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Spin Echoes with Four Pulses An Extension to n Pulses
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Following Das and Saha's method, the response of a nuclear spin system to four rf pulses has been analyzed
by using the classical Bloch equations. The calculations enable one to obtain a recursion formula for the
number of echoes to be expected with n pulses. Besides, the calculations also yield several other results
important from the experimental view. Thus, they provide a method for obtaining T&, the spin-lattice
relaxation time, from primary echo measurements alone, and also give an idea of the order of correction
necessary in a measurement of T2, the "spin-spin relaxation time, "by observation of primary echoes with
successive paired pulses of gradually changing intervals.

I. INTRODUCTION

AHX' erst gave the mathematical theory for the
- - - - occurrence of free-induction and spin-echo signals
when the rf Geld is applied in the form of short pulses.
Das and Saha' subsequently showed that in estimating
the damping effects of diffusion on these signals, the
frequency difference and phase shift accumulated by a
certain "isochromatic" group in any free-precession
interval, by virtue of diffusion, could be regarded as
independent of those accumulated in the previous
intervals. Hence they can be averaged independently
after collecting all the terms that are of even parity in
all the variables involved. We have followed this pro-
cedure in our calculations with four pulses, the results
of which we present in Sec. II. In Sec. III, we have
interpreted the various terms obtained in Sec. II in
terms of the primary and stimulated echo mechanisms
between applied pulses and between echoes and applied
pulses. One term remains unexplained after applying
this mode of explanation. It appears to be characteristic
of four pulses alone and follows a new law of combination
of intervals as regards its position. We call it a quater-
nary echo; subsequent calculations with 6ve and six
pulses also show that we have similar "pentanary" and
"hexanary" echoes occurring with Ave and six pulses
respectively. Using this idea, we establish a recursion
formula for the number of echoes to be expected in
general with e pulses. In Sec. IV, we discuss the cor-
rections to be applied to primary and stimulated echo
envelope measurements with successive groups of two
and three pulses respectively when the intervals
between these successive groups are only fractions of T».
A possible method for obtaining T», by measurements
on primary echo envelopes alone, is suggested.

II. RESULTS WITH FOUR PULSES

As shown in Fig. 1, we take four rf pulses of equal
width. The angle of nutation during each pulse is
therefore given by

=co»f~.

' E. L. Hshn, Phys. Rev. 80, 580 (1950).' T. P. Das and A. K. Saha, Phys. Rev. 93, 749 (1954).We shall
refer to this paper henceforth as I.

We follow the same terminology and notation as in I.
Thus, we denote the frequency drifts undergone by the
constituents of a certain isochromatic group in the erst
three free-precession intervals by g»0, g2», and
respectively, while we denote the phase shifts in these
three intervals and in the interval following the fourth
pulse by &M, ps~, p», and p, s respectively. The dis-
tribution functions for these are given by Eqs. (31)
and (33) of I. Also, for completeness, and to enable
us to draw conclusions about the number of echoes to
be expected with n pulses, we assume that the following
conditions hold regarding the lengths of the different
free-precession intervals:

7.3)2v-2 and 7.2) 27».

If these conditions do not hold, then as we shall pres-
ently obtain by our calculations, some of the echoes
will not be observed.

To obtain the conditions after the passage of the
fourth pulse, we have to proceed as in I, by solving the
Bloch equations during and after a pulse, and tabulating
the solutions at the different stages of passage of pulses.
For our present purpose, we shall need, besides the
solutions tabulated in I, vis. , those at A, 8, C, D, F,
G, and II, also those at I, J, and E. Following an
exactly similar procedure as in I, we can then obtain
the value of V after the passage of four pulses, ei2,
V(E). It will be seen to consist of 22 terms, whose
positions and the different parts of the amplitudes,
~is. , trigonometric, diffusion damping, and relaxation
damping parts are tabulated in Table I. The termin-
ology for the different terms will be explained in Sec.
III.
III. DISCUSSION OF THE VARIOUS TERMS IN TABLE I;

THE RECURSION FORMULA FOR n PULSES

We shall now explain the terminology used for the
different terms in Table I and interpret them physically.

&Iw &g g~&lu $ +g&j~

A8 Cn pc
L~J ~ I

Fro. 1.Applied rf pulses.
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These terms can evidently be divided into the following
categories.

