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Electron Impact Broadening of Spectral Lines*
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Zon densities in electrical discharges and in stars are often
determined by observing the widths of spectral lines emitted or
absorbed. The Holtsmark theory, usually employed in the inter-
pretation of the data, restricts itself to ions and ignores electron
collisions, which are treated in a qualitative way. This paper
describes a detailed theory of electron effects upon the Lyman
alpha line.

A convenient physical classification of the result is as follows.
Electrons produce, first of all, what we have called a universal line
effect, a broadening occurring regardless of the nature of the
atomic transition. Its cause is the transfer of energy from the
electrons to one or the other of the two atomic states via scattering.
So far as the analogy is proper, this effect is what is sometimes
called "second order Stark broadening. " It forms the predomi-
nating feature when a linear Stark effect is absent.

Secondly, electrons can enforce the optical transition by col-
hsions of the second kind. This mechanism, called quenching,

broadens the line. Zt alone has the property of reducing the
intensity of the line under normal conditions.

A third possible contribution to the line width results from
polarization, the counterpart of a first-order Stark effect. Zt comes
about if one of the atomic states (the upper in our example) is
degenerate or nearly degenerate. The electron, while flying past
the atom, can then induce transitions without much energy
transfer, i.e., polarize the atom. A distinction is made between
(a) polarization through induction of a temporary dipole moment
and (b) polarization through reorientation of an atomic dipole
already present by virtue of a neighboring ion. The first of these
is a large effect; its calculation requires the removal of divergences
which are ordinarily encountered in the matrix elements.

The summary at the end of the paper contains numerical results
on the broadening of I. by these several agencies under conditions
approximating the solar photosphere. They are all small in com-
parison with Holtsmark broadening by ions. But the example is
unusual; in general the electron effects are far from negligible.

I. INTRODUCTION

S PECTRAL lines emitted in a plasma are known to
be broadened in a manner characteristic of the ion

density and the temperature in the discharge. Indeed,
line widths are often regarded as "probes" by means of
which these two parameters can be determined. Tests
of this kind are based upon the theory of line broadening
developed long ago by Holtsmark, ' a theory which
assumes that the ions exert Stark sects whose mag-
nitudes vary as the ions move, thereby diffusing the
line intensity. The electrons, which are as numerous as
the ions, are supposed to produce small effects because
of their greater velocity and their ubiquity: they have
less time to interact with the radiating atoms, and by
being nearly everywhere they affect the atoms like a
static distribution of charge, which shifts the lines but
does not broaden them.

Despite the plausibility of these considerations, the
Holtsmark theory is plagued by an insecurity arising
from its failure to include the electrons in its concerns.
This has long been felt by astronomers and physicists
alike, and many qualitative attempts have been made
to treat the electrons. Some of these have had wide
attention and interesting use, for the rigorous theory
is cumbersome, and the likelihood that it will give
answers wholly different from those intuitively expected
is small. Probably for these reasons, such a theory has
not previously been worked out. In the present paper
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we undertake to do this, not in the hope of spectacularly
new results, but to provide a carefully analyzed instance
against which simpler models can be tested. Our ap-
proach is via the theory of natural line width; it involves
old and familiar ideas. We are not sure, however, that
it is the most elegant and the most direct attack upon the
problem; in fact it seems to us at times as if our results
should be obtainable in simpler ways.

The usual theories of pressure broadening are not
applicable to perturbing electrons because the uncer-
tainty principle prevents electrons from pursuing a
classical path along which an interaction potential can
be de6ned. It is necessary, therefore, to incorporate
them into the quantum mechanical system from the
very beginning, a process which leads to the elaborate
treatment developed in this paper. Some of the results
obtained are intuitively plausible and almost derivable
from various simple, classical models. But the con-
sistency of the guesses based on such considerations is
dificult to establish unless a comprehensive account is
at hand. Aside from being systematic, our treatment
also indicates many connections with other physical
phenomena, such as scattering, quenching of excited
states, etc. , and thereby deepens understanding.

To keep the work simple and the methods clear, no
extensive applications are given in the present paper.
The magnitudes of the various effects are illustrated in
the terms of one simple example, the width of the erst
Lyman line in atomic hydrogen under typical discharge
conditions. The analysis dealing with "universal broad-
ening" (by which we mean a transfer of energy to the
atomic state via electron scattering in a manner com-
putable without assuming a change in atomic states;
this mechanism is always present, whether there is
degeneracy of atomic states or not) in Sec. III is limited
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to line widths comparable to the natural width. Since
this eGect is found to be small and our applications fall
within the limits of validity of our treatment, we have
not thought it necessary to extend it. Subsequent pub-
lications will deal with more practical applications,
among them the contribution of plasma electrons to the
width of the Balmer lines.

Current investigations of hydrogen line breadths in
stellar spectra indicate that Stark broadening by ions
is insufficient to account for the observations. ' ' They
suggest that the diffculties may be obviated by taking
into account the electron eGects. Another discrepancy
is the failure of Holtsmark theory for ions to predict the
large shifts of argon spectral lines found by Kantrowitz'
in the study of shock phenomena. Baranger4 attributes
the difference to electrons. The electron e8ect also
interests workers using spectral line widths to measure
plasma characteristics in discharge tubes. ' To account
for it the density of charge employed in the Holtsmark
theory is often taken to be intermediate between the
ion density and ion plus electron density. '

Reasonable qualitative conclusions about the electron
broadening and shift of spectral lines can be drawn from
a semiclassical modeL. ~ If, for example, the electron
density is low and the lifetime of the excited radiator
is short, then not many of the atoms will be hit before
they emit, if by a hit we mean a "sufFiciently close"
collision. In the present paper we find the cross section
of this collision; its radius turns out to be essentially
the de Broglie wavelength of the electron. Thus high-
energy electrons, which produce small effects, may be
considered as passing the atom too quickly to polarize
it or to be scattered by it.

For the quantitative treatment of the problem
quantum theory of radiation is used. On the basis of
the results obtained it is possible, first of all, to delimit
the large region of high temperatures and low densities
where electron effects are minor and ignorable. With
decreasing electron temperature and increasing electron
density, first-order corrections to the natural line
become important and are found. Here two effective
broadening mechanisms are distinguished: (1) change
in the electron energy during a radiative atomic transi-
tion (urtitersal broaderting) and (2) distortion of the
atomic state-function (polariztttzort) by the electrons.
This second eGect is important only if one of the atomic
levels is strongly coupled to a neighboring level.
Application is made to the hydrogen-like 2p to 1s
transition. By inclusion of the 2s state, the eGects of
polarization of the excited state by electrons can be
studied. Attention will also be given to polarization in

' G. J. Odgers, Astrophys. J. 116, 444 (1953).
s A. Kantrowitz, Phys. Rev. 90, 368 (1953).
'M. Baranger, Phys. Rev. 91, 436 (1953). See also P. Shultz,

Ann. Physik 3, 280 (1948).
s See H. N. Olsen and W. S.Huzford, Phys. Rev. 87, 922 (1952).
e G. Jurgens, Z. Physik 134, 21 (1952).' See D. R. Inglis and E. Teller, Astrophys. J. 90, 439 (1939).

the physically interesting situation of a hydrogen atom
amid numerous positive ions.

and
'L7zd=pr J„b,e'

i7ib, =J&e '"', (2)

Where &=%atom Mr1 ~&atom E1 EO& and Ar iS the
energy of the emitted radiation. In these equations the
matrix elements for the atom-radiation interaction (J„)
couple the probability amplitudes for the state: excited
atom and dark field (d) with: atomic ground state and
a single photon (b„).For exponential damping (d = e 'r '),
Eq. (2) yields the natural intensity distribution (p, is
a weighting function)

To include a perturber (R) with the atom and the
radiation field, we write the Schrodinger equation

ih(c)/c)t)+(r, R) =H(r, R)@(r,R).

The Hamiltonian (H) includes terms for unperturbed
atom and radiation field [H, (r)$, the perturber
[H, (R)$, an interaction between atom and perturber
[C(r,R)j, and finally the interaction between atom and
radiation [J(r)$; it neglects the interaction between
perturber and radiation.

In our notation symbols referring to the radiation
field are suppressed. The wave functions and eigen-
energies for the field are understood to be contained in
the atomic P„and E„.

We are here interested in the extreme of an undis-
torted atom; hence, we seek a solution which is an
expansion of product functions with unperturbed atomic
functions, i.e.,

where gq" means the sum and/or integral over all
perturber states X while the atom is in state e. The
atomic function satisfies

H, (r)lt„(r) =E„p„(r), J' lp„l'dr= 1; (6)

the normalized electron function for an electron in the

H. Margenau and S. Bloom, Oak Ridge National Laboratory
Progress Report, March 1, 1952 (unpublished).

s See S. Rosseland, Theoretical Astrophysics (Clarendon Press,
Oxford, 1936), especially Chap. VIII.

II. GENERAL CONSIDERATIONS'

Electron broadening can be studied as an extension
of the Hoyt and Weisskopf-Wigner treatment for the
natural line width. ' The natural decay for a two-state
atom (Ei)Ee) is described by the growth equations,
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field of an atom in state f„obeys

[H, (R)+C,„(R)]pi"(R)=eg"yg"(R), (7)

f
I@,"I'dR=1, c,.(R)= y 'cp„dr.

