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Since the major contribution to the sums comes from
I. g, one sees that large g implies large I.. Here the
eGects of quantization are small, and in this way the
calculation becomes classical.

The particular case )=0 is not of too much intrinsic
importance, but it does serve to illustrate several typical
features of the problem and the importance of more

accurate calculations for the general case. Such calcu-
lations are in progress.
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In the consideration of the independent-particle model, a dis-
tinction can be ma, de between the spacing D of the levels of the
whole nucleus and the spacing d of the levels of individual
nucleons. Except in the immediate neighborhood of the normal
state of closed-shell nuclei, d&&D. In the "giant-resonance" inter-
pretation considered here, the deviations from the independent-
particle model are strong enough to mix many states of the whole
nucleus, but the mixing is restricted to an energy range which is
less than the order of d, According to this interpretation, the
reduced particle widths of the levels of the compound nucleus are,
on the average, anomalously large close to the energy values of
those states of the independent-particle model which correspond

to an unexcited target nucleus and a virtual level of the incident
particle. As a consequence, the nuclear cross sections have a gross
structure which is similar to a giant resonance, such as is implied
by the complex square well representation of the nucleon-nucleus
interaction. The position, width, and height of these maxima in
the average cross sections are expressed in terms of the parameters
of the independent-particle model and the departure of the actual
nuclear potential which are responsible for the inaccuracy of this
model. It is shown, however, that the conventional nuclear poten-
tial gives far too large values for the widths of the giant resonances
(that is, for the imaginary part of the presentative complex square
well potential).

I. INTRODUCTION

ESHBACH, Porter, and Weisskopfi have shown
that a complex square well potential gives an

accurate representation of some of the features of the
neutron-nuclei interaction data at low and intermediate
energies (&3 Mev), such as the total cross section
measurements by Barschall, Nereson, and collaborators
and the angular distribution data of Walt and Barschall. '

*Work performed under the auspices of the U. S.Atomic Energy
Commission.' Feshbach, Porter, and Weisskopf, Phys. Rev. 90, 166 (1953);
96, 448 (1954); R. K. Adair, Phys. Rev. 94, 737 (1954). The first
attempt to interpret the long-range fluctuations of the neutron
cross sections by means of a simple potential is due to K. W. Ford
and D. Bohm, Phys. Rev. 79, 745 (1950). A similar model was
used for the explanation of the high-energy cross sections by
Fernbach, Serber, and Taylor, Phys. Rev. 75, 1352 (1949). In
fact, the early explanations of the large neutron cross sections by
Amaldi, D Agostino, Fermi, Pontecorvo, Rasetti, and Segre t Proc.
Roy. Soc. (London) A149, 522 (1935)j, by H. A. Bethe /Phys.
Rev. 47, 747 (1935)g, by G. Beck and L. H. Horsley )Phys. Rev.
47, 510 (1935)j by F. Perrin and W. M. Elsasser PJ. phys.
raclium 6, 194 (1935)g, were all based on a similar model. How-
ever, Feshbach, Porter, and Weisskopf were the first ones to
recognize that the cross section obtained from the simple potential
is not the actual cross section but only its average over many
resonance levels, and they were the 6rst ones who thoroughly
explored the consequences of their model.

s H. H. Barschall, Phys. Rev. 86, 431 (1952); Am. J. Phys.
22, 517 (1954); N. Nereson and S. Darden, Phys. Rev. 89, 775
(1953);94, 1678 (1954);Walt, Becker, Okazaki, and Fields, Phys.

It has also been shown by them and by one of us' that
one implication of such a representation is that the sum
of the reduced neutron widths p&

' per unit energy
interval of the levels X of the compound nucleus has a
giant resonance-like dependence on the real energies E~
of these levels. This sum plays a decisive part in the
theoretical development and is referred to there as the
strength function s„(Ei,)=(yq„')A,/D, where D is the
mean spacing of the E~. The maxima of the giant
resonances are associated with the positions E„of the
levels p of the real part of the representative potential,
and their widths 8'„are related to twice the imaginary
part. It is presumed that the real part of the potential
is essentially that potential which determines the con-
hguration assignments in the shell-model theory, while
the imaginary part is considered as representing the
departures from this theory which are expected to be
important at the higher excitation energies involved in
scattering and reaction phenomena. Although it is
beyond the scope of the complex potential representa-
tion to specify the properties of the individual resonance

Rev. 89, 1271 (1953); Okazaki, Darden, and Walton, Phys. Rev.
93, 461 (1954); M. Walt and H. H. Barschall, Phys. Rev. 93,
1062 (1954). See also the early work of Fields, Russell, Sachs, and
Wattenberg, Phys. Rev. 71, 508 (1947).' R. G. Thomas, Phys. Rev. 97, 224 (1955).
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levels (that is, the fluctuations), it does give the aver-
ages over many such levels of the total cross section and
the cross section for compound-nucleus formation, the
latter being interpreted as the sum of the contributions
to reaction, elastic and inelastic scattering processes
which proceed through the intermediary of a compound
nucleus. In the interpretation of Feshbach, Porter, and
%eisskopf these averages are found to reQect the giant
resonance nature of the strength function s„.