(a) Free indgctioN terms. Th—e symbol used for any
one of these is in general Il„, representing the free in-
duction signal following the nth pulse. In the case of
four applied pulses there are thus four such terms
designated by F&, F2, Ii3, and F4.

(b) Terms arisirsg from a primary echo mechartism
betvoeem any two of the applied pglses. —A typical one is
denoted by P( „), which represents the primary echo
arising from a pair of rf pulses respectively applied at
instants r and 7„.The interval between the erst pulse
of the pair and the echo is 2(r„—r ) =28„,b„repre-
senting the interval between the pair of pulses. There

TABLE I. Amplitudes of the different free induction and echo terms for f'our pulses. '

Term
Position of
maximum

0

Trigonometric
part of

amplitude

—sink cos'($/2)

Diffusion damping of
the amplitudeb

k( '4
'» —

I
f~+»'

I)

Relaxation damping of the amplitude

expI ——
I

T2)

2,4

—W(C) sink cos4(k/2) exp —-I fq+g b„'
I3( r

t rz)—
expI—

—sink sin'(k/2)
k(

e» —-I f2+ate3( r j
(

1—$1—W(C) cosPg expI ——
I

(Xe»I—

P(»)

P(23)

P(S4)

2Tg

2T2

2' Tj

2T3

2T3 Tg

sing

x' sin'P cos'(k/2)

~~ sins' cos'(P/2)

4W(C) sin'k

—,
' sin'k cos'(&/2)

~ W(C) sin'k

k
exp (f,+a4 )—-

3

k( '4
e» —

I
f~+»'

I

3E

k( '4
exp —

I f4++ b„
)

k( 94

e p —
I
f+Z&,'

I

3E

1,4

exp —-I f5+& b„'
I

k ( 1,4

exp --I fq+gb, s
I)

( ~a 1
1—(1—cosk} expI ——

I»)
—cosk/i- W(C) cosg

( rm rg)—
XexpI —

I
expI-») & Ts)

(
expI ——

IT,p

( t)
rs)

( t ri)—
expI ——

&. )
(

expI ——
IT')

t—Tg'II

expI—
2's i

P(34) 2T3—T2 sing sins(k/2)
k( 3,4

p —-I f+»'
I)

1—Li —W(C) coskj expI ——
I»)

( t—Tg't
xexpI— »)

a Here, bl =r, 82 —T2 Tl bg T3 T2 t4 t —T3,

fl =3(t-Ti)'Tl+3(t —T2)&(r2 —ri)+3(t —r8)&(rii —T2),
f2 =3 (t —r2)-'71+3 (t —r2)~(r2 —7 1) +3 (t —T3)2(7 3 —r2),
f3 =3 (t —Tii)&rl+3(t —rz)~(re —rl) +3 (t —Tii)~(TS T2) s

f4 =3 (t —2T2+Tl)~rl+3 (t TQ)2(T2 Tl) +3 (t T3)~(rs T2) ~

fr =3 (t —2T3+Tl)&rl+3(t —2rit+r2)&(T2 —ri) +3 (t —r3)2(rg —r2),
f6 =3 (t —2T3+r2)2rl+3 (t —2rl+r2)&(T2 —rl) +3 (t —r3)&(ri —72),
fy =3 (t —2ra+2T2 —rl)&rl+3 (t —2re+r2)&(r2 —rl) +3 (t —T3)2(re —r2),
fs =3 (t —r3 —r2+rl)~rl+3 (t —rs)2(r2 —rl) +3(t —rg)2(T'ai —r2).

b By Z b I We mean Bm3+Sm+13+ ' ' '+Be~.
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Term

~((12)4)

~((13)4)

~((23)4)

Position of
maximum

2T2 2T1

2T3 2T1

2T3—2T2

2T3 2T2 T1

Trigonometric
part of

amplitude

—
4 sinsk sins(k/2)

—xs sins' sins(f/2)

—sx sins' sins(g/2)

—W(C) sink sin4(]/2)

Diffusion damping of
the amplitude&

k( 14

ezp —4 f4+pe, s
~

3& ~ )

k(
exp ——

~
f&+g b„'

~

3E ~ )

Relaxation damping of the amplitude

( t)
exp/—

2's)

(
exp] ——

/

2'4)

(
exp[ ——

/

'12)
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exp]