To justify the use of the expansion (5), we note that
the best product function with neglect of the exchange
property is given by the Hartree equations:

I H+ p"'CP "dR IP" E "P—"

I
~+

)

iha „exp[—i(e„"+E„)t/h]

=Q„Q),"u„iJ „y„"*y),"dR exp[—i(eg"+E )t/A]

For high perturber energies (e&,"), g'" is to a good
approximation a plane wave. Then Ip'"I'is a constant
independent of X, and P„ is the atomic state in a uni-

form charge distribution normalized to the perturber
density. At low perturber density it is proper to neglect
the shielding e6ects of this charge distribution on f„.
Thus we ignore the C matrix element in (8) and our
equations take the form (6) and (7). Since the product
f„gz"is not a stationarysolution for the material system,
the coefFicients will, of course, depend on C.

On substituting (5) into (4) and using (6) and (7),
we find that

ihb„„=pg'd), J„exp(—idiot —iQy „t) P„"Pg'dR, (12)

with AQy p, =6), 6p
' the index r refers again to a

photon of frequency co„=or,&,
—~, and the amplitudes

d and b designate "dark" and "bright" states.
We now establish the fact that the exponential decay

approximation for the initially excited atom is valid

and independent of the electron state. From (12) we

find an integral for b„„(t) which we substitute into Eq.
(11):

Henceforth, we speak of the first additional eGect
as universal broadening, of the second as polarization
or quenching. The two may be treated separately in
our case of low electron density and high temperature,
where modification of the spectral line is small.

The first correction, to which the remainder of this
section and the next are devoted, is found by solving

(10) with neglect of the off-diagonal elements C, „.
This approximation holds for atomic states which are
not easily polarized or quenched, i.e., for transitions
between two isolated atomic levels. The correction then
comes merely from the fact that the atomic transition
takes place in the field of the electron. In view of this,
it is not surprising that the results we obtain involve
quantities also encountered in the theory of elastic
scattering of electrons.

For the two-state atom, then, with neglect of quench-

ing and polarization,

ihdi ——P„P„'b,„J„*exp(is)t+iQ),„t) @g'*y„'dR, (11)

+Z. E),"'.x 4,"'C 4»"dR
(nyet)

Xexp[—i(ez"+E )t/h]. (10)

This equation divers in two respects from the
Weisskopf-Wigner equations. First it provides for an
exchange of energy between electron and radiation
field by the presence of the e„and ~&" factors in the
exponent of the first expression on the right. These
remain because @„and pi" are not orthogonal. The
likelihood of these exchanges or shifts depends on the
integral factor,

„p„"'Q"dR.

The second eGect additional to the natural line width
is inherent in the terms contributed by the C elements
on the right of (10). They represent polarization or
distortion of the atom when the states m and n are
degenerate or nearly degenerate; if e and m denote the
levels between which the radiative transition occurs
these added terms describe quenching.

i' ——P, P„' Q), ' dg
iA 4p

&(exp[—ia&(r —t) —iQ" „(r—t)]dr exp(iQ"".t)

@'*y,.' dR y, '*y„'dR . (13)

The assertion is: d), ——a), 'e &', where a),' is a constant.
The proof is to note that it reduces the differential Eq.
(13) for dz to an identity. The sum over oscillator
states in (13) can be replaced by an integral.

I
00 f+

p„d'cv„=
o

p„der„,

where the symbols for the integration over angles of
emission and the sum over polarization are compressed

into p, . Since the integral, J'p„'*Pi'dR, is small for

large Qi „, we can take p„IJ„I'out of the integral over

~„, understanding that it remains constant over the
spectral line, and replace it by its value pI JI'at co=0.
Integrating over x= —(&o+Q" „) and then over r, we
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obtain
t +00

I'
d, , (,) I,'. —d.d,

0 —00
t

& 2irb (i.—t)d 7 gi, e & i= irgi,
0

Returning to (13), we find

di= —irpl J/AI' P&, tdi exp(iQ&i t)

&&+so, y o*y, ,tdR )I @„iy odR

= —vga, 'di exp(if2ig t) = —vA, (14)

(using a slightly modified definition of d and b)

y, =Pi, di, ui, exp( —isit/A)
and

po ——Pq beau~ exp( —isit/t'ai), (19)

ihbi, =g„(Cp, p)i, „exp/i(ei, s„—)t/A]b„=g„ikqi, „b„; (21)

with

where H,ui, sou&,
—.—Equation (17) then leads to

i7zdg ——Q„(Ct, i)i, „expl i (eg —s„)t/A]dti=—p„iA p),„d„, (20)

and

(22)

with y=irpl J/AI'. In establishing Eq. (14) the closure the p and g matrices are defined by (20) and (21).
relation of the functions P„o is used. This proves the Then
exponential dependence of d), on time.

Equation (12) can be written yp*ytdR=+„b„*d„—=b(t) td(t),

iV b„P„i—=V b„„=J„e& *-&-' -fy,*y,dR

provided we define

y, —=Pt, 'ui'yg' exp( —isi, 't/@),

4 o—=Q„o p„o exp( is„ot/A)—

Both Pp and ~t i represent electron wave packets moving
in the Hartree field of the corresponding atomic state;
in view of Eq. (9) they satisfy

(H,+C...)y„=iA(a/at)y. .

The function @0 is, of course, not normalized.
Suppose the electron is initially in a single stationary

state (X), so that ui. ', ——bi i. Then we find from (12)
for the line intensity

I ()=p, Z. lb„( )I'

y,*y,dR= btd = b(0) tUtTd(0)

With exponential decay of the initially excited state
Eq. (15) takes the form

i7ib„=J„b(0)tUtTd(0)e t~+'~~i' (23)

For the broadened line intensity we then have,

I =p, &.lb,.( )I'=p. l&, b;( )I'=p. lb. ( )I'

where b and d are column vectors. We now introduce
time-development matrices T and U, defined by
d(t) = T(t)d (0), b(t) = U(t) b(0); T(0) = U(0) =E. By
(20) and (21) they satisfy T=pT and U=qU. Since

p and q are anti-Hermitean, T and U are unitary. Equa-
tion (22) then becomes

2

=p„l J„/5 I' P„~y„o*y,tdR ~ + (~+-n,„)s. (18) =p„l J~/'bl' Tr p drTtUe

A theory based on a formula of this type was developed
by Rudkjobing"; his paper contains applications to the
H and E doublets of Ca+ and to the 45—4I' doublet of
Si''' at 4100 A.

We note that the normalization of I~ (oi) is maintained

(J'I~d&u= J'Idoo), since

dpo r'+ dM. V'+(+f2.)' . ~'+
is independent of p, and, by the closure property,

2

p„~ y„o*y,tdR =1.

To evaluate this broadening quantitatively, we
expand p in eigenfunctions (ui) that are independent
of the atomic state. In place of Eq. (16), we write

"M. Rndkjobing, Ann. astrophys. 12, 229 (1949).

X I dr'UtTe &~'.&" (24)-
0

where
p'=d(0)d(0)t and b(0)b(0)t=Z,

a unit matrix. Several steps in the preceding develop-
ment require comment. First, we prove the equality of
the sum of squares and the squared sum of the b„„.It
holds if

Q„b,„*b„.=0.
p Qil

This is not true in general; e.g. , when there are cor-
relations between the phases of the individual b„„.But
in the absence of correlations every term b„„*b„„will
vanish when supplied with the phase factor expi(u„—n, )
and averaged over some ensemble of phases.

The relation
b(O)b(0)t=z

rests on a similar argument. From (16) and (19) at
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1=0,

It follows that

@o=Z', y, '=Z&, b& (0)u&,.
Second, the normalization is maintained; i.e.

I&dG)q= 1.

and

b&, (0)=p„u&,*tt&„pdR;

f
u.tt&„'*dR' tu), *&t„odR=8„),,

b„*(0)b&,(0)=
( p„ u„tt&„ p"dR'

(( p„ I u),*tt„odR
)

This follows from (24) and a little algebra.
To prepare for the detailed work of the following

section we now consider a specific expansion of the
matrices T and U. As we shall see, this limits the range
of validity of our results and restricts us to broadening
effects comparable with the natural line width. We
solve for T by iteration, writing

if cross-terms containing p„p*ttt„p with factors
where

T(t) =E+T&'&(t)+T&')(t)+

exp[i(&2„—a„)]
are assumed to vanish on being averaged over phases.

We now transform

pt (ta
T(a) (t) =

~O &ap

p t2

p(t„) p(ti)dti . dt„ idt„

(26)

aild

d„+d„exp�—

t i (C—ii) „„t/, A]

b„—b„exP$ i(C—p p)„„t/&2]

and thereby remove the diagonal elements from p and &I.

For plane waves these diagonal matrix elements are
independent of the electron state, since

-~ exp(il, R)~ =I.
Designating such elements by

(C,.)»,
—=C. ,

A similar expansion holds for U. This expansion is more
strongly convergent for small C; i.e., little scattering.
The first term, T= U=E, corresponds to no change in
the perturber state and leaves the spectral line un-
changed. Higher order terms are small if the interaction
induces little change in the perturber during the lifetime
of the excited atom. These higher terms give a correction
to the spectral line which we evaluate to the second
order in the elements of C.

On expanding,

we have
I& p, ~I„/h, ))2T——r p' dte '"'[E+(U"'+Tt"')

"go*4,dR= P), b&,*d), exp(i((Cp, o))&,
—(Ci i)),),]t/A)

= exp {iLCo.o—Ci, i]t/A) P&, b),*di. (25)

In computing Io from (23) and (24), we shall absorb
the exponential factor occurring in (25) into e ' ' as a
line shift. Its magnitude is the change in electrostatic
interaction energy of the atomic states with a uniform
charge distribution normalized to the free electron
density.

