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A theoretical study has been made of the deviations of the axial ratios of hexagonal metal crystals from
the ideal close-packing value, both for pure metals and alloys. The deviation is expressed in terms of the
"eRective stress" which would tend to change the axial ratio in the close-packed configuration, and the
observed elastic constants. Using a change of scale procedure, a formula for the "eRective stress" is derived
in terms of integrals over the electronic wave function in the close-packed configuration. When the Hartree-
Fock approximation is. used to evaluate the expression for the "eRective stress, " three contributions are
found: (1) a "kinetic stress, " (2) an "electrostatic stress, " and (3) an "exchange stress, "Estimates of each
term for pure beryllium indicate that (1), which resembles the eRects estimated by Jones and Goodenough,
is most important; (2) is negligible; and (3) may be appreciable. It is found that the change in axial ratio
with alloying is due to a different mechanism than that proposed by Jones. However, an argument is pre-
sented which leads to qualitatively the same conclusions as his concerning the connection between the change
in axial ratio and the band structure.

1. INTRODUCTION

' 'F the forces between atoms in a hexagonal close-
~ ~ packed lattice were central forces between nearest
neighbors only, the configuration for minimum energy
would be that in which all nearest neighbor distances
are equal. ' For this. ideal close-packed configuration the
axial ratio; i.e., the ratio of the distance (c) between
identical hexagonal planes to the distance (a) between
nearest neighbors in these planes; would have the value
(8/3) '* = 1.633.

There are a number of metals with hexagonal crystal
structures which have axial ratios that deviate from the
ideal value by small amounts. A few of these metals are
listed in Table I. The deviations from close-packing can
be changed by changing the temperature and by alloying
with another metal. Moreover, it is very interesting that
the changes in axial ratio produced in a given metal by
alloying with any other metal at constant temperature
seem to depend chief upon the electron-to-atom ratio
in the alloy ' '

H. Jones has treated the problem of the change in

axial ratio with alloying. ' He made the hypothesis that
the changes in axial ratio produced by alloying are due
to changes in the Fermi energy arising from the distor-
tion of the Brillouin zone. His theory makes use of the
fact that the Brillouin zone for a hexagonal lattice is
anisotropic and, as he considered cases in which the
Fermi surface overlaps some of the zone faces, the Fermi
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surface is anisotropic. A change in axial ratio distorts the
zone, forcing a distortion of the Fermi surface that, in
general, changes the energy of the conduction electrons.
Thus, in a manner of speaking, there exists an "effective
stress" due to the conduction electrons, tending to
change the axial ratio. The equilibrium axial ratio
depends on a balance between the "eGective electron
stress" and the stress due to changes in all the other
contributions to the total energy.

Jones assumed that upon alloying, the valence elec-
trons of the solute atom go into the conduction bands of
the solvent and increase the "effective stress" due to the
conduction electrons. Thus he reasoned that the "effect-
ive electron stress, " and thereby the axial ratio, is a
function of the number of valence electrons per atom.
He estimated the change in energy of each one-electron
state with change in axial ratio by assuming that the
energy of the state changes with shear like a free electron
state with the same wave number. Under the above
assumption, the change in axial ratio with alloying de-
pends upon the band structure in the vicinity of the
Fermi surface, as the structure determines the assign-
ment of the extra valence electrons to positions in the
Brillouin zone, and the assignment determines the
change in "effective stress. "

TABLE I. Summary of experimental data.

Metal

c/g
&obs

u (ev/atom)
o (ev/atom)
n/n
et epbs/8$

Beryllium

1.565—0.028
15 8e

—0.44
0,625

Magnesium

1.625b

—0.0033
8.81e

—0.028—0.047
0 023b

Zinc

1.856c
0.091
6 45e
0.56—1.54
1.0'

Cadmium

1.89~
0.107
6 35e
0.66—1.52

a P. Gordon, J. Appl. Phys. 20, 908 (1949).
b See reference 3.
& E. A. Owen and L. Pickup, Proc. Roy. Soc. (London) A140, .179, 344

(1933); E. A. Owen and J. Iball, Phil. Mag. 1'7, 433 (1934).
& F. Seitz, The Modern Theory of Soh'ds (McGraw-Hill Book Company,

Inc. , New York, 1940), p. 6.
e The elastic constants of beryllium are those of L. Gold, Phys. Rev. 77,

390 (1950). The other elastic constants are from the measurements of
Wright and Gruneisen and Goens, as quoted in Gold's paper.

& The quantity x is the number of valence electrons per atom in the alloys.
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Fxo. 1. The Brillouin zone for the hexagonal close-packed lattice
which contains two electrons per atom.

