scattering from an infinitely massive point
proton, in which case E„=kp and F(q) =1. Then
Eq. (13) is known from previous work' to be equal to

o."i(point) =+(we /f'bqc) (cosecsrg —1). (21)

If now we assume that E in Eq. (20) is nearly equal to
kp, Eq. (16) or (20) is approximately equal to IF(q) I'
multiplied by Eq. (21). Combining this with Eq. (8),
we find that the sum of the first-order scattering and the
one-proton part of the second-order scattering is

(4e4Frs//A4c4q4)
I
F(q) I

'
X [cos'-,'0+ (pre'/Ac) (sin-', e—sin'-', 0)j. (22)

To this must be added the two-proton part of the
second-order scattering, which we now proceed to
estimate from Eq. (19).

We start by changing the four variables of integration
from r, r, R„Rb to

s—= r—R., s —= r —Rb, S—=—,(R +Rb), y=—r—r;
the Jacobian of this transformation is equal to unity.
The factor kp r kf' —r in the exponential then becomes

q S—Kp. g+-,'q s+-,'q. s', where Kp —=—,'(kp+kr).

Equation (19) is now equal to

Pfp (R Rb) Pfp (Rb)R )

) pfp "(R.,Rb)drb= (Z—1)pfp 'i(R.).

(18) —(e'ky'/Srr' Pi'csq'))F(q) I I ' [E]~. Ja
Xexp(i(q s+Ep —Kp 9+-'q s+!-q s')}

' Note that even when it is assumed that the right side of Eq.
(14) is separable, as written above, X need not lie within the range
of variation of X„, since f„P„) is not always of one sign as I
changes for fixed R;, R&'.

X (pss ) pfp (Rz)Rb)dredrpdrdr'+c. c. (23)

'As pointed out by Lewis (reference 5, pp. 69—70), this ap-
proximate equality becomes exact in his static limit.
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In order to estimate Eq. (23), we assume that pro"& is
a slowly varying function of its arguments, and con-
sider first the dependence of the integrand on s. If —,'q
is large in comparison with 1/R, where R is the nuclear
radius (more precisely, R is the distance over which

pf 0
&" varies appreciably), the rapid oscillations of

exp(-', iq s) prevent contributions to the integral from
points much more distant from each other than 2/q
about the point at which the coefficient of exp(-,'iq s)
is a maximum, namely s=0. This conjecture is readily
verified by examining the integral

J's—' exp(-,'zq s ns)dr—=4m/(-,'q'+n').

As long as n((~q, this is independent of e,. in other
words, as long as exp( —ns) is not appreciably different
from unity within a distance of order 2/g of the origin,
it makes little difference how it behaves. The same type
of behavior can be demonstrated for other smoothly
varying coeflicients, such as exp( —Ps') in place of
exp( —ns).

We thus conclude that the bulk of the s integration
comes from a region of approximate linear dimensions

2/q about the origin. The same is true of the s' inte-
gration. In the case of the g integration, the length
that corresponds to 2/q above is 1/(E —Eo), since
expi(Ep —Ko 8) varies most slowly when 8 is parallel
to Ko. If we assume that kr and E are roughly equal to
ko, then g=2ko sin —,'8 and E Eo ko(1—c—os—,'8)——. Thus
the present approximation requires that both hot sin-,'8
and koR(1 —cos-', 8) be large in comparison with unity.
Since the first of these quantities is never smaller than
the second, we require that

koR (1—cos28)))1. (24)

The s, s' and 8 integrations in (23) may now be
carried out separately with the help of convergence
factors, and R, and Rq in pro'2i replaced by their values
when s=s'=8=0, namely R,=Rb S. The——s and s
integrals are each equal to 16m/q', and the 8 integral
is equal to (87r/ko) (1—[E'+Eko cos'(-,'8)$/(E' —Eo'))
if we assume that k~—ko. If we further assume that
E—ko, this last becomes —(16m./ko) cot'P8). With
these approximations, Eq. (23) becomes

+ (1024m.e'kr'/k'c'koq') cot'(-'8)

)&Re F(q) pro&" (S,S) exp(iq S)dre, (25)

where Re denotes the real part of the following square
bracket.

As a further estimate, we assume that the value of
pro~'i(R„R&) when Rb=R, is approximately equal to
its average value as R~ varies over the nucleus, which
is its integral over R~ divided by the nuclear volume:

proni(R, R )—(3/4m'R )~ prpi i(R,Rg)dry. (26)

Because of the second of Eqs. (18), the right side of
(26) is equal to [3(Z—1)/4~R'Jp~o"&(R, ); thus with
the help of Eq. (7), we find that

p~o&2&(S, S) exp(iq S)dre=[3(Z —1)/4mR~JF(q). (27)

Substitution of (27) into (25) gives as our final estimate
for the two-proton part of the second-order scattering

[768e'kr'(Z 1)—/fi'c'R'koq']
t
F(q) ~' cot'(-,'8); (28)

this is to be added to Eq. (22).