Some interesting implications of Eq. (24) are easily
established. First, if the perturbation elements (Ci i)&, „
and (Cp, p)&„„are equal, then no broadening occurs.
This is reasonable, for in this case electron scattering
by the atom is the same for the two atomic states; no
change of the electron energy occurs with the radiative
transition and no broadening is expected.

To demonstrate this result set p (t) =
&t (t); then

T= U TtU=E. and

&20

p
&20

IU=p„~ I„/Al' Tr p', ' dte &7 ""&'
l

dte (2+'")''
"0 ~p

p, /I„/AJ'
)

~2+~2

since Tr(p') = 1.

+ ( U(2)+ Tt(2) y Tt(i) U(i)) y. . .]

&( 3 dte "[E+(U&(')+T(")
0

+ (Uti2)+ T(2)+ U&(i) T(i))+. . .]
with &J=y+io&. —

Neglecting terms of order C' and higher, we find

E 1
I«= p„~ Jp/h~ Tr p +— dte "(Ut(')yT('))

a 8 p

+— dte "t(U&i)+Tt"))
a~p

+ dte a*'(U"'+ Tt &')) dte "(Ut(')+ T&'&)—

J,

+—ll dte a (Ut(t)+ T2(2)+ Ut(—1)T(I))

1
dte

—aat(U&2)+Tt(2)+T&(i) U(i))
a~p
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In practice, the statistical matrix p is diagonal because the random phases of the d„, result in the cancellation
of nondiagonal d„d, . Random phases imply a lack of interference patterns or other periodicities in the per-
turber current. Thus, on expanding the trace,

I = p. l~/@I' +—Zi p»'a' a* 4 p

~
00 1

d« "(Uu "'+T»"') +- d« *'(U»"'+T»"')
a aJO

+p„~ dte-"'(Ui„"&+T„it'&") dte-"(Ug„t'&'+ T ),c")+— dte-"'(U»"'+ T» t"+p T ic"U g"')
0 "0 a

1
+— d« "(U»"'+T»"'+2 U i"'T ),"')

sJ p pX pX ~

a

From their defining Eq. (26), we find for the elements in the expansion of T:

r„&)=o,
exp (iQi„t) —1

Tice pip '0
pi, 'p.„' exp (iQi,„t) 1—exp (iQ),„t)—1

Ti (sl —Q
iQ„„ iQ)„

where p„z'=—(Ci, t)„i/iA, q„i'—= (Cs, s)„i/N. Because of these relations,

p, lz„/al
IU(o.') 1+Exp» Z . + (Igip I Ipxs I ) IVA pxy I

~2+~2 -'Y +(co+Q&,s) Qxs 'y +cd

(y'+(o'+cdQ „) t'y'+co' —coQ „)+ I vi'I'I —, , I+ I p~'I'!
(y'+ (ce+Q),„)'I Ep'+ (ce—Qi )'2

( y +co +s yQxy+MQxp y +co z'yacc ceQxcc—«»! p~'cia'*, + I
. (27)

p'+ (cd+ Qi~)' p'+ (co—Q„,)s j I

The frequency integral of the correction to the natural line Io p„l J„/ls I'/(—y'+ces) is zero. Thus the line inten-
sity is still normalized; there is no quenching of the radiation.

7Vhen the matrix elements are real, IU has a simpler form. Since the matrix elements considered in the next
section are all real we avail ourselves of this advantage. On putting

ping sP44 — LPGA) gxs ZQxp tgsx)
Eq. (27) reduces to"

P,„—g,„
Io(~) = 1+ Ei p»' Z, I [2Pi, (~'—v' —~Qi,)3

ps+~2 ps+co2 gas+ (co Q )2

+X@, hy+ —-I Pi (ys+cds) —Qi (3cos—y'+2cdQi„) j I
. (28)

'Y + (co+Qxs)

III. EVALUATION OF ELECTRON BROADENING FOR
A TWO-STATE ATOM

Redistribution Factor

The present section, being restricted to effects that
arise when the atom has but one upper state, is less
interesting from the point of view of practical applica-
tion than its sequels. For the restriction excludes the
possibility of degeneracy, and therefore the occurrence
of "linear Stark effects. " These are numerically larger
than the results computed here. The latter, however,
are universal, independent of the accident of degeneracy
and will therefore be considered first.

"S.Bloom, dissertation, Yale University, 1952 (unpublished).

The broadened intensity distribution given by II-(28)
has the form

ply/Al' z
IU 1+

~2+~2 ~s+~2

We shall refer to 8 as the redistribsttion factor Itis.
PX pXX Qg +Kyq

and depends on the collision matrix elements between
the initial (X) and final (tc) unperturbed electron states
Rq„contains two resonance terms:

Ag„
R),„= +

ps+ (a&
—Q)' y'+ (co+Q)'
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where

and
A x„=(P—Q) 2P(p~' —y' —p&Q)

A,„=(P—Q) $P (y'+(o') —
Q (3pi' —y'+2piQ) j

where

represents the perturber energy loss and Aco=E&—Eo
—her„. The maximum of the first term occurs when
co„—co = —0; i.e., when the excess of radiation energy
over the atomic energy has a sign opposite to that of
the energy lost by the perturber; this combination does
not conserve energy. The second, however, corresponds
to conservation, since the perturber gain equals the
radiation loss. A and 8 depend on the elements of C;

consider the 2p and 1s states of hydrogen. The per-
turber density (n) de6nes the volume per electron
V—=n '. Using g= V/(2m)0, the number of states per
unit volume in wave number space, we replace the
sum over final states by an integral:

P„—+ gdk„.

The integrations over direction and magnitude of
k„can be separated, since A and B change slowly
with fk„f.

We note that P and Q are functions of EP= ki'+k 0

—2kik„cosO'. Hence we write A=A(k„, cosO) and
B=B(k„,cosO~). Consequently,

P= (Ci, i)),„/A and Q= (Cp, 0)),„/A.

In the summation over X, the first term in (3) has a
resonance at

which means

P„Rx„-+2~g
—1

~00

d cosO~
tA(k„, cosO)

k„'dk„
y'+ (00—0)'

B(k„,cosO)

y'+ (0~+0)'
6p =Aco~ AQpg.

The integrand is large at +=&Q. The values of A and
8 at these peaks, i.e., where their respective denomi-
nators reach a minimum, will be called the "resonance"
values of k„. These occur at

Ap ( A'
k„p' ——w( App, —A(p„w k).' ~,

2m )

where the —(+) sign is for A(B). We now take ad-
vantage of the slow variation of A and 8 with k„and
obtain

w

~
Ri„gdk„=2mg~ 2y P (P —Q ) sinOdOk„G

0

f 7l

+ (y'+00') (P~ Q+)P+ sinOd 0—

—(~'—v') (P+—Q+)Q+»ne«k. +'G+, (6)
Jo(5)

whereHence,

If co„&co, the radiation has received more energy than
the atom possessed (in its excited state, which was
assumed to be realized at 3=0). Hence the radiation
should have drawn energy from the electron. According
to (4), however, p„must be )pi, which means the
electron, too, has gained energy.

Conversely, if co„&co„ the radiation field did not
receive all the energy the atom had. But the electron
did not get the excess either, because now e~&~„ac-
cording to (4), which means the electron lost energy.
Therefore this first term of (3) represents contributions
to the line width which violate conservation of energy.

Characteristically this term is small. At resonance
(&i„=p~) with respect to p, , its coeKcient, &0' —y' —&0Q&,„
is —y'; it wouM therefore vanish if we did not include
the energy uncertainty resulting from the natural line
width.

The second term has a "resonance" (with respect to
the variable X) at

6g =Aco~ Log.

If ~„&co„i.e., if the radiation field receives more energy
than the atom can supply, then e»~„; that is, the
electron looses energy. The second term therefore repre-
sents the energetically proper transfer of energy from
the electron to the radiation field.

The greatest term in the summation over p, , defined

by (5), has the coeKcient

Pi, (v'+~') —Qi, (3~'—v'+2~~i, )
=Pi,,(~'+v') Qi, (~' v')— —

Interestingly, it survives even if y is neglected.
To calculate IU for a specific and simple case, we

Gg=
& p y'+ (pi&Q)'

and the arguments + (—) indicate evaluation at the
resonance value k„+(k„) which satisfies &v+0= 0
(00—Q=O). This approximation cannot be used if, for
example, the radiation gains more energy than the
perturber possessed initially. For this case the con-
servation resonance, pi+0=0, is not satisfied by a
positive k„. Similarly, for the nonconservative reso-
nance, the radiation must be restricted to lose less than
the initial perturber energy. Thus the present method
is not valid in the far wings of the line where

~

Aa&
~
)pi

= (A'/2m) ki,p.
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Direct evaluation of the integral in (7) yields where

P = fe4K ~ r f/ (r) I
zdr

where
b = —(A/2zrz) k12+4o.

Ordinarily y«o1/A, and we find on expanding in powers
of y/b:

t'2nsy * zrZ 1 ( Zy ~ iy
I
——+f 1+—+

EA) 4ybi E 2b ) 2b )
tr 2422) ' zrZ 1 &2

( h J 4y bi mid/b,

where the criterion of a real and positive G may be
used to select the correct value. This will be done later
Lsee Eq. (21)].

The electrostatic interaction is

t I4.(r)I'«
+e2

IRI ~ fR—rf

represents the usual form factor.
The atomic state and the momentum transfer vector,

K, determine the form factor (12). Its value is inde-
pendent of the direction of K for a spherically symmetric
charge distribution, in which case polar axis can be
oriented along K to simplify the evaluation. The general
situation will be discussed in detail in Sec. VI, where
the shortcomings of the present simplified treatment
are removed. The angular dependence of the 2p states
will not trouble us, since in the absence of external
fields the probabilities for the degenerate states are equal
and we may take to a good approximation.