In view of the repeated success of the complex poten-
tial representation, 4 it is natural to seek a deeper under-

standing of it, that is to determine what it is a sub-
stitution for; one would like to be able to relate the
imaginary part of the potential to the internucleon
interactions, the density of nucleons, etc. , and to
determine whether other representations exist which

may even be more satisfactory. One would also like to
know if the complex potential and other such repre-
sentations involve any implications concerning the
decay of the compound nucleus; that is, if it is possible
to distinguish between the diGerent processes, such as

(n, ss'), (n,p), (rs,cr) which comprise the cross section for
compound-nucleus formation. These matters are inves-

tigated here by decomposing the wave functions for the
levels of the compound nucleus into a sum of the
products lt„of the stationary-state wave functions of

the residual nucleus and the wave functions for a single

neutron (or proton) moving in an appropriate average
reu/ potential of the residual nucleus.

The model which forms the basis of the following

giant resonance interpretation may be considered as
intermediate between the independent-particle model

and the uniform model. In order to explain its character,
it is necessary to define, within the independent-particle
model, two types of level spacings: the spacing D of the
levels of the whole nucleus and the spacing d(»D) of

the individual particle levels. Although the former is at
least approximately the same order of magnitude as
the actual level spacing, i.e., less than a few thousand

volts whenever one can speak of average cross sections,
the latter is greater than several Mev even in the heav-

iest elements. The independent-particle model is ac-
curate whenever the matrix elements of the Hamiltonian
which connect the various combined states lt „are small

compared with D. In this case the real, characteristic
functions Xz of the Hamiltonian contain essentially

only one ip„, the admixture of adjacent li „being small.

In the opposite case of the uniform model, the X~ will

contain many iP„with roughly equal coefficients, in-

cluding those f„whi hdciffer in the excitation of a single

nucleon, the independent-particle energy of which
diQ'er by d or more. With such complete mixing of the

g „,one will find hardly any trace lef t of the independent-

s Ostrofsky, Breit, and Johnson, Phys. Rev. 49, 22 (1936);
H. A. Bethe, Phys. Rev. 57, 1125 (1940); M. Goldhaber and
E. Yeller, Phys. Rev. 74, 1046 (1948); H. Steinwedel and J.H. D.
Jensen, Z. Naturforsch. 52, 413 (1950);B.Freeman and J.McHale,
Phys. Rev. 89, 223 (1953); N. C. Francis and K. M. Watson,
Am. J. Phys. 21, 659 (1953).

particle aspect of the nuclear behavior, and this is the
state of a6'airs which is usually considered as implied by
"Bohr's picture of the nucleus. "' For the interpretation
of these data we will therefore consider a model which
is intermediate between the independent-particle and
uniform models. ' In this intermediate model the spread
8' in energies Eq of those X), containing an appreciable
amount of a particular f„will satisfy the condition
D(($'((d, and the spread will be of the general form
of a giant resonance,

II. DECOMPOSITION OF THE %'AVE FUNCTIONS
FOR THE COMPOUND NUCLEUS

The wave functions X~ of the compound nucleus

.satisfy the wave equation

when certain fixed boundary conditions are imposed at
the nuclear surface. v ' These wave functions are decom-

posed in the form"

Xi,=P, Cg, ,„lt,(ri, rs, . rg)sc„(r„),

where the iJ, are the wave functions of the stationary
states c of the residual nucleus of A particles. The
sc„(r„) are the wave functions of the extra neutron rs

moving in the average potential of the residual nucleus.

They are of the form

sc, (r„)= Y,(Q„)E„(r„), (2a)

where F'„((}„)are spherical harmonics, and the J|.'o(r„)
are radial functions which satisfy the boundary condi-

tions imposed on the Xi,. The subscript p designates one

of the single-particle states of the average potential,
such as 1s, 2s, 1p, etc. Since the ilr, g~, as well as the Xi„
form a complete set of ortho-normal functions, the ex-

pansion coeKcients C~,„are the components of an
orthogonal matrix with the usual properties,

(3a)

(3b)

In order to obtain the partial widths with respect to
the emission of protons and heavier particles, other

sN. Bohr, Nature 137, 344 (1936); Science 86, 161 (1937);
E. Wigner and G. Breit, Phys. Rev. 49, 642 (1936), Phys. Rev.
49, 519 (1936). These last two articles, which were simultaneous
with the 6rst one, were often misunderstood to propose a some-
what di6'erent model —actually the model which underlies the
present article.' A brief account of some aspects of the present work was given
at the New York Meeting of the National Academy of Sciences,
Nov. 9, 1954 (unpublished}; E.P. Wigner, Science 120, 790 (1954).
See also J. M. C. Scott, Phil. Mag. 45, 1322 (1954},who proposes
the same picture.' T. Teichmann and E. P. Wigner, Phys. Rev. 87, 123 (1952).
The development in this section is largely a repetition of the
arguments given in connection with Eq. (31) of this reference.

' J. Blatt and V. Weisskopf, Theoretics/ NNciear Physics (John
Wiley and Sons, Inc. , New York, 1952), Chap. VIII and X; R. G.
Sachs, 1Vssclear Theory (Addison-Wesley Press, Cambridge, 1953),
pp. 290-304,
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Hsg, N~ =E,„P~~, (4)

where Ho contains the whole Hamiltonian of the residual
nucleus, the kinetic energy of the extra neutron and its
average potential V(r„) in the field of the residual
nucleus. The diGerence V=B—Bp is the departure of
the actual potential, which is experienced by the extra
neutron, from the average potential

decompositions of the Xq must be used instead of (2)
in which the coordinates of the extra proton (or heavier
particle) play the role of r„.

It is well to note that (2) is not antisymmetrized, i.e.,
that it neglects exchange. Inclusion of exchange eBects,
that is antisymmetrization of (2), would render all of
the calculations more cumbersome and would introduce
correction terms into almost all of the formulas. How-
ever, it is believed that the essence of the proposed
interpretation would not be affected by these terms.