In the 1950 work, Jones discussed the changes in
axial ratio of magnesium induced by alloying. He at-
tempted to establish the band structure of magnesium
by constructing a simple model to fit the experimental
data. In order to explain Jones's model, we refer to
Fig. 1 which shows the second Srillouin zone for the
hexagonal close-packed lattice. This zone contains ex-
actly two electrons per atom. All of the valence electrons
of pure magnesium would completely 611 the zone; but
magnesium is a metal and we know that in the ground
state there is some overlapping into higher zones and
some holes (unoccupied states) in the zone of Fig. I. In
analogy to the nearly free electron model, Jones as-
sumed that the energy increases going away from the
origin in reciprocal space. He took points E and I' as
possible overlap sites and points Q as possible hole sites.

Under the assumptions of the Jones theory, an
electron added at point I' tends to increase the axial
ratio. (The energy of an electron at point I' is decreased
if the zone is distorted so that F moves nearer the
origin. Such a distortion corresponds to an increase of
the axial ratio of the direct lattice. ) In like manner, an
electron added at point E tends to decrease the axial
ratio, and one added at point Q tends to increase the
axial ratio. In order to fit the experimental data, Jones
assumed that in pure magnesium there are overlaps at E
and holes at Q, and that overlap takes place at I' for
valence electron to atom ratios slightly larger than
two (2.0075).

The assumption that overlap occurs at I for a
valence-electron-to-atom ratio of 2.0075 was made be-
cause there is experimental evidence that the derivative
of the axial ratio with respect to the valence electron to
atom ratio shows a sharp change at this point. The idea
that the sharp change is due to the onset of overlap at
the point F was proposed by Raynor. '

Such an onset of overlap should be noticeable in other
properties of magnesium alloys. In particular, Schindler
and Salkovitz' have investigated the change in the Hall
constant in magnesium alloys. They find evidence of a

~ A. I. Schindler and E.I. Salkovitz, Phys. Rev. 91, 1320 (1953).

sharp change in the slope of the Hall constant eersls the
valence-electron-to-atom ratio curve in the neighbor-
hood of 2.013 valence electrons per atom.

Goodenough' has applied a similar theory to the case
in which the Fermi surface is near to, but does not
touch a set of Brillouin zone faces. Using the nearly-free
electron model as a starting point, he argues that there is
an effective attraction between the Fermi surface and
the zone faces; i.e., due to the depression of energy
beneath a zone face, the total energy of the electrons
could be lowered by moving the zone face nearer to the
origin in reciprocal space.

We illustrate Goodenough's ideas with the following
example. Consider a pair of parallel zone faces (repre-
sented by P in Fig. 2) which are moved closer to the
origin (P') as the result of a deformation. Figure 2
represents the variation of the electron energy as a
function of wave number along a line perpendicular to
the two planes and passing through the origin. The
energy before deformation is represented by the solid
curve and after deformation by the dashed curve. It is
seen that the energies of the electrons in positions
corresponding to F are lowered as a result of the
deformation. Thus if the Fermi surface does not touch
any of the zone faces, the total electronic energy is
lowered. ~ The change in energy with change in axial
ratio given by the Goodenough mechanism gives rise to
an "effective stress" which determines the axial ratio as
in the theory of Jones.

The attractive feature of the above theories is that
they seem to aGord a way of utilizing the experimentally
observed changes in axial ratio with alloying to obtain
information about the band structure in the neighbor-
hood of the Fermi surface. Such information, which is
very interesting as it determines other properties of the
metal, is dificult to obtain by fundamental calculation.
Thus, any method which holds promise of easily obtain-
able information about the band structure deserves
careful investigation. Both theories have a certain
plausibility, but they both fail to take account of a
number of contributions to the effective stress" which
one would expect to be important. For example, the
assumption that the change in "effective stress" with
alloying is due to the change in the stress arising from
the "Fermi energy" alone, neglects contributions to the
"eGective stress" coming from changes in the energy of
the bottom of the band, Coulomb, exchange, and
correlation energies, and energy of lattice vibrations, all
of which contribute to the total energy of the crystal.
Further, the application of the nearly free electron
model is equivalent to ignoring two important facts: the
potential in which an electron inside a metal moves is
very strong, and the valence electron wave functions

' J. B. Goodenough, Phys. Rev. 89, 282 (1953).
7 If the Fermi surface does touch some of the zone faces, some

electrons must be displaced by the movement of the zone faces to
other points on the Fermi surface, so that their energies are
increased. Whether the total energy is increased or decreased will
depend on the details of the band structure and the Fermi surface.
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must be orthogonal to the closed-shell electron wave
functions. Thus, since the behavior of electrons in real
metals differs appreciably from their behavior in a free
electron gas, it is not to be expected that results based
on the nearly free electron model are valid.