P2= 2 Qm ~2@m, 2@m

Although this average can be evaluated with the use
of the radial function alone, we include for completeness
the individual F2~ .

The atomic functions are

provided I' and R represent the positions of atomic and
perturbing electrons relative to the nucleus and 1b„(r)
is the atomic wave function. The unperturbed electron
functions are plane waves:

24), ——(1/Ul) exp(i' R).

Then the matrix elements between perturber states
contain the factor

&1,, O=—
X' a"2

$2„,o= e r"~COS9,
4(22r)i aot2

1 r—e
—"" sin9e+'4'

5/2

e'K." ( exp(iK x)
Z=)" —dR=e'"' I

— -dz
IR—rf fxf

~ 00 'Jl e'LID z cosH

=22M'K' t szds jt — —sin9d9
0 P S

g being the first Bohr radius. To compute the Ii's we
consider the integral

(+1
4Z = ~f e«e4K 'dr = 22r~l rzdre~r e'K "OdZ4

0 —1

4'=—e'" ' sinKsds, (9)z
(n &0). (13)

(n2+ It 2)2

g210= r2e e r+2eiK ~ rdr ~100
dE

00 E 1
lim If e "' sinEsds=lim
n—+0 J 0

' n'+E2 E
(10) n2 —5E2

3271CX (14)
(n2+E2)4

Hence, Similarly,
(11)Z=(4~/Z')' '

where x=R—r and K=ir„—lr, the momentum transfer In calculating Fz„o, one encounters

vector. The indeterminate r is evaluated by using the
artifice of a convergence factor e ', which leads to

Using this result and neglecting exchange, we find

1 47re2—
~

e'K.RC dR (C ~)„o I F~ 1—
V~ V E2

g21+1
—I r2(1 122)eare4K rdr

2
~100

E lE
64xo.

(15)
(n'+@2)2
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Making use of these relations, we find Equation (6) then reads

and

where

Fi=Fi—pp, ipp= 1/(1+4x),

F210, 210= (1 5x)/(1+x) ~

F21+1,21+1 1/(1+x) y

(16)

(18)

f
A„gd&„=22rg (402 y—2)ki,2G ~ (&—Q)' sin O~d 0.

dp

2r222 2 (h y2 1
=

22rg (00'—y') kg'
Alki, V' 42m) (ki,)'

F2= (F21tN, 21m)m (1 x)/(1+x) y (19)
("%&*(F1 F2)—'

X
~ ~

dx= f(pP —y2)Sp-,
~p E x

where ( )„means the average over tN.

We are now ready to evaluate Eq. (6). There are

integrals over the scattering angle 0' of the type

and
p„(I„/hi'

Ip= 1+fSp
~2+~2 402+P2

(23)

f 5

(F—Q)' sinOdO.
We now define symbols and analyze the result.

f= 2mv10'1/P ~

n= 1/V, the electron density; v1 is the electron velocity
Transformation from 0'tothevariablex=a'E'proceeds in the s'tate X and the

'
s se t, ass u t d;th

by the relation its de Broglie wavelength,

E2=k12+k„'—2k),k„cosO~.

Thus dx= 2apk1k„sinO~d0~, and

where

and

1 (42r)2e4 a' r. *+ (Fi—Fpq '
I.= —

] f dx,
V' i242 2k1k„~* ( x

x4.=a2(k1+k„)2

x =a2(k1 —k„)'.

(20)

For hydrogen, a=42/222e' and

2 1 t +(Fi F2)'—
L=—(h/224)2 ~

) ~
dx.

V' krak„~ ~ ( x )

k„p2 =k)P+ (2224/h) 40=hi,

Equation (6) takes a simple form when 40 is small,

i.e., when the perturber energy changes very little in

comparison with its initial value. This is indeed a mean-

ingful approximation, as will later be shown. Here

O1——2r (h/222V1)',

the function f is a measure of the relative number of
atoms struck during the lifetime of the excited state.

The redistribution factor, R, [see Eq. (1)7 has the
property of decreasing the intensity within the half
maximum and increasing it without. It is symmetric in
co. A more detailed investigation which allows co to be
large shows that far from the line center the redistribu-
tion factor goes to zero and a very slight shift to the red
is introduced.

For large values of fSp our result indicates that the
intensity at the line center can become negative. In
this case (indeed whenever fSp)0.4) terms of higher
order in the collision matrix elements must be con-
sidered.

Evaluation of S~
Since

(F1
—F2)/x = (16u'+ 17u'+ 21u+ 18)/u4 (3+u)'

[see (16) and (19)7, where u=1+x, the integral of

[(Fi—F2)/x7' can be transformed into a linear com-
bination of integrals of the form J'du/[(3+u)4u"7. We
expand this integrand:

and, in view of Eq. (8),

G~= (222/h) (1/yk), ).

Furthermore, when a Taylor expansion is used,

(21)

1 1 ~2 2N+2y
( 1)1~ ~grt m

(3+u)'u" 3 +' 1-0 k t I (3+u)'

where
W= u/(3+u).

P, *+ (Fi F2)2
I

44'k1 (Fi F2)

j dx= dx—=SU. (22)
X2 "p x2

Consequently, near the line center all terms in Eq.
(6) become independent of the resonance condition. -3 lnS' t—m= —1

Integrating each term, using

gl t—m+1

W'—~ 1 t' — t—nsW —1
du= W' ™dW—=~ 3 t—224+1

(3+u)' 3"
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we 6nd for the indefinite integral:

du 1 ~s psst+2)
I

W' "+'
E(-1)

I(3+u) u 3 +' &~ ( t ) t—sst+1

with the understanding that the quantity in the curly
brace is to be replaced by ln8' when t—m= —1. The
limits are u=1 and u= 1+x+.

When terms with like powers of 8' are collected,
there results

Sulu
I.O-

0.8-

0.6-

0,4-

0.2-

t t'Fi —Fs)'
I
dx=0.197W'—1.04W'+2. 44W)

/0—
0

I

I
of/y

—0.799 lnW+0. 452W '—0.198W '+0.0434W '

—2.52X10 'W '—4.11X10 'W '+0.914

Fzo. 2. Intensity pro6les for universal broadening: fSp=0,
0.13, 0.3, 0.5, 0.7, 1.0. The dashed curves represent cases for which
the present theory does not hold.

not enter in our case. With the value y=3.12X10'/sec"
X10 'W '—0.261X10 'W r+C, for the chance of spontaneous emission

C being the constant of integration. This integral
between the limits of 0 and x+, i.e., between W= 4 and
W= (1+x+)/(4+x+), namely Sv, is plotted as a func-
tion of the initial electron energy ez/(e'/2a) = ~x+= a'kz'
(Fig. 1). The integrals in equation (6), when written
in their exact form (20) are seen to depend on the
final electron energy as well. This dependence enters as
the diGerence between k), and k„ in the limits of inte-
gration; and from Fig. 1, we see that they are quite
insensitive to changes in e„of the order of the line
width Ay 10 ' ev, i.e., changes in the abscissa of this
amount leave the ordinate unchanged. It is this cir-
cumstance which justifies both the resonance approxi-
mation and the use of S~ in place of an integral with
exact limits in the region near the line center.

Numerical values to be used, typical of the positive
column of an arc discharge, are: ss= 10'4/cm' and
ei, = (1/25) (e'/2a)~ —', ev (T~5000'K). We treat all
the electrons as if they had this energy and take
p„=~),. As we have shown, the initial direction does

Prl Jr/f'tls (ys
I

~
e

2+%2 (+2+%21
(24)

This is plotted in Fig. 2. Curves for fSv 0.3, 0.5, 0——.7,
and 1.0 corresponding to higher electron densities are
also included in the graph.

The dotted curves, though given by our theory, are
of course spurious because terms beyond the second
order in the elements of C are important in these
instances.

We note that the half-width of Iv LEq. (23)7 under
the condition in which our approximation is valid
(small fSv) is given by

v :=v(1+Pv-)
It is therefore suggested that we define the half-width
for universal broadening as

vv= fSvv. —
Formula (23) can then be shown to be an approximation
to first powers in yv/y of

4-

p II.P I'h+»)l/~
I~=

~'+ (V+Vv)'
(25)

3-

2-

oo O.l O.3
/(e*/2a)

0.4

{(Ft F, )/ X)'dX

0.5

which we expect to be valid even if yv/y is large.
It may seem surprising that the natural line suffers

almost no modification until fSv reaches a value com-
parable to 1, at which point the natural line as such
is destroyed rather suddently. But this is merely
another aspect of a point previously made: SU is a
number of order 1; f rsva/y. Now t„ the mean time
between electron impacts with the atom, is 1/nvo. , and
t„ the lifetime of the excited atomic state is of order 1/y.
Hence f t,/t, . If f) 1, the electrons make many col-

Fro. 1. SfI, the factor in universal broadening which depends on
the atomic states, as a function of the initial electron energy, e;.

u H. Bethe, Haedbrsch der Physek (Verlag Julius Springer, Berlin,
1933), second edition, Vol. 24, p. 444.
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lisions during t„so that a static perturbation theory is
applicable. The region of f under consideration seems
to be characterized by the passage from a condition in

which the time dependence matters to one in which a
steady-state analysis is adequate.

