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Bloom and Norberg and also Hahn and Herzog have observed spin echoes due to electric quadrupole
interaction alone and also in the presence of a weak magnetic Geld in addition to electric quadrupole inter-
action, with CP' (spin 1=3/2) nuclei in NaC103 crystal. They have explained these echoes theoretically
for the particular case of I=3/2. We have calculated the spin-echo amplitudes to be expected under the
above experimental conditions for nuclei of any general spin in crystals with axial symmetry. The opposite
case of spin echoes in a strong magnetic field in the presence of weak electric quadrupole interaction is also
discussed. The theoretical investigation leads to "slow beats" in this case also.

INTRODUCTION

' 'N the conventional spin-echo experiment, ' we have
~ - a strong steady magnetic field, perpendicular to
which a radio-frequency magnetic field is applied, and
the free induction and echo signals following the appli-
cation of the radio-frequency field in short pulses, is
studied. However, in the case of many crystals, some
of the nuclei have considerable electric quadrupole
interaction with the surroundings. In such cases one
can think of spin-echo experiments where the electric
field gradient inside the crystal takes the place of the
steady magnetic field. Such experiments have recently
been carried out successfully by Hahn and Herzog' and
also by Bloom and Norberg'' in the case of chlorine
nuclei in NaC103 crystal. They have also observed the
modulation pattern obtained when a steady weak mag-
netic field is applied at an angle ep to the axis of sym-
metry of the crystal. They have explained their ob-
served results theoretically using a method similar to
the one used earlier by Hahn and Maxwell. ' We shall
show in this paper how their results can be explained
and extended to the case of nuclei with any general
spin I, using the density matrix method of calculating
spin-echo amplitudes developed by us in an earlier
paper. This paper is divided into three sections. In
Sec. I, we take up the case of spin-echo signals for pure
quadrupole coupling. In Sec. II, we examine the eRect
of a weak magnetic field superimposed on the electric
quadrupole coupling, at an angle ep to the axis of sym-
Inetry of the crystal. In Sec. III, the opposite case is
treated, vis. , the one in which the electric quadrupole
eRect is small but the applied magnetic field is strong.
As in our previous paper, ' which we shall henceforth
refer to as Paper I, we have not included the eRects of
the relaxation times T1 and T2, because from a phe-
nomenological point of view, we expect their eRects
on the spin echoes in the present case to be the same as
on the conventional spin echoes. ' In a later paper we

shall try to examine how the concept of density matrix'
may be used in the context of the Bloembergen picture' '
of relaxation force. to introduce their eRects directly
into the spin-echo signal amplitudes.

SECTION I. PURE QUADRUPOLE CASE

As explained in Paper I, our method of calculating
the spin-echo amplitudes essentially involves solution
of the time-dependent Schrodinger equations for the
spin system in the presence and absence of the rf
pulses. If the Hamiltonian due to the electric quadru-
pole interaction be BCp and the additional perturbation
due to the applied radio-frequency field be BC', then if
R and D represent the transformation matrices in the
presence and absence of pulses respectively, then the
Schrodinger equations in the two cases will be

dgi' =(30p+30')—R,
dt

dD
zh —BCpa,

dt

We shall refer to E in the future as the "transition
matrix" depicting the transformation in the state of
the spin-system in the presence of a rf pulse and to D
as the "free-precession matrix" depicting the trans-
formation in the state of the spin-system in the absence
of the rf pulses. If we now apply e rf pulses, then the
net transformation matrix S, termed the "echo matrix, "
will be given by

the sufIixes referring to the successive pulses. The
density matrix' p(t) for the spin system after the
passage of the pulses will then be related to the initial
density matrix before the pulses are applied by the

' E. L. Hahn, Phys. Rev. 80, 580 (1950).
2 K. L. Hahn and B. Herzog, Phys. Rev. 93, 639 (1954).
3 M. Bloom and R. Norberg, Phys. Rev. 93, 638 (1954).' M. Bloom, Phys. Rev. 94, 1396 (1954).
s E. L. Hahn and D. E. Maxwell, Phys. Rev. 88, 1070 (1952).
e Das, Saha, and Roy, Proc. Roy. Soc. (London) A227, 407

(1955).

~ P. A. M. Dirac, QNaltttm Mechanics (Clarendon Press, Ox-
ford, 1947), third edition, p. 132.