2's )
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k( '4
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~
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( t )
exp] ——

&2)

+(123)
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~(124)
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T2+Tl'

T3+T2

T3+Tl

T3+T2 T1
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—xs sinsk coss(k/2)

—~2 Sin3$ COS$
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—$ sins' coss(k/2)

exp —-(fs+b&s+bss+844)
3

exp (fs+b&s+bss+—bs—s)
3

k
exp (fs+b&s+b—ss)—

3

k
exp (fs+bs'+—bs'—)

3

k
exP —-(f&+b&s+bss+844)

3

( t rs+rl B—s &t

exp
2'&)

( t r, +rs—bs l
exp/—

»)
( t TS+T—l TS—Tl

&

exp]—
Ts 21 )

( t rs+rs r—l bs )—
exp]—

Tl)

( t—Ts+Tl bs '&

exp/—

~((»)34)

+(1234)

T3+T2 2T1

2T3—T2+T1

xs sins' sins(k/2)

—ss sins' coss(k/2)

k
exp ——

(f4+ b&4+bss+bss)
3

k
exp (f s+b&'+ bs'+ 8—4'—)

3

( t rs+rs bs )—
exp/ ———

22 21)

( t rs+rl bs )—
exp]

2'&)

are six such echoes in the case of four applied pulses as
seen from Table I, and the above law for 6nding their
positions is seen to give their positions correctly.

(c) Terms which can be explained by a primary echo-
mechanism between primary echoes due to pre»ious applied

rf pulses and subsequent rf pulses. —A typical one is
denoted by P(( „)„),which gives the primary echo due
to primary-echo interaction between the primary echo
P( „)and the applied pulse at 7„.The interval between
theechoP(( „)„)andtheechoP( „)isgivenby28„( „),
where 8„, ~ „) is the interval between the applied rf
pulse at r„and the primary echo P( „), the position of
the latter being found by the combination rule given in
the previous paragraph. This rule gives correctly the
positions of the maxima of four such terms occurring in
Table I with four applied rf pulses. There is one more
echo in Table I which comes into this category, vis.

P~~(~2)3)4), which represents the primary echo due to
interaction between the primary echo P(~»)3~ and the

fourth applied pulse. We can make a general notation
P((( )„),) for this type of echo. The rule for finding its
position is that it is at an interval 2(),, (( „)„)away from
the echo P(( )„)with 8,, (( „)„)representing the interval
between the pulse at 7-, and the echo P(( „)„), the
position of the latter is found by the combination rule

given in the 6rst part of this paragraph. A similar inter-
pretation may be given to terms like P(((...( „)„)...)...) ) ~

which may arise with more than four applied rf pulses.
(d) Terms which may be eccplained by a "stimulated"

echo mechanism between three applied pulses. —A typical
one we denote by P( „„),arising out of the three applied
pulses at r, 7„and 7.„,the rule for finding its position
is that it is situated an interval (r„r)+(ro—r ), —
i.e., bo„+28„away from the first of the trio. There are
clearly four such echo terms in Table I, and the above
law of combination evidently gives the positions of
their maxima correctly.
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(e) Terms which can be explained as arising from a
primary echo mechanism between a stimulated echo due
to three previous rf pulses and a subsequent rf pulse .—A
typical one is denoted by P(( „„),), arising out of a
primary echo—mechanism between the stimulated echo
P( „„)and the applied pulse at 7, The law of combina-
tion of intervals for 6nding the position of this echo is
that it is an interval 28,, ( „„)away from the stimulated
echo P( „„),5,, ( „„)representing the interval between
r, and the echo P( „~), the position of the latter being
given by the rule in the preceding paragraph. There is
evidently one such echo in Table I for four applied rf
pulses, vis. P~ ~~23~4), and the above rule is seen to give
its position correctly.

(f) Terms which can be explained as arising out of a
"stimulated echo" m-echanism between an echo (primary
or stimulated) and two subsequent pulses A .—typical one
is denoted by Pt t ~ „)„,~ or P(( „~„,), according as the
previous echo contributing to the "stimulated echo"
mechanism in question is the "stimulated echo" P(~ „~
or the primary echo P( „) respectively, the rule for
finding the position being easily found by a combination
of the diferent rules given in the previous paragraphs.
We have only one such echo, viz. P((&~)34) in the case of
four pulses tabulated in Table I.