The energy dependence of fSv is easily obtained,
because f is proportional to (s&,) '* and Sv(ez) has already
been calculated. We find that fSv is zero at both low

and high energies because Sv and f vanish respectively
at the extremes (Fig. 3).

In Fig. 4 we delimit the region of small electron
broadening (of the universal kind here discussed)
delned by err ~& &/10.

For negligible eRects,

n/lo

0
0

ei/(e'/2a)

n 82(
10" Sv &e'/2a&

Fio. 4. Curve of density (ss) ss electron energy (s;) delimiting
the region of small n and large c; where universal broadening is
negligible compared to the natural width (y); the curve is the
locus of points satisfying /Sv=pv/&=1/1t)

IV. INCLUSION OF POLARIZATION"

Polarization eRects arise when the perturber is able
to induce a dipole moment in the radiator or to orient
an existing dipole moment. They depend, of course, on
the speed and localizability of the perturbing ion or
electron. Fixed ions give rise to the Stark shifted lines.

f
0.2

O.I5.

o.Io-

l0.05-

0.2 04 0.6
a/(e%2a)

0.8 l.O

FIG. 3. fSp, which is proportional to universal broadening, as a
function of the initial electron energy, e;,

"H. Margenau and R. E. Meyerott (to be published).
'4 G. Wentzel, Pandbuch der Physik (Verlag Julius Springer,

Berlin, 1933), second edition, Vol. 24, p. 767. L. Spitzer, Phys.
Rev. SS, 699 (1939).

The theory developed here holds strictly in the
region below the curve of Fig. 4. Immediately above it
our theory is not adequate because of the neglect of
higher powers of C. Far above this curve a statistical or
time-independent type of treatment is appropriate. "

To remove the restriction to small m, distorted waves
must be used to describe the electrons. This refinement
is under consideration. The result is likely to be Eq.
(25) with a yv not differing appreciably from that com-

puted with plane waves.

As the perturber moves, the atom may or may not
have time to be deformedor to re-orient itself. A measure
of this failure to follow the changing field is given by
the probability of nonadiabatic transitions. For very
fast and frequent collisions, unpolarized, randomly
oriented atoms are expected, and electron eRects are
negligible. We seek a criterion for the setting in of these
polarization eRects as the electron density increases and
temperature decreases.

We study polarization eRects as a correction to
Holtsmark broadening and consider the Stark-shifted
components of the first Lyman line from a hydrogen
atom in the mean Holtsmark ion field, F;,„=-3.26en;, „&.

Only three atomic states are considered: P+——(1/~2
X ($2,, 0+@»,0) p— (1/~) ($2., 0 $», 0), and lb1, , 0.
The excited states correspond to dipoles (3ea) oriented
along the s-axis of the atom which points at the ion.
Their energies are displaced by ~3euP;,„ from E2=-
—,(e'/2a) .

Deliberate exclusion of the states lb»~& is a very
unrealistic procedure. Our reason is this. The two
omitted states give rise to divergences requiring special
treatment. Since we do not wish to encumber the basic
analysis of the present section with mathematical dif-
ficulties, it seems indicated that the degenerate states,
though present and far more eRective in broadening the
line, be first ignored.

Physically, a transition between f+ and f corre-
sponds to the re-orientation of a dipole, while a mixing-in
of Ps@,+i and P» i represents induction of a dipole
moment. In the present section, then, we make a some-
what artificial distinction between polarization by re-ori-
entation and polarization by ind'Idion, and we treat
here only the former eRect.

The mathematical difhculties arising in connection
with induction are removed in Sec. VII. This will

prepare the way for the study of polarization by induc-
tion in Sec. VIII.
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The basic equation for the expansion coefFicients is

iha „exp[—i(e„"+E )t/h)

%e know that the eGect of the terms with J in the
equations for d can be approximated by an exponential
decay; therefore Eqs. (5)—(7) become

=P„P),"a„)J„„y„'yi,"dR exp[ i—(ei,"+E„)t/A)

+Qn Zx aux it'p Cm, elan dR
num

'hd+. =-'Av+d+. +r..d .(C+.-):
Xexp[i((u+ +Q„i,)t), (8)

ihd .= i—hy d „+P),d~i, (C,„)„i,

Xexp[i(~, ~+Q„~)t], (9)

Xexp[ i(eg +E )t/A). (1) Aj J [d zz gyd —'

q
The electron functions satisfy (II—(7)) Here

(10)

[—(h'/2m) q'+C]pp, ~„npp (2)

In order to neglect universal broadening we replace
C„,„by a function which is independent of the atomic
state; i.e.,

C,„—C, -&C.

jd+ =—E+—E ) Aco+=—E+ E]g hv pp

L7 =—E —E]tt

hvar)

(C+, )„,= y„*(C,, )@„dR

Below, where plane waves are used for the P, we imply
that C—=0 in Eq. (2). As a consequence of this ap-
proximation,

To solve these equations we 6rst put

d+„—=D+„e &+' and d „—=D „e &-'.

) 4~V'A"dR= Iv*4)dR= &,)„

with the equation

[—(A2/2nz) |72+C]Q„=e„P„

(3) This reduces the growth equations to

ihD+„=+g D i, (C+ )„),

Xe p[i( +.-+Q,.)t—(V —V+)t), (»)

determining the g„. The pa, rt of the electron-atom
interaction retained corresponds to the changes induced
in the atom by the second sum in Eq. (1), and the
effect of these nonradiative transitions will be called
polarization broadening. To see how it enters, we start
with the growth equations for the three-state atom. In
fairly obvious notation,

ihd+„exp[ —i(e„+E+)t/A]

=P„b,„J,*exp[—i(e„+Ei,+hv„)t/h]

ihD .=Q), D~),(C,p),),

Xexp[i(co ++QA)t+ (y y+)t], (13)—
ihb, „=J,(D+„exp[—(y++ko+) t]

+D „exp[—(y +i&a )t)}. (14)

As the initial conditions we consider an excited atom
in state f~, no radiation present and the perturbing
electron in the state

+Ex d xJ 4v Cy, $AR—-
y,+= exp(ilr; R—ie,t/A).

V
(15)

ihd „exp[ i(e„+E )t/A)—

Xexp[—i(eg+E )t/h); (5)

=P„b„„J,*exp[—i(e„+Eg,+hv, )t/A]

C, —= if*CP d.

+Fad+i e.'C .+4 idR-
Xexp[—i(eq+E~) t/A]; (6)

ihb„„=J,(dp„exp[i(Eg, +hv„E+)t/A)—
+d „exp[i(E~,+hv„—E )t/h]}; (7)

Further, all amplitudes d+)„are assumed to remain
small compared to d+., during the lifetime of the excited
state. That is, polarizing transitions which return the
atom to the initial state before the atom radiates are
unlikely. Then

ihD~;=P„(Cp, );„D „
Xexp[i(~+, -+Q',)t—(v-—v+)t]; (16)

ihD „=P),(C,+)„i,D+).

X epxi[(~,~+ „Q)ti+(y y+)t]—
=(C,+)„;D+;exp[i(a&, ++Q„,)t+ (y 7+)t]. (17)—

From (14) and because cross-terms with random phase
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factors cancel,

f(~)=Z. t.l&"(t=")I'

=p, I J„/ft I

' exp[—(y++icp+)t]D+, dt
p

exp[ —(y +i&d )t]D „dt . (18)

Clearly, when all of the C matrix elements vanish, the
D are constants: D+; 1and ——D „=0. Then I(4p),"as
expected, contains only the + component of the
spectrum, and this line has the natural breadth.

It will now be shown that

Then, with the use of plane waves,

1(~+,-).*I'

I Q-'4+&A.drdRI
e' '"( e' e'

v &IR—rl IRI)
4m-e'

.
2 [(&2 )'—-'(&»)']d (2 )x ~ v

The interaction with the nucleus, e2/R, contributes
nothing to yi, since P+ is orthogonal to P . The integral
(23) over the atomic coordinates is independent of the
direction of K which is along the polar axis;

t+' t
" [4—4(r/a)+-:(r/a)']= 2& I dp dye iKrp, —r/ay2

~p 32%a

1 (3—x) 2 (1—x) 2x(x—1)
(24)

(1+x)' (1+x)' (1+x)' (1+x)

t

D+'= —Y~D+'= ——E.I (~+,-)'.I') D+*
h2

D+,—e»'.
'((~2.)'- 2 (&2.)')«

The spectral line is then broadened in accordance with
the uncertainty principle, p being replaced by p+pz

To find yi we substitute D „ found from (17) into
(16):

where

~+1

[IA.. pl' —IA., pl']dt
—1

=-,'[(Z„)'——;(Z„)'], (22)

[2—(r/a)]' e "'
(&2.)'=— (~2.)'—=

32K' 8 32K' Q

&«xp ([i(M—,++" ')+ h'- —7+)](~—t) ld~ (20)

This result is general and free from the limitation to
a single large d+, . Had we retained all terms on the
right of (17), then the place of (20) would be taken by

i»+'e' '=2, Z.(~+.-)'.(~-.+)"
pt

D+i exp(in') exp( [i(4p, ++0„i)
Jo

+ (y —y+)](r—t)) dr exp(iQ,~t), (21)

where the phase factors exp(in', ) are written explicitly.
When we average over random phases (21) reduces to
(20), since the average of exp[i(ni, —n,)] is zero unless
A=i.

Before summing over p we evaluate the matrix
elements.