The functions &.N„satisfy the equation

tually a surface integral over this boundary. According
to (7) and (2), the reduced-width amplitudes may be
expressed as

(7a)

(7b)

Vxc =Zy 'yk; cy)

y)„.,„=(ah'/2M) &Cg,+„(a).

(b) It may be assumed that, for each )i, one of the terms
in (7a) is much larger than the others, in which case the
sum in (7a) can be replaced by a single term, and
therefore

The reduced widths appear then as a double sum over
the single-particle levels p. In order to simplify matters,
either one or both of two assumptions can be made:
(a) The signs of the Ci„.,„referring to different p are
considered as likely to be positive as negative so that
the cross terms can be disregarded in the consideration
of the most probable value, ~

(»)

V=+ V(r;,r„)—V(r„). (5)
(gb)

The quantities 'U(r;, r„) are the potentials which act
between the neutron n and the ith particle of the
residual nucleus, and the average potential is

A.

V(r„)=Q rP,*'U (r;,r„)f/',
i 14

(5a)

where the integration is over the coordinates 7. of the
residual nucleus. It will be evident from the estimate of
Sec. V that this potential is probably not very de-
pendent on c, the state of excitation of the residual
nucleus. However, should it be so dependent, the f,
in (Sa) shall be considered as the normal state fs. It
follows from (5), (Sa), and the normalization of lt, that

V, , —= (P,N, VP,ss„)=0.

Thus, the expectation value of B—Hp vanishes for the
f,g„[p arbitrary, c=0 unless (5a) is independent of cj.

In the theory of nuclear reactions the reduced widths
for the states X), with respect to disintegrations into a
nucleon and the states c (channels) of the residual
nucleus play an important role. They are denoted by
y)„', where'

Assumption (b) will be valid if the coeKcients Cq, ,s of
(2) are small when the energy Ei, of the compound state
X), divers by more than a certain amount W from the
energy E,„of the independent-particle state lt,N, „,
provided that 5" is small compared with the spacing d
of the individual-particle levels. At the same time, 8'
can be, and usually will be, large compared with the
spacing D of the levels Eq of the compound nucleus, or
the spacing of the levels of the residual nucleus. Hence,
for given c and )t, only one p will give an appreciable
Cz,„but, conversely, for a given c and p, many levels )t

will have a substantial Cz,„. (Similarly, for given )t

and p, many c will have appreciable Ci...„.) The states
Xi, in the expansion (2) of which, for a given c, the
same p have appreciable Ci„,„will be said to form the
p-group of states with respect to the channel c. The
energies E~ of these states will be within an interval the
width of which is of the order W. Assumption (b) and
hence Eq. (Sb) are therefore appropriate for the inter-
mediate-coupling case where the widths of the giant
resonances are much less than the spacings between the
single-particle levels, but larger than the spacings D of
the E),.

It is convenient to introduce the single-particle
reduced widths,

yq, = (ah'/2M)& f,*Vs(D„)*Xidrd0„. (7)

' The reduced widths used here have the dimensions of energy~
as in reference 3 and in Chap. VIII of Blatt and Weisskopf
(reference 8), rather than energy-times-distance, as in reference 7
and in Sachs (reference 8).They difFer from the latter by a factor a.
Note the factor a& in (7).

Here the radial coordinate of the neutron, which is a
variable of Xq, is to be set equal to the radius a of the
boundary of the. internal region, so that (7) is ac-

cg PX; cyP) '; cp —g$ y /Av~XX'p

2X'
X Yh.; cygne; c'y' & y & cc'~yy'

(10a)

(10b)

which are expected to be of the order of magnitude' of
fi'/Ma'. The 1„s are the reduced widths which appear
in the E.-function expansion for the average single-
particle potential (Sa), and the E„of (4) are the corre-
sponding level positions. Sum rules for the reduced-
width amplitudes, similar to the orthogonality relations
(3), may be expressed in terms of the 1„':
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= E (Total)

= E(Total)

FIG. 1. The extreme independent-particle picture. The top of
the figure represents the energy levels of the individual nucleons;
the full lines are occupied levels, the broken lines unoccupied. The
energy levels of the compound nucleus (middle of the figure)
which are marked with a cross correspond to the target nucleus
in the normal state, and an incident particle. Of all of the levels
of the compound nucleus, only these affect the cross section
(bottom part of the Ggure).

In the approximation (Sa), the erst of these with X=X'
corresponds to the familiar channel sum rule, while the
second is related to the general level sum rule, Eq. (23a)
of reference 7. The latter rule follows by summing over
all p, p', with the result that the left side gives

Pi, yi„vq, while the right side vanishes if c&c' and is
inhnite if c=c'. We shall be particularly concerned with
(10b) when p=p', c=c',

levels in the spectrum of the compound nucleus, but
these are characterized, in a similar manner, as being
combined states of the extra neutron and excited states
of the residual nucleus. The singular dependence of the
y),0' on the E~ is shown in Fig. 2 as the independent-
particle model extreme.

When the departure potential V of (5) is introduced,
a mixing of the pure independent-particle model states
may be expected to occur. The reduced width yz, o' will

be diminished from its original value, and the state X~0
will acquire iP,sr~ terms associated with excited states
of the residual nucleus, while the neighboring Xq will

acquire nonvanishing components from the normal
state. In view of the sum rule (10b'), the y&„ss mag-
nitude of the original X~0 will be shared among the
adjacent states resulting in a giant resonance of the p&0',

as illustrated in Fig. 2 for the intermediate coupling
model. " Inelastic scattering will occur, and elastic
scattering will exhibit resonances at all the states of the
compound nucleus, although these will be strongest in
the vicinity of the original independent-particle model
level. It may be emphasized here that in this model it
is the p),0', rather than the D ', which is anomalously
large at the Barschall maxima.