Bloembergen, Purcell, and Pound, Phys. Rev. 73, 679 (1948).
s R. K. Wangsness and F. Bloch, Phys. Rev. 89, 728 (1953),

have introduced T& and T2 in the differential equations for the
density matrix under certain restricted conditions and without
using the detailed Bloembergen picture.
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relation
p(t) =Sp(0)S '

where the components (Q)„' of the electric quadrupole
moment tensor of the nucleus and (VE)„' of the field-
gradient tensor are given by

In most experiments, where the rf coil producing the
rf 6eld is also the detector, we need the expectation
value of I, the x component of the spin of the members
of the spin system, after the passage of pulses. This is
given by

(I )=Tr{p(t)I,}=Tr{Sp(0)S 'I,}, (4)

The Hamiltonian in the case of pure quadrupole coup-
ling may be written down, in the irreducible tensor
scalar product form" "as

eigenvalues of I, and the levels corresponding to eigen-
values +m and —m will coincide. We shall thus have
in all, (I+1) distinct energy levels for integral I and
(I+sr) for half-integral I. The spacing between the
adjacent levels will be unequal, and we shall therefore
have in all, I resonance frequencies for integral I, and
(I—sr) for half-integral, corresponding to the energy
differences between successive levels [see Figs. 1 (A
and C)7. The resonance frequency corresponding to
the transitions m ~ (m —1) and —m —+ —(m —1) will
thus be given by

ce(m) =3P[tis' —(m —1)'7=3P(2m —1). (10)

Let the applied radio-frequency be that corresponding
to the transitions,

assisi ~ & (mi —1).

For brevity, we introduce the following notations:

E(mi) =aPh,

E(mi —1)= bPh)

a=3mP —I(I+1),
b =3 (mi —1)'—I(I+1),

so that the resonance frequency in question is

and

e

(Q)+ '=( V6) (I+)'
2I(2I—1)

(&E)o'= sreq(3 cos'es —1),

(VE)its= + (as+6)eq sin8p cosHp exP(&sos),

(VE)~ss= (s+6)eq sin'Hs exP(~2&a),

cc(m,) =P(a—b). (12)

If the radio-frequency magnetic field be applied at
right angles to the symmetry axis, (i.e., the z-axis),
then calling its direction that of x, the perturbing

(7) Hamiltonian will be

Ki(t) = yhI, H„co—s(cte—ts), (13)

with Is——I, and I~ I &iI„;the not——ation {A,B}refers
to the anti-commutator (AB+BA). Q is the scalar
quadrupole moment delned by Casimir, "depending on
the charge distribution within the nucleus. q is simi-

larly the scalar quantity" defining the components of
the field gradient tensor for axial symmetry depending
on the charge distribution around the nucleus. ps and
80 refer respectively to the azimuth and colatitude of
the axis of the symmetry in the coordinate system
chosen. If we now choose our coordinate system with
the axis of symmetry as the z axis, we then have 80=0,
and we get, "

Kp ——Ph, (3Is'—I'),
where

where I is the x-component of the nuclear spin and
2B„the amplitude of the radio-frequency Geld, co being
its frequency. Now, following the usual method'4 for
dealing with time-dependent Hamiltonians, we have
the matrix R given by,

R(t, ts) =exp[—(i/h)Sep(t —ts) 7 R*(t,ts),

(14)

Ki*(t') =exp[(i/h)Xs(t' —ts)7 50i(t')

Xexp[—(s/h) Xp (t—tp) 7.

In the present case, using (13),
e' qP=

4hI(2I —1)

Evidently the energy levels will be specified by the

» R. V. Pound, Phys. Rev. 79, 685 (1950).
"Refer to M. K. Banerjee and A. K. Saha, Proc. Roy. Soc.

(London) A224, 472 (1954). We have followed their notation
closely.

» H. B. G. Casimir, Arch. du Musse Teyler, 8, 202 (1936).
» R, Bersohn, J. Chem. Phys. 20, 1505 (1952)

Using ai=&e(rishi) and putting t—ts=t„, the rf pulse

'4 P. A. M. Dirac, Quack»m Mechaetce (Clarendon Press,
Oxford, 1947), third edition, p. 173,

(9) Ã1 (t ) scclh{exp(3iP(t' —tp) (2Ip —1))
I [exp(in'(t' —t ))+exp(—in'(t' —to))7

+exp( —3iP(t' —ts) (2Is+1)).I [exp(ioi(t' —t,))
+exp( —ice(t —tp))7}. (15)



518 T. P. DAS AND A. K. SAHA

mw-lprrEeggI. Srus

E+I= PA'I(2I-t)
E I= Pt, T(2I t)+-I t oiocoS8.