Preliminary account is taken of the random orien-
tation of the direction of motion of the incident electron
with respect to the atom by averaging over directions
of the atomic .s axis for a given k;. (See Sec. VI for an
accurate treatment of the angular dependence of form
factors. ) Hence we replace P ~P+ by the spherically
symmetric

2n

Q' *P+)A,= t dP-~~ singd—~ *P+

4iKa ( iKa —.1. )' (i—Ka 1)'—
Thus, from (23) and (24),

(25)
(1+x)'

p4 2rep(aX2—1) y
'

I (~+,-)*'I'=
I

V (x+1)4)
(26)

which is a function of the momentum transfer through

x a2K2 a2(k 3+k 2 2k.k cosO~)

The evaluation of the sum over states t4 in (20) can
be simplified because the change in the matrix element,
as p„= (h,'/222')k„' deviates from e;+App+by A(pi+, p4.
—p ), is very small. The time integral, however, peaks
in this region of e„. Hence we can factor the integrals
over the magnitude and direction of k„; i.e., from (20)

dD+. ,= ——Z. I (&+,-) '. I'„i"

~m'

I (C+ );„pl'k„p sinOdO
(22rh)2 ",

~ao —

)
4

dr k„dk„, (27)
0 - 0 .~

Here we have made use of the following earlier results.
The integral is considered as the sum of three integrals
corresponding to the three terms in the square brace
(24). The first is related to Fipp, ipp and is adapted from
the integral aipp [see III-(13)].The third is just 2F2
[see III-(19)].The second was not previously encoun-
tered but is evaluated in a similar way and yields

1 2
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where (see Sec. III) and m=10", then with y=3.12)&10', Sp=0.081 and
V

P„—+)t dk„
(2~)'

(32)yp/y = fSp 0.—0049.

and This result is subject to modification because of the
(k2/2m)k, p'=—Atoi, +e,. angular dependence of the form factors, which is dis-

cussed in Sec. VI. Other atomic states (especially
By inverting the order of integration over r and k„, p», ~1) are included later.
replacing k„dk„by (m/h)d(op, ++II„;),and using

exp[i(40 ~+0„;)(r—t) jd(40, ++0;)=2rr6(r t), —

the last integral factor in (27) becomes

pt 27Ãir

D+'(r) expL+ (~-—~+) (r—t)1——

0

V. QUENCHING AND STARK BROADENING

A. Quenching

For quenching, the intensity distribution is the same
as for polarization broadening:

Iq(~) "L~'+ (v+vq)'?',

provided y@ is equal to half the transition rate from the
initial atomic level induced by electron impacts. That is,

D, (t). (28)
h

+ rq =
2 rttt, Q; (2)

Hence

D+;= —yI D+,=— V
l(~+, -)' oI'k o

(22rk)2 "0
arm

Xsin O~d O~ D+;.
h

'

for initial electron velocity tt;. Here Q; is the quenching
cross section for hydrogen, "

l- k1 t' rrt y
2

lr 42re2~ 2

Q; = ]' —
I I I I &1,2@2 sinododc. (3)

(2t ~») ~ k, &22rh2) & E2 I

with
y~ ——2+v;0-;5~,

This leads to the result
Now k1, is fixed by conservation of energy, and (see

(29) Appendix)

(x—1)5.=- "
dx

& p (1+x)'.

yq 2rtear——, ' dx=yf, Sq.
x2

The form factor is evaluated as before:

(4)

103 S(1+x,)s 3(1+x,) 0 7(1+x,)'

x+= a'(k, +k„)'—4 (k;a)'= 4e;/(e'/2a),

a.;—=2r (1rt/me, )'.

yp (y/10, (30)

there is defi.ned region of low electron density and high
energy delimited by

If we say, somewhat arbitrarily, that polarization by
orientation can be neglected when

~100, 210 e
—'"" cosgre'"'dr

4v22ra4 ~

Furthermore,

=3ilt a210/2/[9+ 4+ a2J
+27l

Flop, 21+1 0, since e+'&dr|1= 0

This means that only -', of the atoms will be so oriented
as to allow a quenching transition. Therefore one can
use F100, 210 in (4) and multiPly by the factor s.

The integral over x, I I
Fr, »I'/xsdx, contains the

factor
42 ( e; ) & 8.2

10'4 k (e2/2a) & Sp
(31) t

dx

x(9+4x)'

1
= ———ln(S)+5X45—

96

10y42
-52

But this is of theoretical interest only, for it will be
seen that the orientation eGect we have here considered
contributes far less to the line width than the states
thus far omitted. To return to our example: at e; —,

' ev,
an electron density of the order e & j.0" induces few re-
orientations of the (three-state) radiating atom and
hence this polarization effect can be neglected. If e;= '; ev

where

~0X4' SX4' 4——S'— 54+—5',
4 5

+
3

S=x/(9+4x).
'4 G. Wentzel, Har4dbgch der Pt4ysite (Verlag Julius Springer,

Berlin, 1933), second edition, Vol. 24, p. 738.
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For e;= (1/25) (e'/2u) and st = 10'4 k = 1/5a, So=0.021,
and

the orientation of z' with respect to z. In terms of these
angles, we expand

yq/y =0.0013. (7)
lies& p' =Re& cosO~

=Rs„[cosO~ cos8+sinO~ sin9 cos(p —C)]
= cos0$2p, p'+ (sinO~/~&[e ' pp„+r'+e' pp„r'],

(3)

B. Stark Broadening by Iona"
Stark broadening by ions results from variations of

the electric field intensity at the atom. The mean field
for the ions given by Holtsmark is 8=3.26ee, where
n; is the ion density. This splits the degenerate hydrogen
n=2 states into three components. The separation of
the outer two, 6Fea, is linear in F. Using this estimate
the half-width of the broadened line, we find

with

~
—rf2a

4 (2sr) -*'a' t'

Furthermore '~

e" '=Jr, (21-+1)i Pr, (cosg) fr, (Kr),

fr. (r) = (sr/2«)'J~1/s(Kr).

(4)
ystark 3 26er.t'X 3ea/fr= 2.5 &(10'%ec (g) where

for rt=10r4/cm'. Consequently, Stark broadening by
ions is at least 100 times larger than the universal
broadening.

A comment on the mass dependence of the broadening
effect computed in this section is in order. The eGect
is expected, to be small for heavy ions since it arises
from elastic scattering collisions, and, the ions are
scattered less. This is indeed borne out by our formulas.

Broadening is proportional to fSrr 2rtvoS——~/y. Let
the ions have a reduced mass (with respect to the radi-
ating atom) M. Now n ~M l for ions of the same
energy, a=sr X'~ (h/Mv)'~M '; hence f ~M '. On
the other hand, SU depends on M through the upper
limit of Eq. III-(22), and it increases with k„. At low

energy its variation with k„ is approximately linear.
However, lp„' ~ M. In all, therefore, fSp ~ M '*.

Protons are thus less effective in broadening the line

by a factor of at least 30.

Integration over 4 annuls all terms in F2„p, 2„p which
contain C-dependent factors. Hence the integral reduces

to
~+& ~OO

Fs~p, s~p=2sr, dts Jl r'dre'x'{[cossO IAn, p(s) I'
0

+l »n'o(IA. , +r(s) I'+ Ias., -r(&) I')]&

~+1
+2srJ dtt

—j. p

r'dr(Rs„)'e'x'

&& {cos'0" cos'0+-', sin'O~ sin'0) (5)

When we replace e'~' by its expansion, most of the terms
contribute nothing because of the orthogonality of the
Legendre polynomials. On using well-known relations"
between these polynomials, we find

VI. ANGULAR DEPENDENCES IN THE FORM FACTORS

In the preceding work, we have made much use of the Fss, p;ss, p 2tr «'«(Rst) {cosO[s fp (4/3) f2]
form factor p

F, (I)= e'"'V *4 dr.

Throughout we simplified these integrals by taking the
momentum transfer vector I to be directed along the z-

axis of the atom. When the product of the atomic func-
tions P„P is spherically symmetric, this is of no con-
sequence. We now extend the calculation and demon-
strate that the orientation of the atom with respect to
the momentum transfer vector is generally unimportant
for small Ea.

Let us evaluate

F2 p, 2 p J"e' 'Ipse, p (2)

where the superscript z' specifies the direction of the
polar axis for the wave function, Pp~, p". The direction
of K is the polar (s) axis offp„~'. The angles O', C define

"For a discussion of the quantum theory of broadening by
ions see reference 13.

+s sin'O[(4/3) fp+ (4/3) f&])

4sr
r'dr(R, „)'

3 p

&({fp+ fp[sin'0 —2 cos'O~]}. (6)

The radial integral for fp,

1 t
"sinKr 24(1—x)

r'e "' dr=
a' ~p Er (1+x)4

where g= (Kg)' Further"

~ oo 48m
r e 't'fs(Kr)dr=

~s J, (1+x)4
"N. F. Mott and H. S. W. Massey, Atomic Collisions (Claren-

don Press, Oxford, 1949), second edition, p. 22.
' H. Margenau and G. M. Murphy, Mathematics of Physics and

Chemistry (D. Van Nostrand Company, Inc. , New York, 1943),
Chap. 3, Secs. 4 and 5.