(g) Final term. —Finally we have one echo which we
have denoted by P|~2~4), with a maximum occurring at
2rs —rs+ ri, which we cannot explain by the mechanism
discussed in the above paragraphs. It appears to be due
to a new type of combination of intervals which we call
"quaternary, " characteristic of four pulses, and analo-
gous to the "primary" combination with two pulses,
and the "stimulated" combination with three pulses.
The rule for ending its position when written in terms
of the interval between the pulses is also interesting; it
is at an interval 28s+bs+28i (see Fig. 1) away from
the first pulse as compared to bs+28i for the stimulated
and 28~ for the primary echo mechanisms. We have also
carried out calculations with Ave and six applied rf
pulses, when "pentanary" and "hexanary" mechanisms
following the combination rules 54+28s+82+28i and
28s+84+283+bs+28i are found as well. Hence we find
that there is a new law of combination giving rise to a
special type of echo, coming in with every extra applied
pulse. Of course, all these can be explained by the
rotating vector models developed by Hahn. " In
general, the law of combination involving n pulses,
giving the interval of the echo in question from the first
pulse of the group, will thus be given by

2(b i+5 -s+ +bi)+ (5 -s+5 4+ +br),
for n even,

(4—1+bn—3+ ' '+52)+2(~n 2+bn4+ ' ' '+51)—-
for n odd.

' For a specially simpli6ed picture for explaining the origin of
these mechanisms, we can consider rotating models with a 90'
pulse followed by 180' pulses, as discussed by H. Y. Carr and
E. M. Piircell, Phys. Rev. 94, 630 (1954).

8~, b~, , representing the intervals between successive
pulses starting from the first one.

These considerations enable us to obtain a recursion
formula for the number of echoes, y, to be expected
with n pulses.

(a) Number of primary echoes due to interaction
directly between the nth pulse and any of the previous

(n- ii
pulses=

~ )
(b) Number of primary echoes due to interaction

between nth pulse and previous echoes=y i+y„2
+ +yi

(c) Number of stimulated echoes between nth pulse
&n 11—

and any two of the previous pulses=
~

(d) Number of stimulated echoes between nth and
(n —1)th pulses and a previous echo=y„s+y„—s+
+yi.

(e) Number of quaternary mechanism echoes between
(n —»

nth pulse and three previous pulses=
~

(f) Number of quaternary mechanism echoes between
the previous echoes and last three pulses=y„s+y„4
+ ' +yl

(g) Number of (n 1)-mecha—nism echoes between
fn »—

nth pulse and (n 2) pr—evious pulses=
~

t n 2j-
(h) Number of (n —1)-mechanism echoes between the

last pulses and previous echoes =ys+yi.

(i) Number of n-mechanism echoes=
~

~=1.
gn —1)

Ke therefore have

or, in terms of 8, (4)

g&8„2&8„3&- . - )Bi.

If these conditions do not hold, some of the echoes

I+I I+ "+I|'n-» (n —1'l (n —1'l

+[y„ i+2y„2+ +ry„„+
+ (n —2)y, + (n —1)y,)

= (2) —1+[y„ i+2y„s+ +ry„„+
+ (n 2)ys+ (—n 1)yi]. —(3)

By using yi ——0, the formula (3) gives y, =1, ys ——4,
y4= 13, y5=39, y6=112, in agreement with the results
of direct calculations with 2, 3, 4, 5 and 6 pulses, respec-
tively. The laws of combination giving rise to the
diGerent echoes with four pulses are shown in Fig. 2,
where a horizontal line is drawn to represent the mode
of combination for each echo, the dots representing the
parent pulses and the crosses the echoes obtained from
them.

Of course it is to be remembered that the recursion
formula (3) holds only under the conditions:

v„&2~„~, ~„~&2v„2, etc. ;
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predicted by (3) will not be observed. Moreover, one
may enquire why we do not observe all these echoes
discussed above when we apply successive pairs of
pulses of increasing intervals, as in primary-echo en-
velope measurements. ' The reason is that in such
measurements, the pulse intervals do not evidently
satisfy the conditions (4) so that some of the echoes
discussed above do not occur. Further, it is to be ex-
pected that since the applied pulses now consist of pairs
of pulses with fairly large gaps between successive
pairs, all the echoes arising out of pulses belonging to
different pairs will be heavily damped and so disappear
in noise. Only the primary echoes between pulses within
a pair -will have significant amplitude and will be
observed.