E+I= ~Z(sr-i) Ig ~-o cos e.

E+(y i)=Pti(I-'3)(2I-t)

P+(I 2)=Pt(2I 9I+~)-

o)(I-I)

A (Z)

(I i)=Pts (I-3)(2I t)+ (I i)h~o ~4~r

Es(I-i)= PA (I 3)(~I--i) (I -i)" 0 ~ ~
~

Ie(z-~) e (r-))
E- (I-&)= Pf, (zI-9Z+S)+(I2)to)'o-cosPII

Z~ (I-2)= PA (2r'-SI+o) —CI-2)

E+ = Pt, fbi ' y(I~i))-

2
&+(~ i&

- PA [&(iii-i) - Z(I+i)j„

E ~ - pg (3m-Z(I+i)g+mSjioi, cos 8,
E+m = PSi Esn ~-ICIi-i)2- mid, coo ~t~

augie)

E (io i)= pg $3(iii-I) -Z(zti)g~ (iii-i)')i cq, cosy, „
Etiii-i)= uf l~(~ i)'-I(z»)g (i-i)8~. cos e-d

E.g, —Pa P~"-I(I+if

E+V~ = Ph L'&~ -&(I+~8

E-~jg=

ping~

I(I~~)/++i &-i'oo&ooe,

E+e~ = PA L'Q' -I'Crii)g-&lg. Aid, coop,
st)

p+ —PA [4+-I(r~i)g~g st case.

PAEge-Z(z~it/- Q& id, car e.

I

pl 3 3I
I

ml~ ~I~L

0 l

Bl 3 GI
i

I zo. 1. A and 8 are energy-level diagrams for half-integral spins resulting from pure electric quadrupole interaction
only, and also. in the presence of a weak steady magnetic Geld. The solid lines in the lower part of the Ggure represent
the pure quadrupole resonance frequencies and the dotted lines the resonance 1ines in the presence of the weak magnetic
Geld.

width, the matrix elements of R may be easily found
from (14) and (15). Thus we have

(sN
~
E

~

sN') =exp( —iPt $3ssss —I(I+1)j}8„„.,
for sist asssg, a (sly —1),

(&sss&
~
R

~
sis') =cos(x$/2) exp( —iPat„)h

+i sin(xP/2) exp( iPat„)bm', a(m& —1)&-(16)

(+ (sN& —1)
~
E

~

sss') =cos(xP/2) exp( —iPbt )hm', ~(my-I)
+i sin(xP/2) exp( —iPbt~) bm', &my,
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IN TEGRAL SPINS

E„1=P2& J(21 &)t1-t o&oeos8p

p+g- pgg(gz-i) zgz~ros8,

Fg(2-&)= Pt (1-3)(21 &)-

(&d(E-/)

p+(1-2) = PA (21 91+&-)

p (r &1=PA(I s)(27 &)-& (1 &)-2&s&»-cos8o

E+gf &y- pg (y-g(gy g) (7 i) $0P~cos Ho '(

+(I-'&} o&(r-y
pt, (Zr s&2j.s)+ (I-sJAslocos8O ~(

p(g-gy = pg (gl -95+6)-0 ~~A&o COSgo I)

E&~=Pt,(ams 1(Z+~)J

e(e)
P+(~&=Pt, 13(~i}-1(Z~yg,

&

E ~ = Pals~' 2(&+&)7+m/ a-&oco58.

E+ = pt, ts~'-1Cr &)7-~& ~.«».
~l

N(m-iP)-~ fs(»&-&)s1(r+&)7+(»&-&)t&u, cos8. „
g (e-r)=P~ E&(+™I)- I(&+I)2-(+ I)+o &+ 8o 1f

E2&= P2 L3-1(&~~)J
E &- PAjs 2(J+&&2 '&oo -eos 8,
8+I= P&Ls-Z(r+Ig-A ~~ c&+ Oc

E,=-P&Z(l+i) E =-PA, 2|'$+0

~l I ~l

3I 3 Qi
s I

gI~ Ql
) Q

l
3I Q 3I

I

FIG. I (c»r&ti&&Is&f) Cand D are .energy-level diagrams for integral spina resulting from pure electric quadrupole
interaction only, and also in the presence of a weak steady magnetic Geld. The solid lines in the lower part of the Gg-
ure represent the pure quadrupole resonance frequencies and the dotted lines the resonance lines in the presence of
the weak magnetic Geld.