"See reference 18, Chap. 3, Sec. 8.
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Combining these results, we dnd

(1—x) 2x
F2& p; 2&, p= + [sin20~ —2 cos'0']

(1+x)4 (1+x)4

Clearly, at 0" =0 we have

and the transition probability averaged over orienta-
tions is proportional to

cos'0~ sinOdO'[FI, , Q;2y, p(0)] 2[PI,, Q;2y, p(0)].
p

F2„,0,.2„,0
——(1—5x)/(1+x)4, (9) This is the value used previously [V-(7)].

which is the result found directly for K along the (s')
polar axis of the atom [III-(17)].Further, if we average
over random angles of collisions (i.e., over 0') the term
in brackets vanishes, and the result is the quantity used
in our earlier study [III-(19)]:

(F2@0,2yp)e = (1—x)/(1+x)'= P2 (10)

To proceed more rigorously, we use thp sum over
initial states to average over orientations of collisions
(i.e., g; p;;0—+2 Jp" sinOdO~). Let us put

f lP

[FI Fpyp, 2 Q(0)]' sinO~dO = (PI—P2)2+6, (11)
4p

so that the deviation from our earlier result is

2x 2-
[sin'0' —2 cos'0~]'sinO'dO~. (12)

(1+x)4 ~ p

A corresponding difference is added to SU, namely,

[*+ 6 16tt' 1
&S=, —dx= —

[ 1— [=0.29 (13)
~ o x' 35 ( (1+x'.)')

VII. MATRIX ELEMENTS WITH SPURIOUS
DIVERGENCES

Some matrix elements occurring in the analysis of
polarizing collisions appear to be imaginary and to
diverge if the momentum transfer vector (K) is zero.
Hence a contradiction arises, for the integrals are ob-
viously real. We shall see that they do not diverge if the
perturbing electron charge is distributed over a finite
volume.

This obviates the diKculty which prevented us from
including all degenerate states in the polarization
problem. Polarization by induction involves electron-
enforced transitions between/4 and/2„, ~I (see Sec. IV).
These contain a matrix element which we now single
out for study. It is

4xe'
(K) 2p, 0; 2s, 0 F2@,0; 2s, 0)

E'V
where

F2, 0;2, 0 e f2 0 f2 odr.

Use has here been made of the formula

for x+=4/25. This is to be compared with S~ which
has the value 2.1. The correction is limited (0(AS
(16/35), depending on the value of x+. Its inclusion
would not change appreciably the results of our simpler
approach.

For polarization broadening Fi—F2„,p,.», p is replaced
by (1/2)F2s, o;2s, o Fpy, o;2y, p Since /ps, o like $1 , sISp

spherically symmetric, (1/4) d S is to be added to SI of
Sec. IV. Here the correction is not negligible and

yI /y =0.061[0.081+(0.29/4) ]=0.0094 (14)

eiK R 4x
z-= dR= —e'K'

[r—R[ E2

(2—r/a)e
4 (22r) ~ai

which was derived by [III-(9, 11)].
The form factor I'», p,.2,, p contains

(2)

in place of (IV-32).
Our earlier treatment of quenching is rigorous. The

form factor is

P

ei '
&,, p' cos' 2„,p'

$2@,0 re "~cosg
4(2~)&a012

In performing the integral over 8, we can see that
the form factor is pure imaginary, as follows. Taking K
along the polar axis of the atom and letting p= cosa, we
have

[ sinEr cosEr
iKr

. (Er)'

SIII0~

+ (e ' ~».+I+0' ~2m, I*) "r—This yields

P2y, 0; 2s, 0 =3iE'a (x—1)/ (1+x)'; (3)

=COS8 e* '/Is, 0*f2~, 0*dr

COSOFI, p; 2y, Q(0 0)

42re2 3iEa(x—1)
&(E)2,, o;2s, o= x=E'a'. (4)

VE' (1+x)'
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For E=O, therefore, it is proper to evaluate C„„by
ordinary electrostatics, taking q, to be a uniform spheri-
cal distribution extending to ~.The mutual potential
energy between q, and dq, (r) is

27M
d U= (~2—

—s,r2)dq. (r).
V

This leads to

C„„(E=O)= I dU=
2%'8

(W'&- —12(r')- ) (5)
V

V is the volume per free electron, ~ some finite cut-off
radius introduced by the over-all neutrality of the
plasma. For =rl2p, Oand 22'=2s, 0, the term (r2)„„.
vanishes and therefore C„„=O.

To obtain C„„ for small E, we modify the calculation
of formula (2), heeding the suggestion implied by the
electrostatic consideration and using a finite cut-off
radius. By the previous substitutions, (2) becomes

4m p~+
Z=—e'K ' sinEpdp,x ~p

where y=R —r.
At large values p=R, which goes to ~.We assume

E~&&1; then

sinÃpdp=
ko

Epdp =E~2/2.

Thus
Z 22reax r~2 E

Consequently,

C~ (E~&&1)= (22r~se2/V) F, ~

and
C„„.(E=O)= (22r~se2/V)&,

(6)

(&)

which agrees with (5) with neglect of the second term,

(the correction for the distributed charge). Evidently
we have made an approximation in the transformation

20 H. S. W. Massey and C. B.O. Mohr, Proc. Roy. Soc. (London)
A182, 605 (1931).

This element diverges as 1/E when E goes to zero,
and it is imaginary. A look at the integral (1) for K=O
tells us that the result should be real. We note that the
form-factor alone does not introduce this difficulty,
since it becomes zero. This suggests that the 1/E' factor
in (2) is the culprit.

We may view C(K)„,„as the electrostatic inter-
action energy between atomic charge, dq (r) =eP„*f„dr
and an electron charge density dg, = (e'*'"/V) edR. The
integral (2), when multiplied by e/V, then plays the
role of the potential at r due to the charge density
distribution (e/V) e'x '".It satisfies Poisson's equation":

t' 42re q 4lre
p~ e'x' ~= — e'x'.

&VE' ) V

from R to y t in Eq. (2)j, by which this term is lost.
This was done by inexact treatment of the upper limit
of integration, which depends on the angle g„g. If done
correctly

Z=2 e*'LZ,2—-' 2)

provided K (R+—r)«1.
Thus the problem of the divergence as E—+0 can be

avoided by introduction of a plasma cutoff R+.

(VP)+;l8, 0/7 2f{(~P)2s, 0;18, 0+2(~P)2p, s;lg, 0}
=-,'(0.061){0.032+0.021}=0.0016, (1)

provided 22=10" and 0;= (1/25)e2/2a. This should be
compared with the previous

yq/y =0.0013. (2)

Only for degenerate levels does the minimum mo-
mentum transfer approach zero, and we enter the
region of spurious divergences. We meet this problem
when considering the two undisplaced states, esp, ~l. We
de6ne these states in terms of functions with a polar
axis z along the direction of the momentum transfer
vector K, as follows:

gl
$2p, +1

sinO~

Ap, 0'+2(cosO+1)e—"Ap, +,

+-2, (cosO~ —1)e' esp, l*,
and

sin O
$2p, —l lisp, 0 + 2 (cos —1)e ' $2p +l'

v2
+-,' (COSO~+ 1)e*'0'esp

VIII. POLARIZATION AND DEGENERATE LEVELS

Section V treated the small broadening e6ect result-
ing from polarization for a three state atom, i.e., polari-
zation by reorientation. The matrix elements were
selected deliberately to avoid the divergences associated
with the degenerate levels of the preceding section.
Now we are prepared to study collisions which couple
the initial state P+ to all atomic states.

Excitation to higher principal quantum numbers is
not energetically possible for low electron energies such
as that considered in our example $0;=(1/25)e2/2a).
Even where they are possible, they introduce no new
features. On the other hand, quenching-transitions to
the ground state do occur. As seen in Sec. V, the
divergence poses no problem for them; the large amount
of energy given to the electron keeps the minimum
momentum transfer far enough from zero to avoid this
difFiculty. The results obtained in Sec. V for quenching
are slightly modified when we regard the upper state,
not as a random combination of degenerate states, but
as the one corresponding to f+. Our present concern
with polarization requires this latter choice. The line
width in question is
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The angles 0 and C determine the direction of s with
respect to 2.". Thus, along with

and P ", there are four states of principal quantum
number m=2, which are normalized and orthogonal.
We write similar expansions for 4'2P, Q and $20, 0*'.'

fo., o*'=A.
, o',

p" ——cos0$0„,o'+ (1/K2) sinO'e '
Pop, +&'

+(1/K2) sinO~e' P»

The false divergence of (S~)2P, 0; 2 0 at small x appears
in this term.

It might be thought that it can be avoided because
x is not zero but a'(k, —kr)', and k, cannot equal kr

in view of the shift which the + level has undergone
relative to 2p, +1; for conservation of energy requires
kfo —k 0= (2m/0')0E In. spection shows, however, that
this is not the case for reasonable ion densities. Nor
would the removal of a mathematical difEiculty by the
artifact of a static ion field be altogether satisfactory.