If the departure potential is allowed to increase, the
width 8" of the spectrum of levels of the compound
nucleus over which the original p&,0 is appreciably
shared will also increase. Ultimately, this width may
become as large as the spacing d of the single-particle
levels. The uniform model of Fig. 2 is approached, and
the giant resonances of y~o' and of the average cross

(10b')
III I I Itl I I I ii I I I I II I I ( I I i I I II I t I i I I II I I i it I I I I I I ll f I I tl

a relation which shows that the sum of the reduced
widths for a particular p-group is equal to the single-
particle reduced width for that group. "

Before developing the more quantitative implications
of the decomposition (2), some of the qualitative ones
will be described and the reasons for considering it in
the first place will be made apparent. In the extreme
form of the independent-particle model, the level ) 0 of
the compound nucleus, which is formed as a result of the
interaction of the neutron with the residual nucleus in
its normal state, would have only one nonvanishing cp
contribution in (2), namely Op, associated with a par-
ticular single-particle state p. There is therefore only one

nonvanishing reduced width y)„0' for that state, whose

magnitude is approximately the single-particle reduced
width A'/Mas. Only elastic scattering can occur, and

its expected behavior for such an extreme picture is as
illustrated in Fig. 1." There may be many adjacent

' This sum rule has also been noted by A. Bohr and B. Mottel-
son, Kgl. Danske Videnskab. Selskab, Mat. -fys. Medd. 27, l6
(1953). These authors attribute the departure from the inde-
pendent-particle model to the interaction of the neutron with the
surface of the nucleus, an assumption which will not be made here.

"These facts were recognized by L. Eisenbud in his doctoral
dissertation (Princeton, 1948). See also D. H. Wilkinson and A. M.
Lane, Phys. Rev. 97, 1199 (1955).

Independent Particle Model

~ -- Intermediate Mode

I I I II I I I III II I I I I II II I I( E

Fin. 2. The reduced widths (neglecting fluctuations) oi the
levels ) of the compound nucleus of energy E& in the independent-
particle picture, intermediate coupling, and uniform models. The
reduced widths of the levels are represented by the heights of' the
corresponding lines. In the independent-particle model the reduced
widths of all levels vanish, with the exception of those marked
with a cross in Fig. l. In the uniform model, all reduced widths
are roughly equal, apart from irregular fluctuations which are not
indicated. In the intermediate case, the average widths of the
levels are different in different parts of the spectrum: those close
to the position of the very broad levels of the independent-particle
model are broader than those situated further from these levels.
8' is the width of the energy spectrum over which the original
single-particle reduced width is appreciably shared.

"The 6gure does not show the irregular fluctuations of the
reduced widths which are expected to be important, as indicated
in reference 7 in the section quoted there. See Seidl, Hughes,
Palevsky, Levin, Kato, and Sjostrand, Phys. Rev. 95, 476 (1954).
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section will disappear. This extreme model was generally
regarded as the correct one before the measurements of
Barschall and collaborators' were made. It may also be
mentioned that in this extreme the ratio of the reduced
widths to the mean spacing D of the levels of the com-
pound nucleus will obey the second sum rule of ref-
erence 7. Thus, by replacing the sum in (10b') over the
levels X of the group p of (8b) by an integration which
is extended over the entire width d of the group, and
by using the estimate d= (irk'E/Mu) for the single-
particle level spacing, where K is the wave number
characteristic of the neutron motion in the nucleus,
one obtains (yqo )A,/D= 1/irma.

It was pointed out before that in our model the
maxima of yz'/D are due to anomalously large yz'
rather than anomalously small D. Another consequence
of our model which we wish to point out concerns an
expected difference in the behavior of nuclei with J=0
on the one hand, and nuclei with J~O on the other.
In the former case, there will be, for every I„,only one
Xo level. Thus the giant maximum for s neutrons will be
simple. Since a p neutron can have two states, the p;
and p,* state, the giant maximum for the p neutrons
will be.double and the same applies for d,f, etc. neutrons.

If the J of the target nucleus is not zero, even an s
neutron will give two Po levels; their J values will
diGer by ~-', from the J value of the target nucleus.
These states cannot be expected to coincide completely,
even in the independent-particle picture. If their distance
is smaller than the width 8' of the giant resonance,
the maximum in the average cross section will appear
to be broadened. If their distance is larger than 5", one
may expect two maxima in the average cross section for
s neutrons. Similar remarks apply for neutrons with
higher angular momenta.

III. STRENGTH FUNCTION

As mentioned in the Introduction, in the intermediate
coupling case the strength function s.(E&,)=(pz.')A,/D
is expected to manifest a giant resonance behavior.
Moreover, it is the strength function so(Eq) for the
normal state which plays a decisive role in the deter-
mination of the behavior of the average total cross
section and the cross section for compound-nucleus
formation of an incident beam of neutrons. These cross
sections are related to the average of the diagonal com-
ponent of the collision matrix referring to the normal
state, and this average depends' upon the Stieltjes
transform of sp(E&,),

so(E),)de/(Eg+ 6—E——,'iT' ),

where I' and 6 are the mean absorption width and
shift, respectively. The strength function (and its
transform)

'
are therefore appropriate functions for

representing the nucleon-nucleus interaction.
In the approximations leading to (8), the strength

functions can be expressed as a sum of p-group strength
functions

s (E~)=En s"(E~), (12)

and the normalization of the individual s,„ is obtained
from (10b') when the sum there is replaced by an
integral,

) s,~(Eg)dEg=f, '. (12a)

1 4i'(En E~)+2~et—n~'
s„(Eg)=—.