In treating alloys, Jones assumed that the one-
electron wave functions and energy spectrum of a dilute
alloy are identical to those of the pure metal. Under such
an assumption the eGects due to alloying come from the
increased (or decreased) number of valence electrons in
the Fermi distribution. However, it is to be expected
that there are other eGects which are just as important;
e.g., the interaction of the electrons already present
with the impurity atoms.

In the present work, we develop a deductive theory of
the deviations of the axial ratio from close-packing,
which starts from fundamentals and applies to both
pure metals and alloys. We display the factors important
in determining the axial ratio in order to elucidate the
basis of the theories of Jones and Goodenough. We carry
the theory far enough to make numerical estimates of
the divers factors in the case of pure beryllium, and to
investigate the change in axial ratio with alloying.

In Sec. 2 the "effective stress" is defined, and its role
in determining the axial ratio is discussed. A general
expression for the "effective electron stress" is derived
in Sec. 3. In Sec. 4 an expression for the "effective stress"
for a pure metal is obtained using the Hartree-Fock
approximation. Section 5 contains a discussion of the
"effective stress" in the Wigner-Seitz-Slater approxima-
tion. In Sec. 6, the relation of the present work. to that of
Jones and Goodenough is discussed. A numerical appli-
cation to pure beryllium is presented in Sec. 7. The
change of lattice parameters with alloying is discussed
in Sec. 8. Finally, in Sec. 9, the results of the paper are
summarized and conclusions drawn.

2. ROLE OF THE EFFECTIVE STRESS

We now derive an expression for the value of the axial
ratio at absolute zero of temperature, in terms of the
observed elastic constants and the "effective stress"
tending to shear the crystal. In this section we also
brieQy discuss the question of the temperature depend-
ence of the axial ratio.

The equilibrium configuration of a crystal at absolute
zero of temperature and under no external stress is that
configuration for which the total energy is a minimum.
We will expand the energy of the crystal in a Taylor's
series about a configuration (hereafter called the ideal
con6guration) which has the observed atomic volume
and the ideal axial ratio corresponding to perfect close-
packing. We expand in terms of a parameter e, defined
by the equations

c=cp(1+e)
&

8=Gp(1 —se)& (2.1)

where co and ao are the values of c and a in the ideal
configuration. It is seen that, to first order in e, a change
in e represents a change in axial ratio at constant

P PF FP P

Fro. 2. Schematic representation of the variation of the electron
energy with wave number for two configurations of the lattice.

volume. To first order we have

~/~= (g/3)'*(1+le). (2.2)

Neglecting terms higher than second order, we write
for the energy at absolute zero

@=@p 0e+ sp'e y (2.3)

where Eo is the energy in the ideal configuration and r
and p, are constant coefficients. Minimizing expression
(2.3) with respect to e, we find

emin =o'/p. (2.4)

A theoretical calculation of 0- and p would, of course,
give a theoretical value of e;„and the axial ratio.
However, we shall confine ourselves to a theoretical
calculation of 0., the "effective stress, " as this quantity
is of most physical interest. We obtain an approximate
value of p, using the observed elastic constants. The
quantity 1i is given by the second derivative (at con-
stant volume) of E with respect to e, evaluated in the
ideal configuration. To the extent that the quadratic
approximation is valid LEq. (2.3)$, the value of the
derivative is the same in the ideal configuration as in the
observed configuration. But the latter is a combination
of the elastic constants observed at absolute zero. The
expression for p, is given by Jones in the 1950 paper.

In Table I are listed the observed values of e;„and
the values of o- necessary to produce the observed devia-
tions from close-packing. Though the data in the table
was not obtained at absolute zero, the differences of the
values listed from the correct values at absolute zero are
probably small. For example, the order of magnitude of
thermal expansion coefficients is 10 ', so that up to
1000'K the change in e;„ is of the order of 0.01.
Though the elastic constants used to compute p, were
not measured as a function of temperature, the adia-
batic compressibility and rigidity modulus of beryllium
show very little dependence on temperature. ' The fact

P W. C. Overton, J. Chem. Phys. 18, 113 (1950). The apparent
discontinuity of the rigidity modulus in Table II is the result of a
misprinted decimal point in the values for 140'K and below.
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that the observed values of ~;„are small justifies the
approximation made in Eq. (2.3).