IV. DISCUSSION

The importance of the dispersion contribution to the
scattering cross section is measured by the ratio of the
second to the first bracket term in Eq. (22) for the
one-proton part, and by the ratio of (28) to (8) for the
two-proton part. The first of these is less than or of
order ~/137 for all angles, and hence at most of the
order of a few percent. The second ratio is

Q =—[48 (Z—1)e'/Acko'R'$ cosec4(~8).

Equation (29) is however only a valid estimate if the
inequality (24) is satisfied. If 8 is not too large, (24)
can be multiplied through by 1+cos-,'8=2 to yield
cosec'(-', 8)«—',koR. Substitution into (29) then shows
that Q must be small in comparison with

12(Z—1)/137k—oR

in order for the estimate to be valid. For 200-Mev
electrons, and assuming that E.= 1.22 ')& 10 " cm,
8=0.16 for carbon and I'=0.97 for gold; for other
electron energies, I' is inversely proportional to the
energy. Thus whenever our estimate (29) is valid, the
dispersion correction to the first-order scattering is
reasonably small, for electrons in the several hundred
Mev region.

The main difhculty with our estimate is its restricted
range of validity. If, for example, we interpret (24) as

meaning that the left side must be at least equal to 2,
then for 200-Mev electrons our estimate is valid for
8~148' in the case of carbon and 8~88' in the case
of gold, with the limiting angle decreasing as the elec-
tron energy increases. For these two limiting angles,
the ratio (29) is Q=0.098 and Q=0.35, respectively.
It is apparent, from the derivation of (24) that the
validity range cannot be increased without more
detailed knowledge of the two-proton transition charge
density p~o(2).

It is worth noting that insofar as our estimation
procedure is reliable, much of the dispersion contribu-
tion wouM be included in a first-order calculation that
starts from a correct initial wave function. To see this,
we write down that part of the first-order perturbed
initial state wave function that arises from the nuclear

ground state only and from all electron states; in the
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notation of Eq. (9), this is

fp ep exp(iko. r) —P (L„—Eo) 'e. exp(ik„r)

2
XZ fo' exp( i—k. r')a„oe'~ r' —R

J

—'po'

Xexp(iko r')dr~'dr' (30)
J&

where Np and N„are constant spinors. Equation (30) is
what would be obtained to first order by regarding the
nucleus as a rigid charge distribution, and so is included
in the numerically calculated electron wave function. '
If now Eq. (30) is inserted in the first-order matrix
element (1) in place of /pup exp(ik r), we obtain Eq. (1)
together with that part of Eq. (9) that arises from the
=0 term in the summation over intermediate nuclear
states n. Thus if we were to make a first-order calcu-
lation using the correct initial electron function in
place of a plane wave, ' the correction due to dispersion
would not be given by Eq. (13), but by (13) with the
term m= 0 omitted from the summation over e. In such
a case we must therefore subtract from (23) the quantity

Xexp(i(q S+kpp —Kp y+-'q s+-'q s'))

X (pss') pro&'~ (Ra)popo&(Rb)drsdr pdrdr'+c c (31). .

in order to obtain the dispersion contribution.
Equation (31) can now be estimated in the same way

as Eq. (23), by setting Rb ——R„and either approxi-
mating prp

' (K) by (3/krR') J'pro"'(R. )dr, or ap-

'A useful approximation for this purpose has been found by
Vennie, Ravenhall, and Downs, Bull. Am. Phys. Soc. No. 8, 29
(1954).

proximating popo~(R, ) by (3/4prRp) J'pop&'~(R, )dr, . Be-
cause of Eq. (6), the first of these is 3Zhgp/47rR' and the
second is 3Z/4rR'. If we average these two results, we
see that our estimate for Eq. (31) is the same as (28)
except that Z —1 is replaced by —',Z(1+8qp). Thus, very
roughly, the use of the correct initial electron wave
function is expected to reduce the dispersion correction
to inelastic scattering by about a factor of two, and to
nearly cancel the dispersion correction to elastic scat-
tering. Another way of arriving at the same conclusion
is to assume that in Eq. (13), products of the form

are rapidly varying functions of the nuclear coor-
dinates unless m=m. Then the principal terms in the
sum will arise from v=0 for elastic scattering (this is
included if the elastic scattering is calculated numeri-
cally), or from v=0 and rb= f for inelastic scattering.
In the latter case,

~ Py ~

' should not be greatly different
from ~Pp~', so that something like half of (13) is ob-
tained by keeping only the term with m=0. This
suggests that the first-order inelastic scattering calcu-
lations could be further improved by using correct
electron wave functions for both the initial and final
states'; the final state function must of course represent
asymptotically a plane plus ingoing spherical wave. If
this were done, both the v=0 and I=f terms in Eq.
(13) would be retained.

It should be emphasized that the remark. s in the last
paragraph are little more than an indication that the
situation is improved by using correct electron wave
functions instead of plane waves, which is almost self-
evident anyhow. Reliable estimates of the degree of
improvement cannot be made without more detailed
knowledge of the one- and two-proton transition charge
densities.
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