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The quantum treatment of Coulomb excitation in the limiting case of no energy loss involves radial
Coulomb integrals that can be expressed in simple terms. The excitation function, G, and particle parameter
for the directional correlation, a,, are evaluated for this case and compared to the classical limit. The devia-
tion from the classical limit is found to be negligible for the excitation function in the region of experimental
interest, but for the particle parameter @, the deviation is sizeable.

HE Coulomb excitation of nuclear levels has been
customarily treated'? as an interaction involving

the electric field of impinging particles traveling in defi-
nite Kepler orbits. This use of classical trajectories is
valid, according to Bohr? if the parameter n=2Z21Z:¢*/ hv
is large compared to unity. There have been two types
of problem considered: the total cross section for the
excitation process' as measured, say, by the 4 quanta
produced, and the directional correlation? of these
quanta with the incident particle beam. Numerous
experiments in the range »~3 to 10 have shown gener-
ally good agreement with the approximate theory for
the total cross section, but recent data on the correlation
has suggested appreciable deviations.* It is therefore of
some interest to examine more critically the validity of
the classical approximation.® An essentially exact
quantum mechanical treatment of both problems has
been carried out,® reducing the problem to integrals
over the radial Coulomb wave functions. (Evaluation
of these integrals, a rather formidable task, is in progress
using electronic computers.) The usual classical ap-
proximation results from this exact quantum mechanical
treatment by a simultaneous limiting process n—co,
1—p—0, n(1—p)=E¢—finite, where p is the ratio of the
emergent to incident wave numbers for the impinging
particle. This limit process is, in general, difficult, if not
impossible, to carry through explicitly for the case of
arbitrary energy losses.” For the particular case of no
energy loss (¢=0), however, the two limits may be
carried out separately, letting first p=1 and then y—o.
Fortunately the relevant Coulomb integrals may be
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integrated exactly in this case,? and it is thus possible to
treat the approach to the classical limit in detail. It is
obvious from Bohr’s considerations that the calculations
must agree precisely in the limit »—, and we may
therefore use the classical limit to normalize our results
and simplify the discussion.

The analogy between the classical calculation as
given in reference 2, and the quantum mechanical
calculations given in reference 6, is remarkably close.
Let us restrict attention to the quadrupole transitions
in the following. The excitation function then is defined?
as:

g2(0)= f ede Eﬁ [5,.®(0)]2, (1)

while the quantum result® is, normalized as discussed
above,
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(The Fr(y,) are the radial Coulomb wave functions,
and the I, 1 is taken to be zero if L+L'<0.)

Noting that the eccentricity e is related to the angular
momentum L by the equation =14L?/n% one sees
already the close formal connection between the two
calculations. The Coulomb integrals can be evaluated,
with the result that:

I =[2L(L+1)QL+V) T [2L+1—my
— i (L+14in)+inp (L+1—in)], (3a)
Ipre=Tpo =%|L+1414n|t| L+2-+in| L (3b)

The function ¥(z) is the logarithmic derivative of the
gamma function.
For large values of L these integrals approach the

8 This result is a special case taken from a paper on radial
Coulomb matrix elements, in preparation.
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Fic. 1. The excitation function G for no energy loss (£=0)
versus 1. The lower curves are the AL=0,2 components. The dotted
lines are the classical limits.
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functions S,® given by Alder and Winther, and the
correspondence between Eqgs. (1) and (2a) is complete.

Figure 1 shows the behavior of the exact G(y,1)
function versus 5. The classical limit is approached very
quickly, the difference being only 9 percent at n=2. On
the other hand, this behavior is to some extent for-
tuitous, as shown by the curves of the AL=0,2 com-
ponents, also plotted in Fig. 1. These depart in opposite
directions from their classical limits by amounts which
nearly cancel.

If one measures only the angle of emission of the
y-rays with respect to the incident particles, one
obtains an angular distribution which is very similar to
the angular correlation between two +’s in cascade. It
can be shown that the distribution function is

W (6) = 1+ B2as(n,p) P2(cosf) +Bias(n,p) Ps(cosd), (4)

which is to be compared with the angular correlation
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F16. 2. The particle parameter a2 versus n for no energy loss
(¢=0). The classical limit (dotted line) is 0.40567 while the
intercept at =0 is 1.5467
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in the y—v cascade,

E2 %
Ji—oTee— Jy,

given by
w’ (0) =1+B2P, (COS@) +B.Py (COSG) . (5)

The J’s are the spins of the initial, Coulomb-excited,
and the final state after the y emission, respectively.
The first vy transition, being an electric quadrupole radi-
ation, corresponds to the electric quadrupole excitation
process. The By are tabulated in reference 9, among
others.