The aforementioned analysis for echoes with four
pulses has an important practical application. Thus, it is
difficult to set the angle of nutation )=~it at exactly

m/2, because ari =yH„, and H„, the rf field amplitude can-
not be measured accurately by a direct method. But the
present investigation gives us a way to attain this end.
Thus we see that the stimulated echo due to the first,
second, and fourth pulses has an amplitude given by

Thus if a circuit be arranged to give four successive
rf pulses with intervals satisfying (1) and also such that
the di8usion and relaxation dampings are small, and
then the groups of pulses be repeated at a rate faster
than that necessary for persistence of vision, the full
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FIG. 3. Arrangements of rf pulses for Hahn
primary-echo experiment.

echo pattern can be seen, from which the particular
echo of interest, vis. P(»4), may be chosen from its
position. Now, keeping the pulse-width t„constant, the
rf voltage from the oscillator may be varied till this
echo vanishes. The value of H„when this occurs is the
value necessary for making $=ar, t„=~/2

IV. APPLICATIONS TO HAHN'S MEASUREMENTS ON
PRIMARY AND SECONDARY ECHOES

The aforementioned analysis with four applied pulses
also has interesting applications in experimental meas-
urements on primary and stimulated echoes, with groups
of two and three pulses respectively. Thus, it gives us a
possible method of obtaining T& from primary echo
measurements alone, and also a correction to measure-
rnent of T2 from observations on primary echoes. Hahn, '
in his experiments on the primary echo, applies paired
pulses (Fig. 3) with intervals di, d2, d&, ~ ~, respectively
between members of successive pairs, the intervals
between the last member of the (e—1)th pair and the
first member of the nth pair being denoted by p„, &„ ii.
The interval between the first pulses of successive pairs
is denoted by x, which is usually kept constant.

From Table I, we get the primary echo amplitude
due to the first pair of pulses as

2di kSid'l
A i= sint sin'(P/2) exp l—

3 )
The primary echo amplitude due to the second pair of
pulses is given by

p2i)
A2= sing sin'($/2) 1+[W'(D)—1j expl

~ T, J

f 2d2 5kd23)
&(expl—

E T, 3 )
where W'(D) represents that part of W(D) which is
contributed by the Ws of the previous instants. The
term

C= 1+{W'(D) —1}exp( —p2i/Ti)

gives the e8ect, on the primary-echo amplitude, of the
memory retained by the spin system regarding the con-
ditions established by the previous pair of pulses, and
is a consequence of the fact that thermal equilibrium
is not attained in the interval between the two suc-
cessive pairs of pulses. Similar calculations with a third
pair of pulses gives the primary-echo amplitude due to

these as

f p»l
A 3= sing sin'($/2) 1+[W'(J)—1j exp l—

T, )l
2da Skdp)

Xexpl-
T, 3 j

If we now use pulses with $=m/2, then the C term for
the primary echo due to the nth pair of pulses will have
the general form

[1—exp (—p., „ i/Ti) ).
This factor we shall call the "memory damping" factor
in the primary-echo experiment. This "memory damp-
ing" eGect provides us with a method of obtaining T~
from primary-echo measurements alone. Thus, from
Fig. 3, we have

pn, n-i =& dni-
Hence the amplitude of the primary echo due to the nth
pair of pulses will be given by

2d Sk
A =sing sin'(P/2) expl — ——d '

l

T,

f
&& 1—expl—

)
If now the d„'s be kept constant and the interval
between the successive pairs of pulses be varied, then
the primary-echo envelope will be given by

f x—d)
A. - 1—expl— (7)

T, )
Thus, we can arrange a circuit to give us paired pulses
with equal intervals between the members of each pair,
but with gradually decreasing intervals x between suc-
cessive pairs, starting from a value of x large compared
to T&, corresponding to attainment of thermal equi-
librium between successive pairs of pulses, till x is of
the order of T& or even smaller. By taking multiple
exposures we shall then get the echo envelope giving
by (7), and by taking a log-plot of this envelope we can
then evaluate T& directly.