where so thatx= L(I—t&st) (I+&&st+I)jt. (17)

In the absence of the rf 6e1d pulse, the free precession
(»s D f,fs sN')

is given by the kee precession matrIX D, vi» , . P~ s~ f' t- I(I+ )jl~""'

D(&,f,) = expL —(i/is)sc, (&
—f,)), for all m.
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The density matrix at start, p(0), is given by a
normalized Boltzmann distribution,

p(o) = N Pk
exp — (3I,'—P)

2I+1 kO 0 g+g g= &+&

where O~ is the absolute temperature and k the Boltz-
mann constant, N being the number of nuclei in the
sample. If the spin-echo matrix at the end of a number
of pulses be 5, then we have the expectation value of
I, after these pulses given by (3). Remembering that
Pk/kO(&1, and S and I both commute with P, we
shall have

sV p 3PA
SI, S-I. i.

2I+1 E kO' ) (20)

Using a pulse pattern of the type shown in Fig. 2
with pulse width t„satisfying the usual conditions, we
have, following the procedure outlined in Paper I, the
master matrices at the end of one and two pulses re-
spectively given by the following equations.

Single pulse: r&t&t„(free induction signal)

(m
~
Sz

~

m') =exp{—iPt [3m' —I(I+1)])b„„.,

FIG. 2. Applied rf pulses.

Using Eqs. (21) and (23) together with (20), we get
the expectation value of I, after one and two pulses
respectively as

3NPh
(I.)= x(2mi —1) sin(cv(mz) .t),

(2I+1)kO
(single pulse) (25)

3NPA
(I*)= x(2mz —1)

(2I+1)kO

X{sin(xg) cos'(x$/2) sin[co(mz) t]
—sin(x$) sin'(x$/2) sin[~(mz) (t—2r)]

+sin(x$) cos(x$) sin[co(mz) (t r)]}, —

(two pulses). (26)

for mQ &mz, &(mz —1),
(21)

(+mz
~
Sz

~

m') = azbm', +mz+ czhm', +(mz —1},

(+ (mz —1)
~
Sz

~

m') =dzbm', +mz+ bzbm', +(mz —i},

with
az= exp( —iPat) cos(xg/2),

bi ——exp( —iPbt) .cos(x$/2),

ci i exp(———iPat) sin (xt/2),

dz i exp(——iPbt) sin—(xP/2).

Tzz}o pltses: t= (~+r) (spin-echo signal)

3NPA
(22) (I,)= x(2mi —1) sin(x$) sincot

(2I+1)k

X exp( —P/2T2*'), (single pulse), (27)

3NPA
(I.)= x(2mz —1)

(2I+1)kO(m
~
S„~m') = exp( —iPt[3m' —I(I+1)])&

In case there is an inhomogeneity in q, and hence in
P, there will be a corresponding inhomogeneity in
cu(mz). As in the case of echoes in a strong magnetic
Geld, we can assume a Gaussian distribution in
hco=ar(mz) —~, with an rms value of 1/T2*, we then
get, on integrating the right-hand sides of (25) and (26)
over hu,

for mg&mz, &(mz —1),
(23)

(&mz
~

Szz
~

m )= agbm', amz+cgbm', a(mi —z}&

(+ (mz —1)
~

Szz
~

m )= bum', &mz+d2bm', &(mz —z}&

where

X{sin(xp) cos'(x$/2) sin&at exp( —t'/2T&*')

—sin(x$) sin2(xp/2) since(t —2r)

exp[—(t—2r)'/2T2*']+sin(xt) cos(x$)

X since(t —r) exp[ —(t r)'/2T2*—']),
a,= cos'(x$/2) exp[ —iPa (lz+ r)]

—sin'(xt/2) exp[ iP (aK+ br) ], —

b2= z2i sin(x$) (exp[—iPb (~+r)]
+ exp (—iP (b~+ar) ]),

c2 ,'i sin(x$——)(—exp[ —iPa(lz+r)]
+exp( iP(aK+br)]—),

d2 s'( coP/2——)xexp[ iPb(zz+r)]-
—sin'(x$/2) exp[ iP(bzz+ar)]. —

(24)