(En—E~)'+
(14a)

Evidently these functions have in addition the property
of becoming negative over part of the range of Eq
values unless the imaginary parts l „i' should happen to
vanish, as in the special case of the complex square
well. A test of the validity of representative complex
potentials would be a direct evaluation of the second.
moment of the so„(E&,) to see whether or not they are
infinite.

IV. MOMENTS OF THE C COEFFICIENTS
AND OF THE REDUCED WIDTHS

It is possible to obtain directly the formal expressions
for .the energy moments of the squares of the C&, ,„and

In the following sections we shall attempt to learn
something about the dependence of the s, on Ez by an
investigation of their energy moments with respect to
the single-particle level positions.

It has been shown that the p-group strength function
for the complex square well representation has the
energy dependence (omitting the subscript c)

s.(E.) = (2 ) 'f'~/DE. »—)'+.'~'3 (1~)

When there is no absorption, that is, I'=0 in (11), this
becomes the reciprocal logarithmic derivative at the
radius of the wave function for a complex square well
with imaginary part —-', 8'; when there is absorption,
the imaginary part is ——,(I'+W). It is evident that
the second and higher even moments of this strength
function are infinite. More generally, it can be shown
that the same moments of the group strength functions
for any representative complex potential are infinite.
Thus, one finds by the methods of the R-function theory
that the reciprocal logarithmic derivatives for such
complex potentials have expansions of the form

P„l.„'/(E„—E——,'iW„). (14)

The reduced widths f'„'=)~/+i f~P are in general
complex, and the imaginary parts —~R'„of the de-
nominators are equal to the averages of the imaginary
part of the complex potential, weighted according to
the absolute square of the complex eigenfunctions of the
potential. The p-group strength functions corre-
sponding to (14) are 1/~-times the imaginary parts of
the contributing terms:
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2".C~;"'(4.l., (H E")—9"~')
= (E —E„)"C,.„.

Both sides of this expression are multiplied by C&.,„and
then summed over all of the levels P, whereupon one
6nds that the moments are

M,=Z.(E-E-,) C'..:=e... (H-E,)V. .), (17)

the reduction of the left side of (16) having been effected

by means of (3b).
The expressions for the moments of the reduced

widths are somewhat more complicated because of the
additional p-sum which appears in the relation (7a).
However, if the p-group approximation (8a) or (8b) is

valid, then it is of interest to consider the moments

OK„of the Vq, ,~' of (8):
BR„—=Q), (Eg—E,„)"yg, .„'=f','M„. (18)

By replacing the sum over levels in (18) by an integral,
the moments of the strength functions are obtained,

) (Eg E.,)"s,„(Eg)dE—),=f„'M„. (18a)

In view of the choice (5a) of the independent-particle

potential, 3f~ vanishes, indicating that the center-of-

mass of the p-groups coincides with the E,„,as in Fig. 2.
In order to simplify the expression for M~, one uses the
Hermitean property of (H E,~) and Eq. (4):—

of the reduced widths with respect to the single-particle
level positions E,„. From the wave equation (1) it
follows that

(H E,—„)"X),= (Ey E,„—)"Xy (15)

for positive integers v. By substituting the expansion

(2) into (15) and forming the scalar product of the
resulting expression with the f,u~ corresponding to E,„,
one obtains

the constants being given by Feshbach and Schwinger
and by Hall and Powell, " namely, C= —40, re=2. 5
mes/e'. The tensor force T will be neglected because its
effect on V is small, and the second moment will turn
out to be too large anyway. For the same reason the
part of (19) containing the Majorana exchange operator
P;„will also be neglected. These approximations eBec-
tively reduce (19) to a central force which is half as
strong as that involved at low energies in the neutron-
proton system.

The average potential V of (Sa) is then given by the
average density p(r) of the nucleons in the residual
nucleus,

V(r„)=A p(r)Q(r, r„)dr, (20)

where A is the mass number of the residual nucleus.
V(r„) evidently satis6es the differential equation

PV(r„)—«'V(r„) = —2sACe'p(r„). (21)

By assuming a constant nuclear density p= L(4/3) was 1 '
inside a spherical nucleus of radius a =0.45A le'/mc' and
zero density outside, one can readily integrate (21),
obtaining

7 (r„)/8= 1—(xr) '(1+Ira) sinhxr exp( —Ira), r(a,
= (xa coshxa —sinhxu) (sr) ' exp( —xr), r) a,

(22)

where the constant 8=3ACe'/2x'as=54 Mev. This
potential is plotted in Fig. 3 as a function of (r/g) for
A=30 (a=3.9X10 " cm) and for A=150 (a=6.7).

proposed by Yukawa, with half exchange, half non-
exchange character,

u(r;, r„)=-', (1+P;„)Ce'Ir;—r„l '

&(exp( —«I r;—r„I)+2', (19)

M =Q (E E.„)'C .,'—
= ((Hs —E, +V)f,u~, (Hs —E.~+V)f,te„)
= g.~., Vy.g.)= (V')";" (17a)

V/8

The second moment, which should provide a measure

of the square of the widths 8' of the giant resonances of

Fig. 2, is thus proportional to the mean of the square

of the departure potential, as one would expect.