In Hahn's primary-echo experiment to measure T2,
on the other hand, x is kept constant and d is varied.
In such a case, unless x)&d, there will be a correction
due to the "memory damping" factor. Thus, considering
the primary echoes due to the second and third pairs
of pulses, we have

A2 1—exp[ —(x—di)/Tij exp( —2d2/T2)

A & 1—exp[—(x—d&)/T2$ exp( —2d3/T2)

If we had neglected the momemory damping factor, we
would have had

A2 exp( —2d2/T2')

A q exp( —2d3/T2')
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as employed in Hahn's experiment, ' we get

1 1 1
—

p aqP
T, T,' 2P 4 Tt) Ti

(8)

Of course, in general, the correction will be small,

T2' representing the uncorrected value of T2. Then,
putting

ds dt=ds A=—' ' ' =~a d~t=p

because, for Ti large, p/Ti is small and for Ti small
x/Tt can be made large. A similar correction for
"memory damping" will apply to stimulated echo
measurement with groups of three pulses also.
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The purpose of this paper is twofold. One is to analyze the
group-theoretical signi6cance of the Dirac bracket and to examine,
in particular, the apparent ambiguities in the presence of both
6rst-class and second-class constraints. The other is to prepare
the ground for the utilization of the Dirac bracket for the quan-
tization of generally covariant theories. It is shown that the Dirac
bracket represents the commutator of in6nitesimal transformations
in phase space which are not canonical but form a group, in that
they are the only transformations that preserve the form of all
the constraints of a theory as well as the canonical form of the
equations of motion. This group of transformations possesses an
invariant subgroup: those transformations that correspond to
coordinate transformations, gauge transformations and the like.

From this subgroup, we can construct the factor group. All
members of the original group have generators, but the generators
of the invariant subgroup are zero. There is, then, a one-to-one
correspondence between the nonvanishing generators and the
members of the factor group. The Dirac bracket is uniquely
de6ned for all dynamical variables that can serve as generators;
excluded are variables that have no invariant significance (such
as the divergence of the electromagnetic vector potential). If it is
possible to identify all these permissible generators, then the
theory can be reformulated in terms of these and will be free of
constraints. It is proposed to adopt the set of generators and the
Dirac brackets between them as the point of departure for the
formulation of covariant quantum theories.

r. INTRODUCTION
' 'T is well known that the quantization of a given
- - classical 6eld theory is not a straightforward unique
process. The replacement of classical Poisson brackets
by commutators between operators cannot be carried
out simultaneously for all conceivable dynamical vari-
ables without leading to internal inconsistencies. Ordi-
narily, the formulation of commutators is therefore
restricted at first to a certain class of variables, such
as the canonical coordinates of the theory, ' all other
commutators being obtained subsequently by calcu-
lations from this primary set. But a given classical field
theory may be set up in terms of any set of canonically
conjugate variables; the transition from Poisson
brackets to operator comrnutators then leads to differ-
ent quantum theories depending on the canonical coor-
dinate system chosen. Hence the usual prescription is
ambiguous unless we can single out a particular canon-
ical coordinate system for the transition to quantum
theory.

This situation is somewhat less ambiguous in quantum
mechanics. There the rule is to carry out the quantiza-

*This work was supported by the Once of Naval Research.' R. E. Peierls, Proc. Roy. Soc. (London) A214, 143 (1952).

tion in Cartesian (or Lorentzian) coordinates and to go
over to other coordinate systems only after quantiza-
tion. This rule can be transferred to 6eld theories that
are "essentially linear. " An essentially linear theory is
one whose Lagrangian can be split naturally into a
"free field" part and an "interaction" part, such as the
Lagrangian of electrodynamics. This separation of the
Lagrangian into two components, of which the former
is purely quadratic in the field variables, remains
preserved under linear-homogeneous variable trans-
formations. There is, then, a set of privileged and
identifiable canonical coordinate systems, any one of
which may be adopted as the point of departure for
quantization. The resulting theories are all equivalent
to each other, except for terms that are readily identi-
fied as so-called zero-point energy terms. Suchterms
can be subtracted from a given Lagrangian or Hamil-
tonian without serious consequences. There is some
doubt about the ultimate justification for such a pro-
cedure, especially in the event of strong coupling, but
we shall not concern ourselves with that question here.

Generally covariant theories are not essentially
linear. Moreover, the most convenient canonical coor-
dinates of such a theory, i.e., the initial field variables