Restricting attention to the coefficient of Py(cosf),
one finds in the quantum calculation that:
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(The or are the Coulomb phase shifts for angular
momentum L.)

In the limit of large L this is seen to correspond pre-
cisely term by term to the classical results given by
Alder and Winther.

The behavior of the exact @, as a function of 5 is shown
in Fig. 2. It is immediately apparent that the deviations
from the classical limit are more significant than for the
total cross section. This is not unexpected since the
particle parameter a, is “‘phase-sensitive,” and a clas-
sical approximation is generally inadequate. For
example, the results differ by a factor of 2 at =2,
whereas the total cross section here differed by only a
few percent.

The calculations at £=0 show great simplifications,
and the origin of this may be found in the fact that this
parameter measures the ratio of the collision time to the
period of the emitted radiation. For £=0, therefore,
the process is insensitive to all but the grossest details
of the motion. The Coulomb integrals, in particular,
show that the turning point radius, 7.~ (L*+7?)?%, is
effectively the only significant feature of the motion.
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Since the major contribution to the sums comes from
L~n, one sees that large n implies large L. Here the
effects of quantization are small, and in this way the
calculation becomes classical.

The particular case £=0 is not of too much intrinsic
importance, but it does serve to illustrate several typical
features of the problem and the importance of more
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accurate calculations for the general case. Such calcu-
lations are in progress.
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In the consideration of the independent-particle model, a dis-
tinction can be made between the spacing D of the levels of the
whole nucleus and the spacing d of the levels of individual
nucleons. Except in the immediate neighborhood of the normal
state of closed-shell nuclei, @>D. In the “giant-resonance’ inter-
pretation considered here, the deviations from the independent-
particle model are strong enough to mix many states of the whole
nucleus, but the mixing is restricted to an energy range which is
less than the order of d. According to this interpretation, the
reduced particle widths of the levels of the compound nucleus are,
on the average, anomalously large close to the energy values of
those states of the independent-particle model which correspond

I. INTRODUCTION

ESHBACH, Porter, and Weisskopf' have shown
that a complex square well potential gives an
accurate representation of some of the features of the
neutron-nuclei interaction data at low and intermediate
energies (<3 Mev), such as the total cross section
measurements by Barschall, Nereson, and collaborators
and the angular distribution data of Walt and Barschall.?

* Work performed under the auspices of the U. S. Atomic Energy
Commission.
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to an unexcited target nucleus and a virtual level of the incident
particle. As a consequence, the nuclear cross sections have a gross
structure which is similar to a giant resonance, such as is implied
by the complex square well representation of the nucleon-nucleus
interaction. The position, width, and height of these maxima in
the average cross sections are expressed in terms of the parameters
of the independent-particle model and the departure of the actual
nuclear potential which are responsible for the inaccuracy of this
model. It is shown, however, that the conventional nuclear poten-
tial gives far too large values for the widths of the giant resonances
(that is, for the imaginary part of the presentative complex square
well potential).

It has also been shown by them and by one of us? that
one implication of such a representation is that the sum
of the reduced neutron widths v,? per unit energy
interval of the levels A of the compound nucleus has a
giant resonance-like dependence on the real energies Ey
of these levels. This sum plays a decisive part in the
theoretical development and is referred to there as the
strength function s5,(E)) = (yx.2)a/D, where D is the
mean spacing of the E,. The maxima of the giant
resonances are associated with the positions E, of the
levels p of the real part of the representative potential,
and their widths W, are related to twice the imaginary
part. It is presumed that the real part of the potential
is essentially that potential which determines the con-
figuration assignments in the shell-model theory, while
the imaginary part is considered as representing the
departures from this theory which are expected to be
important at the higher excitation energies involved in
scattering and reaction phenomena. Although it is
beyond the scope of the complex potential representa-
tion to specify the properties of the individual resonance
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