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Soluble Problem in the Theory of Coulomb Excitation
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The quantum treatment of Coulomb excitation in the limiting case of no energy loss involves radial
Coulomb integrals that can be expressed in simple terms. The excitation function, G, and particle parameter
for the directional correlation, u2, are evaluated for this case and compared to the classical limit. The devia-
tion from the classical limit is found to be negligible for the excitation function in the region of experimental
interest, but for the particle parameter u2 the deviation is sizeable.

HE Coulomb excitation of nuclear levels has been
customarily treated' ' as an interaction involving

the electric Geld of impinging particles traveling in defi-

nite Kepler orbits. This use of classical trajectories is
valid, according to Bohr, ' if the Parameter ti —=ZtZse'/hs
is large compared to unity. There have been two types
of problem considered: the total cross section for the
excitation process' as measured, say, by the p quanta
produced, and the directional correlation' of these
quanta with the incident particle beam. Numerous
experiments in the range q 3 to io have shown gener-
ally good agreement with the approximate theory for
the total cross section, but recent data on the correlation
has suggested appreciable deviations. ' It is therefore of
some interest to examine more critically the validity of
the classical approximation. ~ An essentially exact
quantum mechanical treatment of both problems has
been carried out, 6 reducing the problem to integrals
over the radial Coulomb wave functions. (Evaluation
of these integrals, a rather formidable task, is in progress
using electronic computers. ) The usual classical ap-
proximation results from this exact quantum mechanical
treatment by a simultaneous limiting process p—+~,
1—p-+0, r)(1—p) =—)~finite, where p is the ratio of the
emergent to incident wave numbers for the impinging
particle. This limit process is, in general, dificult, if not
impossible, to carry through explicitly for the case of
arbitrary energy losses. ~ For the particular case of no
energy loss ()=0), however, the two limits may be
carried out separately, letting 6rst p= i and then p~ao.
Fortunately the relevant Coulomb integrals may be
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while the quantum result' is, normalized as discussed
above,
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«L, L'= r sdrFr, (rhr)Ft, (r),r).

(The Fl, (rhr) are the radial Coulomb wave functions,
and the Il„r, is taken to be zero if L+I' ~& 0.)

Noting that the eccentricity e is related to the angular
momentum L by the equation e'=1+L'/rP, one sees
already the close formal connection between the two
calculations. The Coulomb integrals can be evaluated,
with the result that:

Il„r, [2I.(L+1)(2L+—1—)] '[2L+1—st)

ir)P(L+1+it))+i—r)$(L+ 1—ir)) ], (3a)

Ir,, ~s=I~s I,= s I
L+1+ir)I

I
L+2+it7I . (3b)

The function P(s) is the logarithmic derivative of the
gamma function.

For large values of I. these integrals approach the

This result is a special case taken from a paper on radial
Coulomb matrix elements, in preparation.

integrated exactly in this case, ' and it is thus possible to
treat the approach to the classical limit in detail. It is
obvious from Bohr's considerations that the calculations
must agree precisely in the limit p~~, and we may
therefore use the classical limit to normalize our results
and simplify the discussion.

The analogy between the classical calculation as
given in reference 2, and the quantum mechanical
calculations given in reference 6, is remarkably close.
Let us restrict attention to the quadrupole transitions
in the following. The excitation function then is de6ned'
as:
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in the y —y cascade,
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given by

W'(8) =1/B P (cos8)+B P (cos8). 5)

he s ins of the initial, Coulomb-excite,
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Since the major contribution to the sums comes from
I. g, one sees that large g implies large I.. Here the
eGects of quantization are small, and in this way the
calculation becomes classical.