V. CALCULATION OF THE AVERAGE POTENTIAL AND

THE SECOND MOMENT OF THE
C COEFFICIENTS

In order to determine the E,„and the 5E„, it is

necessary to construct the average potential. Unfor-

tunately, our knowledge of nuclear forces remains

inadequate in spite of much excellent work. on the

subject, and we shall therefore simply adopt as the

potential 'U(r;, r„) between two nucleons the expression

0
0

I

I
I
I
I
I
I
I I

r/a

'e H. Feshbach and J. Schwinger, Phys. Rev. 84, 194 (1951);
H. H Hall and J. L.. Powell, Phys. Rev. 90, 912 (1953).

Fro. 3. The average potential lr of (5a) for the extra nucleon
is plotted as a function of the distance r from the center of the
nucleus in units of B=3ACes/2e's'=54 Mev, where a=0.45A&e'/
mes is the nuclear radius, s '=0.4es/see' is the range of the inter-
nucleon force LEq. (19)],C= —40 is the corresponding strength,
and A is the mass number.
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The averages of this potential are —,8 and 48 for A = 30
and 150, respectively, which are somewhat less than
the equivalent 55 Mev necessary to fit the neutron
interaction data and the 46 Mev necessary to explain
the observed stable single-particle levels, using in each
case the same nuclear radius as assumed above. The

'

disagreements are perhaps not serious, even considering
that a rather substantial amount of electrostatic poten-
tial must be subtracted, because there is considerable
uncertainty in the potential (19), particularly its
exchange character. The rather strong tail of the
potential (22) extending beyond the nuclear radius
may be noted; this tail may be helpful for explaining
the anomalously small cross section for backward
scattering of high-energy protons" and the rather large
absorption of high-energy neutrons. "

The second moment for the normal state is

)&(P; U(r;, r„)'U(r;,r„)—[V(r„)g }drdr„(23).
The A terms in the double sum with i =j may be
written as

p(r) I N„(r„)I'[v (r, r„))'drdr„. (24a)

When the integration is carried out over all coordinates
of the residual nucleus with the exception of the ith
and jth, the remaining A (A —1) terms become

A(A —1) p(r, r') ll (r-) I'U(r, r-)

X'U (r', r„)drdr'dr„, (24b)

where p(r, r') is the probability for the simultaneous
location of two nucleons at r and r', respectively. This
probability may be approximated by the expression
which is valid for an assembly of free fermions,

A (A —1)p(r, r') =A'[p(r) p(r')
—(p/A) J(l r—r'l)g, (25)

where the quantity J represents the correlations caused
by the antisymmetric nature of Ps. The integration over
r' involving J is unity, corresponding to a "hole" of
unit volume in the distribution of the other nucleons
around a given nucleon. Therefore, the p(r, r') of (25)

'4 R. D. Woods and D. S. Saxon, Phys. Rev. 95, 577 (1954).
15 Measurements and interpretations by M. Walt and J. R.

Beyster (Bull. Am. Phys. Soc. 29, No. 8, 31 (1954)) of the inter-
action of 4.1-Mev neutrons with nuclei show that the complex
square-well potential cannot give enough absorption, no matter
what value is used for the imaginary part of the potential. The same
difBculty was noticed by H. E. DeWitt in the interpretation of
the 14-Mev interaction data of J. H. Coon, Phys. Rev. 94, 785(A)
(1954) and of Phillips, Davis, and Graves, Phys. Rev. 88, 600
(1952). These difhculties indicate that the abrupt discontinuity
at the surface of the square-well potential rejects too much and
thus does not allow the incident wave to penetrate into the
interior where it can be absorbed.

is properly normalized, apart from surface corrections.
The explicit form of J, which is calculated in the theory
of free electrons, "is not needed here.

By inserting (25) into (24b) and then (24b) and (24a)
into (23), one finds that the first term of (25), just
cancels the [V(r„)j' of (23). Assuming again a constant
p=[(4/3)xas] ' inside, zero outside, of the nuclear
sphere, one thereby obtains

pl N, (r„)I sdr„dr~(r, r„)

The integral in (26) with respect to r and r' is the
product of the potentials of two coincident nucleons
(5(r,r')) diminished by the product of the potentials of
two nucleons which are correlated by the function J.
The integral over r' is very small if the range of J is very
small compared with the range of 'U; in this event, J
could be approximated in (26) by a 5 function and
would cancel the 6rst term. On the other hand, should
the range of J be large compared with the range of 'U,

the second term in (26) would be much smaller than
the first.

Although the integral (26) could be evaluated directly,
the following indirect but simpler method is used.
Instead of restricting the integration over r' to the
inside of the residual nucleus, it is extended over
all space, thus neglecting surface corrections. The inte-
gration with respect to r' then has the form of a con-
volution, and its Fourier transform is therefore the
product of the Fourier transforms of 5(r, r') —J(l r—r'I)
and of 'U. The transform of the former is 1—j(k),
where" "

1—(3k/4E)+ (ks/16Es), k&2K
j()=I

0,
(27a)

k&2E

is the ratio of the common volume of two spheres of
radius E centered a distance k apart, to the volume of
one of the spheres; E is the maximum momentum of
the free particles which were substituted for Ps. The
transform of the latter ('U) is

—,Ce'r 'exp( —xr) exp( —sk r)dr

= 2irCes/(xs+ k') (27b)

"E. P. Wigner and F. Seitg, Phys. Rev. 43, 804 (1933),Eq. (6)."J(r) is a sum Zs; g~~ expLs(k' —k") rj, where both k' and k"
are vectors inside a sphere of radius E, the maximum momentum
of the free fermions. Hence, the Fourier transform of J, that is the
coefficient oi a definite exp(sk r) in the sum, is the number of
ways k can be written as k= k' —k" with both I

k'
~
&E,

~

k"
[ &E.