(two pulses). (18)

In Eq. (28), the first and third terms are easily identi-
fied with the free induction signals following the erst
and second pulses respectively while the second term
gives an echo at t=2r. We have here assumed that the
rf field is perpendicular to the symmetry axis in the
crystal. But in the general case, the rf coil may make an
angle 8& with the symmetry axis. In such a case, follow-.
ing the above procedure, first it may be shown that in
the E-matrix we have now $=&ozt sinez, and secondly
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SECTION 11. STRONG QUADRUPOLE COUPLING
AND WEAK MAGNETIC FIELD

Suppose now we apply a weak steady magnetic field

Bp to the crystal at an angle Op to the axis of symmetry;
the Hamiltonian in the absence of the rf field will now be

K=3Cp+3C',
where

IIp ——I'5 (3Ip' —is),
3C'= —cppkLIp cos8p+st(I++I ) sin8pf,

Cgp ~QHp.

(30)

It is now easy to see, using the perturbation theory for
degenerate states, that the coincidence of the levels

+
~

mrs
~

and —
~
trs~ discussed in Sec. I is destroyed and

the energy levels are characterized by nz, each ns level
being now quite distinct. For half-integral spins how-

TABLE I. Spin-echo amplitudes in pure quadrupole coupling
case for I= 1, 3/2, 2, 5/2.

Value of Resonance
Spin P (I) frequencies Spin-echo amplitudes

e'Qq
1 „3P(1) v2 sin(%2&) sin'(f/v2)

e'Qq

12k

e'Qq

24k

6P(3/2j 2&3 i (%31) i '(—)
9P(2) 6 sin(2$) sinsk

3$P(2)k

6P(5/2) 6 O
2+8 sin(+8)) sin'(v2$)

the component of the magnetization contributing to the
free induction or echo signals will now be proportional
to (I,) sin8i. With these modifications the spin-echo
amplitude will still be given by (28). These considera-
tions bring our results in exact agreement with those of
Bloom' and Norberg and Hahn' and Herzog, if we put
I=3/2 and est ——3/2. Thus for spin 3/2, the amplitude
of the spin-echo signal is proportional to

(v3/2) sin (V3$) sin'(V3$/2).

For a higher spin like 2 or 5/2, where we have two
possible quadrupole resonance frequencies, the spin-
echo amplitude to be expected for either frequency is
easily found by putting down the corresponding values
of eci and x in Eq. (28). In Table I, we have tabulated
the values of the different resonance frequencies, and
relative spin-echo amplitudes for spins 1, 3/2, 2, 5/2
due to pure quadrupole coupling alone.

ever, the two lowest levels are obtained by a mixing
of the states corresponding to no=&-,'. The energy
levels and eigenstates are tabulated in Figs. 1 (8 and D)
respectively for half-integral and integral spins.

We have

(+)= ~

ts) cos8+
~

—ts) sin8,

]
—)=+ [

——,') cos8—
[

-', ) sin8,

sin8= —L(f+1)/2f $&, cos8= L(f—1)/2f fr.

For a half-integral spin I=-', (2p+1),

f= L1+(p+ 1)' tan'8pf&.

(31)

(32)

We shall designate the new eigenstates by the numbers

n, with the understanding that the n's correspond to
the m's for all the levels of integral spins and for all the
levels of half-integral spins, except m=&-', . For this
lowest pair of levels for half-integral spins, the e's
correspond to + and —.

Our discussion in this section will be divided into
two parts. In the first part we shall take up the case of
transitions between the lowest levels of half-integral
spins and the next higher. In the second part we shall
consider transition between levels other than the lowest
for half-integral spins, and between all successive levels
of integral spins, i.e., between levels where there is
correspondence between the m's and nz's.

Mi, s, s, 4= 6I'& s (3&f)pip cos8p. (33)

Let the applied radio-frequency be co=6E; to a first
approximation we can then assume resonance condi-
tions to exist for all these four frequencies. The E-
matrix may be calculated as in Sec. I, with the follow-

ing modifications. We have to replace Xp in Eq. (14)
by 3C given by (29) and also we have to take matrix
elements with the eigenstates of 3C as basis and not
those of Xp. A similar modilcation has to be applied
to Eq. (18) to obtain the D-matrix in the present case.
Also, exactly as in Sec. I, we can obtain in the present
case the relevant matrix elements of Si and Siz, the
echo matrices after one and two pulses respectively.
We can then use (20)" to find the expectation value of
I, after one and two pulses respectively to obtain the
free-induction and echo amplitudes. We have the fol-
lowing equations for the expectation value of I after

"Properly we should use (4) with p(0) deaned by p(0)
=exp( —3C/kO~), with K given by (29), but if we do not want to
retain terms of the order of coo/P in the free-induction signal and
echo amplitudes, we may just as well use (20) without much error.