The particular case )=0 is not of too much intrinsic
importance, but it does serve to illustrate several typical
features of the problem and the importance of more

accurate calculations for the general case. Such calcu-
lations are in progress.
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In the consideration of the independent-particle model, a dis-
tinction can be ma, de between the spacing D of the levels of the
whole nucleus and the spacing d of the levels of individual
nucleons. Except in the immediate neighborhood of the normal
state of closed-shell nuclei, d&&D. In the "giant-resonance" inter-
pretation considered here, the deviations from the independent-
particle model are strong enough to mix many states of the whole
nucleus, but the mixing is restricted to an energy range which is
less than the order of d, According to this interpretation, the
reduced particle widths of the levels of the compound nucleus are,
on the average, anomalously large close to the energy values of
those states of the independent-particle model which correspond

to an unexcited target nucleus and a virtual level of the incident
particle. As a consequence, the nuclear cross sections have a gross
structure which is similar to a giant resonance, such as is implied
by the complex square well representation of the nucleon-nucleus
interaction. The position, width, and height of these maxima in
the average cross sections are expressed in terms of the parameters
of the independent-particle model and the departure of the actual
nuclear potential which are responsible for the inaccuracy of this
model. It is shown, however, that the conventional nuclear poten-
tial gives far too large values for the widths of the giant resonances
(that is, for the imaginary part of the presentative complex square
well potential).

I. INTRODUCTION

ESHBACH, Porter, and Weisskopfi have shown
that a complex square well potential gives an

accurate representation of some of the features of the
neutron-nuclei interaction data at low and intermediate
energies (&3 Mev), such as the total cross section
measurements by Barschall, Nereson, and collaborators
and the angular distribution data of Walt and Barschall. '

*Work performed under the auspices of the U. S.Atomic Energy
Commission.' Feshbach, Porter, and Weisskopf, Phys. Rev. 90, 166 (1953);
96, 448 (1954); R. K. Adair, Phys. Rev. 94, 737 (1954). The first
attempt to interpret the long-range fluctuations of the neutron
cross sections by means of a simple potential is due to K. W. Ford
and D. Bohm, Phys. Rev. 79, 745 (1950). A similar model was
used for the explanation of the high-energy cross sections by
Fernbach, Serber, and Taylor, Phys. Rev. 75, 1352 (1949). In
fact, the early explanations of the large neutron cross sections by
Amaldi, D Agostino, Fermi, Pontecorvo, Rasetti, and Segre t Proc.
Roy. Soc. (London) A149, 522 (1935)j, by H. A. Bethe /Phys.
Rev. 47, 747 (1935)g, by G. Beck and L. H. Horsley )Phys. Rev.
47, 510 (1935)j by F. Perrin and W. M. Elsasser PJ. phys.
raclium 6, 194 (1935)g, were all based on a similar model. How-
ever, Feshbach, Porter, and Weisskopf were the first ones to
recognize that the cross section obtained from the simple potential
is not the actual cross section but only its average over many
resonance levels, and they were the 6rst ones who thoroughly
explored the consequences of their model.

s H. H. Barschall, Phys. Rev. 86, 431 (1952); Am. J. Phys.
22, 517 (1954); N. Nereson and S. Darden, Phys. Rev. 89, 775
(1953);94, 1678 (1954);Walt, Becker, Okazaki, and Fields, Phys.

It has also been shown by them and by one of us' that
one implication of such a representation is that the sum
of the reduced neutron widths p&

' per unit energy
interval of the levels X of the compound nucleus has a
giant resonance-like dependence on the real energies E~
of these levels. This sum plays a decisive part in the
theoretical development and is referred to there as the
strength function s„(Ei,)=(yq„')A,/D, where D is the
mean spacing of the E~. The maxima of the giant
resonances are associated with the positions E„of the
levels p of the real part of the representative potential,
and their widths 8'„are related to twice the imaginary
part. It is presumed that the real part of the potential
is essentially that potential which determines the con-
hguration assignments in the shell-model theory, while
the imaginary part is considered as representing the
departures from this theory which are expected to be
important at the higher excitation energies involved in
scattering and reaction phenomena. Although it is
beyond the scope of the complex potential representa-
tion to specify the properties of the individual resonance

Rev. 89, 1271 (1953); Okazaki, Darden, and Walton, Phys. Rev.
93, 461 (1954); M. Walt and H. H. Barschall, Phys. Rev. 93,
1062 (1954). See also the early work of Fields, Russell, Sachs, and
Wattenberg, Phys. Rev. 71, 508 (1947).' R. G. Thomas, Phys. Rev. 97, 224 (1955).