By approximating the double sum by integrations, this number
is found to be proportional to the common volume of two spheres
of radius X centered a distance k apart. The corresponding ex-
pression for J is J(r)= (3E'/2g')L(g cosg —sing)/Pjm, where g= Xr.
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Mp
F

The Fourier transform f(k) of the r' integral of (26) is
therefore, as a function of r—r„, given by

2wCe' (3k/4E) (k'/16E'), —k (2E
f(7)=

x'+k' 1, k&2E.
(27c)

Neglecting again the surface effects, the r„ integration
is extended over all space rather than just over the
nucleus. As a result. , one can integrate the product of
the Fourier transforms of the two factors over lr and
divide by (2w) instead of integrating over r„The.
transform of the second factor is (27c) while that of
the first factor is 2s pCe'/(x'+k') if

~
si~(r„) j' is replaced

by p. The resulting integral no longer depends upon r,
and therefore the r integration simply cancels a p, with
the result that

ilrrs ——A (2rr) sp~l deaf()s)27rCes/(xs+jP)

=FL-x tan x—&+(—+—x ) ln(1+x ')j, (28)

where F= 2A pC'e'/E and x=a/2E. With the constants

E=(9'/Sas)'=3 4 mc'/e' 'pA = 2.6 (mc'/e')s

the factor F= (24.4 Mev)'. The quantity 31&/F is
plotted in Fig. 4 as a function of x. For the assumed
value x=2.5/(2)&3.38)=0.37, the numerical value of
M2: is 22.5 Mev, which is at least an order of magnitude
larger than the width of the giant resonance inferred
from the low-energy neutron data, that is, the imaginary
part of the complex potential of Feshbach et al. If the
residual nucleus had been idealized as an ordinary

O.l OZ 0.4 0.8 I 2 4 &/2K

FrG. 4. The solid line is the calculated value of the second
moment of the giant resonance, Ms of Eq. (28), plotted in units of
F= 2ApC'e4/E as a function of x=s/2X, where x ' is the range
of the internucleon interaction, and E is the maximum momentum
of the free particles which were substituted for the normal state
of the residual nucleus. The values assumed for the quantities in
E are those given in the caption to Fig. 3, and p=L(4/3)va'1 '
is the average density of a nucleon in the nucleus. The dashed
line is the limiting form x/8x of 3Is/F for large x, which would
apply for all x if the residual nucleus were idealized as an ordinary
rather than as a degenerate Fermi gas.

rather than as a degenerate Fermi gas, the function
M s/F of (28) would have become equal for all x to
7r/Sx, its limiting form for large x. Although the appli-
cation of the exclusion principle to the residual nucleus
decreases M2 and hence the deviation from the inde-
pendent-particle model, " the decrease is far from
enough (only 23 percent in the above evaluation) to
explain the approximate validity of this model. " The
above calculation is surely inaccurate, and the calcu-
lation of V shows that the surface terms may indeed
reduce the result by a factor two. On the other hand,
the result would be increased by taking into account
the Majorana and tensor parts of the interaction. It
may also be noted that with the simple potential (19),
the third and higher moments are infinite.

As explained in Sec. III, the fact that a 6nite second
moment is calculated is not consistent with any complex
potential representation. However, it is of course
possible that there are interaction terms more singular
than (19) which would make Ms infinite. Barring this
possibility, the finiteness of M~ and the nonfiniteness of
354 wouId be consistent with a strength function of the
form

s~(Ei)dEi, f„'(2**W=s/Sw)dEi/(t(Ei, E„)'+(—-', W)'$,

among others. However, the half-width -', 5' of this
function is equal to the square root of the second
moment, indicating that for such a function our calcu-
lated value of 3fs& (about 23 Mev) disagrees by an
order of magnitude with the observed value (about 1-',

Mev, the half-width of the giant resonance of the
complex square well).

Agreement with the observed width 8'~1-,' Mev
could be obtained in two mays. One may either arbi-
trarily increase the range f(.

' of the forces by about a
factor 3 and decrease their strength C Lsee Eq. (19)j by
a factor 9 so that the space integral of the potential
remains the same. This would naturally reduce the
fluctuations of the departure potential V, and (28)
shows that it would reduce 3f~ to the magnitude of the
observed value. The possibility that the meson cloud
is smeared out in heavier nuclei to such an extent that
the potential is fairly smooth has often been considered.

Another way to bring calculation and observations
into agreement is based on the fact that decompositions

's V. Weisskopf, Science 113, 101 (1951). See also Morrison,
Muirhead, and Rosser, Phil. Mag. 44, 1326 (1953); M. L. Gold-
berger, Phys. Rev. ?4, 1269 (1948).