(a) Transition between the Levels + and the
Next Higher Levels

The states next higher than the lowest levels will be
those corresponding to tis=&3/2. It will be directly
seen that the single frequency cp(3/2) =6P of the pure
quadrupole case, is now replaced by four closely spaced
frequencies given by
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one and two pulses, ~is.,

3EPA 2x
(I,)= sin(x&) sin[co(-,') t]

ko~ 2I+1

f+1 (3 f-
cos~ (Pop cos8p)t

2

f 1 —(3+f+ cos~ (pop cosOp)t

f & 2

(sin

3SPA 2x (x$ ~
sin(x() sin') —

~
sin[co( —,') (t—2r)]

&2)
(I,)=

kO~ 2I+1

(f+1) ' (3 f—
X ( [ cos~ (~ocosOo)(t —2.) I)(2f) ( 2

3$Ph x(2mi —1)
sin(xp) sin&et(f »' — (3+f

+~ [ cos~ — (o~ocosOo)(t —2r) ))E2f) E 2
ko (2I+1)

Xcos[(dp cosOp' t] exp(
2T9*'f 1 (3oip cosOp ) (fppp cos8p )+ cos( (t—2r) [ cos( t

[
2fo E 2 ) ( 2

3$PA x(2mi —1) (x$)(I.)= sin(xp) sin'~ —
~

sin[to(t —27)]
kO (2I+1) E 2 )

(3cop CQS8p ) (foip cosOp
+cos( t

i cosi (t—2r)
/

2 ) & 2 ) Xcos[cop cos8p(t —2r)]

modulation "envelope modulation. "Besides this modu-
lation of the echo envelope there will be the usual ex-
ponential damping due to the causes contributing to
the transverse relaxation time. We shall not incorporate
the effect of the latter here, but shall merely mention
that as pointed out by Hahn and Maxwell, ' to get a
correct estimate of the present modulation eGects from
experimental echo envelopes, the latter have to be
normalized first to correct for the above damping.

(b) The other important case that we have to con-
sider is that in which the applied frequency corresponds
to pure quadrupole frequencies o&(mi) other than that
between levels &3/2 and ~1/2. In this case, each fre-

gle pulse ,

quency cu(mi) in the pure quadrupole case is broken
up into a doublet &o(m&) +pop cosOp by the action of the
weak magnetic Geld. Proceeding as in the previous two
cases, we obtain the free induction and echo signals
respectively as

(3(op CosOp i (fuo cosOp—cos t
/

cos/ ),
(two pulses). (35)

In Eq. (35), only the terms giving rise to an echo at
t=2r, vis , the te.rms involving sin[o&(3/2) (~—r)] are
given. In the presence of an inhomogeneity in g and a
corresponding inhomogeneity in P, we have to integrate
over a Gaussian distribution in Aoi=&u(3/2) —~ with
rms value equal to 1/T&* as before. Sin(co(3/2) t) in
(34) then gets replaced by sino@ exp( —to/2T&*') and
sin[o~ (3/2) (t—2r) 7 in (35) gets replaced by sin
(o~(t—2r)) exp[ —' (t—2r)'/2Tp*'], the latter exponen-
tial term showing the occurrence of the echo maximum
at t= 2r. It is evident that we get a modulation of the
pure-quadrupole echo signal by the action of the weak
s-field. If only a single spin-echo signal, corresponding
to a pair of pulses with a fixed interval between them,
be observed, then it will appear to have a modulation
on account of all the terms in (35) involving pip. We
term this modulation pattern "echo modulation. " On
the other hand, in echo envelope measurements with
paired pulses of varying intervals r only the last Q)p

terms, iis , those m.ultiplying the factor (f'—1)/2f'
will give rise to a modulation of the envelope, the
other two terms being independent of r at the instants
of occurrence of the echoes, i.e., at $=2r. We term this

Xexp[ —(t—2r)'/2Tp*']. (36)

where

and
Kp= —ykI, H„

(37)

e'VQX'= [(3Ip'—I') (3 cos'8p —1)
8I(2I—1)