We therefore turn to the development of Sec. VII.
From (VII-S),

First, consider the form factor: ~iK.R r2

dR 2ve4x i R 0

~ iR-r[
(5)

p.,.+,+(0,~) = e'* V., + "~+«

= (1/~2) LFQ„,+i, 0„0(O,C')+F0,, ii; 0,, 0(o 4')]

If we neglect the r2 a2 contribution as being small
compared to R+ then t VII-(6)] gives

with +2, 0; 2, 0 (40M'/U) (QR+')F2, 0; 20, 0 (6)

p,„+,. „0(0~,4&) =—(sinO/v2) FQP, Q; QP, Q(0)

= —(sinO/v2)l 3iEa(x 1)/—(1+x)']
and

P»+, , » 0(O C') = —(1/v2) sinO cosOFQ~, 0;», o(0)

= (1/2%2) (cosO~+1) srnO~FQ„, ~i, », +i(0)

+ (1/2v2) (cosO~ —1) smO~F20, —1;Qo, —1(0)

1 6x
=—sinO cosa~

W2 (1+x)4

We note ths, t if 0=0 this form factor vanishes. This
tells us that collisions in which the momentum transfer
is along the polar s' axis cannot change the atom from

lp+ to p» ~&* .
The transition probability is proportional to the

absolute square of the form factor averaged over col-

lision orientations:

so that. R+'/2 has taken the place of 1/E', as is seen
from (VII-1). This change prevents the divergence. We
now know the matrix element at the two extremes of x.
In these two regions,

IC„,o, ,„,pl'= (4~e a'/U)'IFQ, , Q;Q,, pl

~4(R+/a)4 if x(R+/a)'(1
X

1/x' if x(R~/a)') 1,

in view of VIII-(6) and VII-(1).
In order to average over orientations of K we use the

previous expansions. Setting p= cosO,

0 0 IFQP, 0;2P, 0(0) i'= 0 L9x(x—1)'/(x+1)'],

since FQP, Q;20, 0 is given by )VII-.(3)]. Hence, when

( i
FQ, 0;QP, 0 i )Av 3x and the matrix elements have

the simple form:
f\ 21I

4x ~p ~0

where F(0) indicates that 0=0 and K is along the

polar axis of the atom. As before, we can write Following the considerations of Sec. VII, it can
be shown that tCQ. , Q;Q&, oi' is bounded in the middle
region. Since(Vp)+, » +i= 2nv, o., (S~)+;Qv, +$p

with

i F»+i +(O~ C) i
'
, si.nOd Ode

= 0(I FQ., o; 0, o(o) I'+QL6x/(1+x)']') -'x(R+/a)' if x(R /a)'(1
(i&0, 0;Q„, oi )A

= (4ve a/U)Q
3/x if x(R~/a)') 1.

1 1" iPQyo, opo(0)i 6 t'* dx

5 ~0 (1+x)'
we have

pP+

sinEpdp ~& —,
0 E

6
=0(&)»,0;",0+—1—

35 (1+x+)'

4v.e' ' (40re'a') ' 9
(4) i~op, o;0,, 0"'i &~4 Pop, o;Q,, o(0) =4(

UE' ( U ) x
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In Fig. 5, the curves for
~
C~' are extrapolated into the

region of uncertainty. To avoid a detailed treatment
of this intermediate region we use the extrapolated
curves to their intersection. This intersection x occurs
where (R+/u)4(x/4) =1/x; x~2a242& 10' for 22=10'4
cm '. Consequently, neglecting x against 1, we find

(&P)2P, 0;2s, s(0):4(W/ii) ~F2s, 0;2y, o(0)
~

dx

F2s0, 2y0(0)
dS

n/IQ'

20-

IS

IQ-

5-

0
0 0.2 0.4 0.6 0.8

c;/(e'/2o)
1.0

9 p*+ dS
xdx+9)

0 z

1 x+ 1 0.16—9 —+ln——9 —+ln
2 x 2 10'

=133 (7)

since ~F24, 0, », 0(0) ~2=9x(x—1)'/(1+x)'. And finally,
in view of Eq. (4) (with x+——0.16),

(yP)+;2P, +i/7 f{0X133+011)=0.061X22=1.3.

The main uncertainty in this number arises from the
manner in which we obtained x. We note, however,

that an increase in x by a factor 100 decreases

(&P)~,»~i/p by only 2f In100—0.4. This leaves the
order of magnitude of the eGect unchanged. In the
other direction x cannot be pushed very far, since

x(~/a)2 2 has been used in (7) and the logarithmic

divergence is limited by x(R+/a)2 1. R+ may, of

course, be larger than 22
' '. An increase of R+ by factor

100 decreases x by 10 ' but increases pP/p by only 0.8.
We conclude that coupling between iP+ and lt2„+i

gives rise to a polarization eGect about 100 times as

large as inclusion of the other states. This is because

the coupling involves the matrix elements between

iP2„0 and i', , 0. However, the effect does not diverge.

In Fig. 6, we plot the locus of yP/y=1/10 in order
to indicate the region of electron densities and velocities
in which their broadening may be neglected.

A word is in order about the line shifts, which are
neglected in this treatment. The use of the resonance
approximation, which ignores the variation of the
matrix elements C with change in electron energy 0,
makes p~ real. When this dependence is properly con-
sidered, an imaginary term is added to p&. This pro-
duces a line shift which will be discussed in a separate
publication.

As a summary, we compare the several e8ects for the
hydrogen 2p, 0~1s,0 transition, using y =3.12X 10'
sec ' n=10'4 cm ', 0;= (1/25)e2/2a.

III-(38)
VIII-(16)

V-A-(7)
VIII-(16)

V-B-(8)

Universal broadening yU/y= 0.13
Polarization by re-orientation

(involving the matrix ele-
ments 2p0—&2p+1)

Quenching (2p0—+1s0)
Polarization by induction

(involving the large element

2p0—+2s0) yP/y= 2.7
Stark broadening by ions ys4 i,/y=80

yP/y= 0.027
yo/y= 0.0013

Fin. 6. Curve of density (i4) vs electron energy (4„) delimiting
the region of small n and large e; where electron broadening is
negligible compared to the natural width (y). The curve is the
locus of Points satisfying (yP)sy0, 2s0=y/10.

2s0, 2pO

Fio. 5. A sketch of
~
Csss, sos ~', known at large and small"x= o'E'

(&=momentum transfer). The matrix element in the shaded area
is found by extrapolation from the extremities. The point of inter-
section is called x.

Thus for the I.yman n line, where there is a linear
Stark eGect, the ion broadening is the dominant eGect,
as expected. But in other instances, to be treated in
further publications, the electrons can make important
contributions.

APPENDIX

The principal symbols used in this paper are as
follows: E=energy of atomic state; ~= energy of elec-
tron: 0;=initial energy, e„=final energy; k=wave-
number vector for electron; K=k„—k, =momentum-
transfer vector; v=velocity of electron; a=h2/222e2;
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x=u'E' x+——u'(k„+k;)' x =a'(k„—k;)' st=number
density of electrons.

Throughout the paper, line widths resulting from
different causes are written in the Lorentz form:

factor. In particular,

dx, S~-=
0 x' 0

x+
1
p

&S)

y= 2rmo-S,

where 0- is a cross section and S a numerical efficiency

and

F =~~e'K'P„(r)P (r)dr.
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Extension of Hund's Rule*

G. F. KOSTERt
Massachusetts Institute of Technology, Cambridge, Massachusetts

(Received September 20, 1954)

In this note we show that in an n-electron system, if we assume that these n electrons occupy n orthogonal
one-electron orbitals, the state of highest multiplicity has the lowest energy.

1

�M'

NE of the interesting results that comes out of the
calculation of the energy levels of atoms, mole-

cules, and crystals is the total spin (multiplicity) of the
ground state. In general the question of the multiplicity
of the ground state cannot be answered without lengthy
calculations. It is, however, sometimes possible to
answer this question without any calculation at all

(at least to within a certain approximation). We know
of Hund's rule of atomic spectra. Part of this rule
states that of all the levels arising from a given spatial
configuration, the state of highest multiplicity lies
lowest. A rule similar to this can be proved quite
generally. '

Ke imagine that we have e distinct one-electron
spatial orbitals mi, m2, I„.In each of these we put one
electron with either spin up or spin down. (The presence
of other orbitals which are doubly filled does not in-

Ruence the validity of the arguments given below and
will be dropped from consideration. ) We also assume
that the orbitals under consideration are orthogonal.

system. We must now form the correct linear combina-
tions of these product functions to form states which are
antisymmetric with respect to permutations of all of
the electron coordinates and which have definite multi-
plicities. The multiplicities will range from singlets
(rt even) to states of multiplicity I+1. We shall lose
no generality by restricting ourselves to all those states
with the same s component of total spin. Of these only
one corresponds to the state of highest multiplicity,
whereas for any other multiplicity there is, in general,
more than one state of this multiplicity. We shall now
show that there is no state that lies lower in energy than
the state of highest multiplicity. The problem which
confronts us now is to diagonalize the matrix of our
Hamiltonian between states of a given multiplicity in
the basis of antisyrnmetric functions. (There is, of
course, no interaction between the states of different
multiplicities. ) We assume that our Hamiltonian in this
case is spin-free and is given by

"I;*(r)st;(r) d r=8;;. (2)

For our e-electron problem, by taking products of these
one-electron states with spin up or down, we can form
2" product functions which we use as the basis of ap-
proximation for the wave function for our m electron

*The research in this paper was supported jointly by the Army,
Navy, and Air Force under contract with the Massachusetts
Institute of Technology.

t Sta6' Member, I.incoln i,aboratory, Massachusetts Institute
of Technology.

'This extension of Hund's rule has been published in the
Quarterly Progress Report of the Solid-State and Molecular
Theory Group at Massachusetts Institute of Technology, July 15,
1953, p. 37. P.-O. Lowdin LPhys. Rev. 97, 1474, 1490, 1509
(1955)j has also presented a proof by a diferent method.

Kq =8csotn+-,'P(i&j)[ J;;(p,;s)—„,] (3)
' P. A. M. Dirac, Proc. Roy. Soc. (London) A123, 714 (1929).

For further references and a complete discussion of this method
see F. M. Corson, I"erturbatiorI Methods in the Quantum Mechanics
ef rt Etectrert Systems (Haf-ner Publishing Company, New York,
1950).

Here f(i) is the one-electron potential and g;, is the
interelectronic Coulomb interaction.

The problem as stated above is in just the form which
can easily be set up in terms of the Dirac vector model. '
For a given multiplicity the matrix of the Hamil-
tonian is given by