'9 The situation is similar to, but more extreme than in the
normal state of, nuclei. See E. P. signer, Oe the Shell Model for
Nuclei (L. Farkas Memorial Volume, Jerusalem, 1952), p. 45.
This article calculates the deviations from the independent-
particle model wave functions for the normal states of nuclei,
assuming a potential similar to (19). Although the exclusion
principle is fully taken into account in the calculation, /rather
than only partially as in the present calculation, see the remark
after (3)] the conclusion is arrived at that the wave function of
the independent-particle model (i.e. , a single Slater determinant)
represents only a rather small part of the actual wave function.
However, this fraction becomes even smaller, in fact very much
smaller, if one disregards the exclusion principle.
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of the X&, which are more general than (2) may be used.
In the first place, although it is probably most con-
venient to use (5a) for the potential energy of u„, it is
not necessary to do so, and one may consider the use of
an independent-particle potential energy which mini-
mizes the spread W of the p-group strength functions.
Secondly, it is apparent that, with the exception of (4)
and (5), the formulas of II remain valid even if the f,
are allowed to depend parametrically on the coordinate
r„of the incident particle. Such a parametric dependence
of P, on r„corresponds to a polarization of the residual
nucleus" by the incident nucleon, and one may hope
that the corresponding P, (rr, rs, r~, r„)u„(r„) takes
the interaction of the last nucleon with the residual
nucleus more fully into account than the f,u~ of (2).
As a result, the square integral of (V E,„)g,—u„will

'0 The polarization of the nucleus by one of the particles con-
tained therein was discussed by K. M. Watson, Phys. Rev. 89,
575 (1953);N. C. Francis and K. M. Watson, Phys. Rev. 92, 291
(1953)

&
Brueckner, Levinson, and Mahmoud, Phys. Rev. 95, 655

(1954); Gyo Takedo and K. M. Watson, Phys. Rev. 97, 1336
(1955).

become smaller and the calculated width of the giant
resonance less than as given above. This second possi-
bility would seem to contradict the calculations carried
out above and are, in fact, compatible with them only
if (Sa) and (Sb) are not valid. The explanation is that
the terms of (7a) can interfere destructively between
giant resonances and constructively at these resonances
so that the results based on the absence of such inter-
ferences, in particular the calculation of Sec. V, becomes
invalid. We have as yet not found convincing evidence
for the viewpoints just put forward.

Finally, it is noted that our formula (28) for Ms
shows no dependence on the energy of the incident par-
ticle, although it is found that to explain the data the
imaginary part of the complex potential must be in-
creased from about 1-', to 8 Mev as the energy of the
incident particle increases from a few to about 20
Mev. '4" About one-half of this increase could be
accounted for by the increase of the absorption width
I' which appears in the Stieltjes transform (11) (see
Appendix 8 of reference 3).
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Gamma Rays from the Inelastic Scattering of Neutrons
in Altuninum, Magnesium, and Silver*

L. A. RavsrTaN, t D. L. LAs'vzRTY, f. aNn T. M. HAHN)
Department of Physics, Vniversity of Kentucky, Lexington, Kentucky
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Monoenergetic neutrons from the H'(d, n)He' reaction were used to bombard scatterers each in the form
of a ring surrounding an unshielded NaI(T1) gamma-ray spectrometer. The gamma-ray spectrum for each
scatterer was obtained by subtracting the background counting rate from the counting rate with the scatterer
in place. An analysis of the gamma-ray spectra yields discrete gamma-rays for each scatterer as follows:
Al: 0.422*, 0.843, 0.988, 1.69, and 2.10 Mev; Mg: 0.438, 0.555, 0.688, 0.837, 1.00, 1,34, 1.91, 2.08*, and
2.44 Mev; Ag: 0.332*,0.696, 0.795, 1.10, 1.99, 2.13,2.32, and 2.54* Mev. The starred gamma-ray energies
denote those that have not been previously reported.

INTRODUCTION

'N the neutron inelastic scattering process the in-
- - cident neutron energy is reduced, and the target
nucleus is left in an excited state. The excited nucleus
generally decays to its ground state by the emission of
one or more gamma rays. The nuclear energy levels may
be obtained directly from a measurement of the energies
of the groups of inelastically scattered neutrons. Very
little information' has been obtained in this way due to
the very poor energy resolution of neutron spectrom-
eters. Energy level separations may be determined by
a measurement of the energies of the de-excitation
gamma rays. The determination of the energies of the

* Sponsored by the Once of Ordnance Research, U. S. Army.
f Now at Argonne National Laboratory, I emont, Illinois.
f Present address: Vanderbilt University, Nashville, Tennessee.
f Now at Virginia Polytechnic Institute, Blacksburg, Virginia.
' Little, Long, and Mandeville, Phys. Rev. 69, 414 (1946).

de-excitation gamma rays has been the subject of
many investigations. ' "

EXPERIMENTAL PROCEDURE

Monoenergetic neutrons with an energy of 2.7
Mev were obtained from the H'(d, l)He' reaction. The
deuterons were accelerated in the University of Ken-
tucky 120-kv low-voltage accelerator. A neutron Aux

2 Grace, Heghian, Preston, and Halban, Phys. Rev. 82, 969
(1951).' R. B. Day, Phys. Rev. 89, 908 (1953).

4 Scherrer, Smith, Allison, and Faust, Phys. Rev. 91, 768 (1953).
s Scherrer, Theus, and Faust, Phys. Rev. 91, 1476 (1953).
s Garrett, Hereford, and Sloope, Phys. Rev. 92, 1507 (1953).' L. C. Thompson, Phys. Rev. 89, 905 (1953).
s R. M. Kiehn and C. Goodman, Phys. Rev. 93, 177 (1954).' M. A. Rothman and C. E. Mandeville, Phys. Rev. 93, 796

(1954).
+ Lafferty, Rayburn, and Hahn, Phys. Rev. 96, 381 (1954)."Rayburn, Laiferty, and Hahn, Phys. Rev. 94, 1641 (1954).