+op sinOp cos8p(e '&9{I+,Ip)+e'oo{I,Io))

+—' sin'8o(I 'e "«+I 'e"&9)] (38)

Q and g being defined as before, and Oo giving the angle
between the symmetry axis and the s-direction, vis. ,
the direction of the steady field; {a,b) represents the
anticommutator (ah+ha) as before. We then have the

This expression evidently holds for all the pure quadru-
pole resonance frequencies of a nucleus with integral
spin I and for all those of half-integral spins except
the lowest one, vis. , that between levels &3/2 and &1/2.
It is evident from the expression (36), that in these
cases we merely have an "echo modulation" and not
any "envelope modulation. "

SECTION III. STRONG STEADY MAGNETIC FIELD
AND WEAK QUADRUPOLE COUPLING

In this case, the Hamiltonian in the absence of the
rf field is given by

BC=3Cp+K',



ELECTRIC QUADRUPOLE INTERACTION 523

energy levels correct to the 6rst order given by

P = —222ko),+2Ph(3 cos'gs —1)[32)22—I(I+1)), (39)

the eigenstates being characterized by the magnetic
quantum number nz, and

tudes, we can safely take it as

1V ( Puu, I,i
p(0) = exp

2I+1 & ko'
(42)

e'g
P=

4I(2I—1)A

This case divers from the previous cases in that there
is only one central frequency here, viz. , +„about which
we have a number of symmetrically placed components
with frequency separations of the order of P. Hence all
these frequencies will be more or less subjected to reso-
nance simultaneously and so the E.-matrix will no
longer be of the simple type obtained in the preceding
cases. There will now be matrix elements between all
the levels and it thus becomes dificult to give a general-
ized treatment for spin I. We shall only give the re-
sults for a few important cases, vis. , I=1, 3/2, 2. The
last one is important, because whereas in the erst two
cases there is only one symmetrical pair of lines, in
this case there are two. The case of spins greater than
I=2 may be worked out by following the general pro-
cedure outlined below.

The R-matrix may be found as usual by Eq. (14),
employing the eigenvalues and eigenkets discussed
above. We then find that if we agree to neglect terms
of the order of P/o) in the amplitude of the spin-echo
term, then the R-matrix is the same as the usual
Rabi-Bloch matrix, "~is. ,

(r)2( R
~

m') = exp[it„{2)2o),—P[32)22—I(I+1)]
y (3 cos'Hs —1)/2}] (2)2~R*~ r)2'),

with

(r)2
~

R*
~
2)2') ={(I+r)2) !(I—2)2)!(I+2m') !(I—2)2')!}&

)(sin21 (p/2) 2(21 sa na')-—
( ) cot (m+m'+2k) (P/2)

(40)
2 (r)2+2)2'+k)!(I—N2 —k)!(I—rN' —k)!k!

where k takes up integral values restricted by the
condition that none of the factorial terms in the de-
nominator is to be negative.

The D-matrix will as usual be given by

D(t, ts) = exp[ —(i/k)X(t —ts)]. (41)

The density matrix at start will be given by the
Boltzmann distribution, vis. ,

1V t' K i
p(0) = exp

2I+1 ( kO)

and if we are not interested in retaining terms of the
order P/o) in the echo and free-induction signal ampli-

"F.Bloch and I. I. Rabi, Revs. Modern Phys. 17, 237 (1945).

We can now obtain the echo matrices Sy and S~z
after one and two pulses respectively, using (40), (41)
and (2). Using these matrices and Kq. (3), we get the
density matrix after the passage of one and two pulses
respectively. Using (4), we now obtain the following
expressions for the free induction and echo signals'~
for spin I=1:
Free-induction signal:

2EAo),
(I,)= sing sino), t cos(3Pt),

(2I+1)ko

Spin-echo signal:

2XAa),
(I,)= sing sins($/2) sin[o), (t—2r)]

(2I+1)ko

X {cos$cos(3Pt) —2 coss($/2) cos[3P(t—2r)]}, (43)

where u,~3P are the two frequencies into which the
original resonance line due to the s-field alone is split
up by the quadrupole interaction. We have to integrate
these expressions over the inhomogeneity in the applied
s-6eld as in Paper I; we then get the free-induction and
spin-echo signals as

Free-induction signal:

2 Eke) ( t'
(I )=— sing cos(3Pt) exp~ —

~, (44)
3 k0~ 2T2*2)

Spin-echo signal:

2 Sko)
(I,)=— sing sins($/2)

3 k0~

{cos$cos3Pt —2 cos2($/2) cos[3P(t—2r)]}. (45)

It is evident that in the echo-expression (45), only
the first term in the brackets causes an "envelope-
modulation. " The resonance frequencies and the free
induction and echo signal amplitudes for spins I=1,
3/2 and 2 have been tabulated in Table II. A check on
the correctness of these echo amplitudes is obtained by
putting P=O, when we get the expression —,'I(I+1)
)& (2I+1) sing sin (g/2) for spin I, discussed in Paper I.

CONCLUSION

We have discussed above the two extreme cases of
spin-echo formation in crystals with (a) strong quadru-

"We have only given the results for the case when the sym-
metry axis of the axially symmetric electric Geld gradient tensor,
at the sites of the resonant nuclei, coincides with the direction of
the applied magnetic 6eld, i.e., 80——0.
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TABLE II. Spin-echo amplitudes in the case of strong z-field and weak quadrupole coupling.

Spin

3/2

Value of
P (I)

e'Qq

24k

Resonance
frequencies

a.a3P(1)

cu, +6P(3/2)

cus+9P(2)
cg,a3P(2)

Free-induction signal
amplitude

S cos(3P(1)t)
2 Neo

NAco
SCL1+-,' cos(6P(3/2)t) j

4NAco

& 8 SCL2 cos9Pt+3 cos3Ptj

Echo signal amplitude

5'C{ (Cs—Ss) cos(3Pt) —2C' cos{3P(t—2r)g}
4 Nko)

3 k0~

5'C{—2(2C' —Ss)'+6Cs(Cs —25s) cos(6Pr)
1 NAY

2 kO
—9C4 cosL6P(t —2r) j+35'(2C —S') cos(6Pt)
+6C (C —25s) cosL6P(t —r)g }

S'C{—16C' cos9P (t—2r)
2 Neo
5 kO

—454(Ss—29C4+86C'5'+20C') cos(9Pt)
+12C'(C —3S ) (C4+54) cosL3P(3t —4r)7
124C45 L25 (S —C )+C4(2+C )7 cosL3P(3t —2r)g
+12C'LC' —C'Ss—11S4C +17S —24S j cos3P(t 4r)—
—36C (C —2S C4+6S Cs—55 +45's) cos3P(t —2r)
+12(—S'+7S'C —13S'C'+3C') cos(3Pt)
+245sCs(C —C Ss+Cs54—3S +25s) cos{3P(t+2r)g }

a C and S denote cos(g/2) and sin(g/2) respectively. In some places, due to lack of space the brackets denoting the spin to which P refers have been
omitted. In these cases, the P's naturally stand for the P(I)'s of the corresponding rows.

pole interaction and weak magnetic field and (b) weak
quadrupole interaction and strong magnetic field. Ex-
periments in the former case have already been re-
ported. But there are as yet no experimental results in
the latter case. In some cases, such as in AP' resonance
in A1203 crystal, as Pound' points out, the second order
perturbation due to electric quadrupole interaction is
fairly appreciable. In such cases we expect some de-
parture from the results obtained by the method de-
tailed above. Nevertheless, using a second order per-
turbation treatment to handle the electric quadrupole
interaction, we can obtain the spin-echo amplitudes in
these cases, using the rudiments of our method. Be-
sides, we have only discussed the situation when the
strong magnetic field and the symmetry axis of the
crystal coincide. %e shall subsequently publish the
results of calculation for the case in which the symmetry
axis of the crystal makes an angle 80 with the strong
magnetic field. Of course, the most general case would
be one of "intermediate coupling, " where the quadru-

pole interaction and the interaction with the z-Geld
are of the same order. In this case, as Feld and Lamb"
have discussed, we have to solve a secular equation to
obtain the energy levels and eigenkets of the total
Hami}tonian (29), the two terms Xs and K' being now
of the same order. A complete solution of this secular
equation (usually cubic, for spin 1 and higher than
cubic for spins I)1) can only be obtained numerically.
Using the energy values and eigenstates so obtained we
can then find the Rand D matrices . using Eqs. (14)
and (18). Then, proceeding as in the previous cases,
the free-induction and echo amplitudes may be found
by evaluating (I,) after one and two pulses re-

spectively.
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