Thus, a calculation of 0-, the "effective stress, " serves
to calculate the axial ratio. It follows from (2.3) that o.

is the negative of the derivative (at constant volume) of
the energy with respect to e, evaluated in the ideal
configuration. The total energy at absolute zero is equal
to the total energy with the nuclei held fixed on the
sites of a perfect lattice (which we shall call the elec-
tronic energy) plus the zero point energy of the nuclear
vibrations. As the latter energy is much smaller than the
former, we shall neglect it in this paper. ' Thus, in the
present approximation, the axial ratio is determined by
the negative of the derivative of the electronic energy,
which we shall call the "effective electron stress. "

We shall close this section with a few brief comments
on the temperature dependence of the axial ratio. To
determine the axial ratio at a finite temperature, one
must minimize the Helmholtz free energy with respect
to the axial ratio and atomic volume. The second order
coefficients in the Taylor's expansion of the free energy
can be approximated by combinations of the isothermal
elastic constants. The "effective stress" tending to
change the axial ratio or the volume is found by
taking the appropriate first derivative of the free energy.

Considering first the contribution of the lattice vibra-
tions to the free energy, we note that the derivative
with respect to e (or the volume) will depend on
temperature in a manner resembling the total vibra-
tional energy of the lattice. If the derivative is assumed
to be proportional to the vibrational energy, the theory
of Gruneisen is obtained. "

The derivative of the electronic energy with respect to
e (or the volume) likewise behaves qualitatively like the
total electronic energy. Provided that there is no
peculiarity in the density of states at the Fermi level,
the effective electron stress" is equal to the stress at
absolute zero plus a term proportional to the square of
the absolute temperature. The thermal expansion coeffi-
cients would then contain terms proportional to the
absolute temperature. The possibility of the existence
of such a linear term in the volume expansion coefficient
was pointed out by Visvanathan. "The linear contribu-
tion to the thermal expansion coefficient of the axial
ratio may be too small to measure, however.

3. GENERAL EXPRESSION FOR THE EFFECTIVE
ELECTRON STRESS

In this section we derive an exact expression for the
"e8ective electron stress" of a single state of the system

9 It is possible that the derivative of the zero-point energy with
respect to c could be of the order of magnitude of the zero-point
energy itself. As the order of magnitude of the zero-point energy is
0.1 ev per atom, the resultant stress would not be negligible,
though it still would be less important than the "electronic
stress, "with the possible exception of magnesium.

'0 For a discussion of the Griineisen theory, together with a
review of the data on thermal expansion of anisotropic metals, see
B. G. Childs, Revs. Modern Phys. 25, 665 (1953)."S.Visvanathan, Phys. Rev. 81, 626 (1951).

in terms of integrals over the wave function of the ideal
configuration. The expression derived is in the form of a
generalized virial theorem. By generalizing the pro-
cedure still further, it would be possible to calculate the
"effective stress" due to the lattice vibrations, though
we have not so attempted in this paper.

We imagine that initially the nuclei are held rigid in
the ideal configuration. We will compute the first-order
change in energy in going to a slightly different con-
figuration (hereafter called the strained configuration)
derived from the ideal configuration by application of
the infinitesimal strain tensor s. We have

R„'=(1+s) R„, (3.1)

where R„and R„' are the positions of the iith nucleus in
the ideal and strained configurations, respectively. In
the special case of the change in axial ratio, the tensor s
is given in terms of the scalar e defined in (2.1) by

1Sex Syy 26& Szz (3.2)

all other components being zero.
We write the Hamiltonian for the ideal configuration:

Hs ——P; pP/2m+ U(R„,r;), (3.3)

where the sum j is over all electrons, rj and pj are the
position and momentum vectors of the jth electron, m
is the mass of the electron and the potential U is the
electrostatic potential energy of all the electrons and
nuclei. We have neglected all other contributions to the
energy as, for example, spin-orbit coupling. The
Hamiltonian for the strained configuration is then

Hi=+;pP/2m+ VL(1+s) R„, r;].
We now make a change of variables such that

r;= (1+s) r .

(3.4)

(3.5)

where pj denotes the momentum conjugate to Ij'.
The advantage of making the change in variables is

that the eigenfunctions of (3.6), expressed as functions
of the r, satisfy the same boundary conditions as the
eigenfunctions of (3.3), since the r; run over a cell in the
strained lattice as the r run over a cell in the ideal
lattice. Thus we may find the eigenvalue of (3.6) by
standard perturbation theory.

Because we are interested in the first-order change in
energy, we need only use first-order perturbation
theory; thus we find for the first-order change in energy:

8Z(s) = (—P, p,"s p,/m
+Q; r; s.v;V++„R„s.V V), (3.7)

Inserting (3.5) into (3.4) and expanding to first order in
s yields

Ht(r, ')=He(R„, r, ') —P, p,
' s p /m

+g;r, ' s v, 'V++„R„s V„V, (3.6)
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3Z(s) =C+8,
C= —(i/&)Z, (LHs, r; s p;7),

B=Q„R„s(V„V),

(3.8a)

(3.8b)

(3.8c)

where the square brackets in (3.8b) denote the commu-

tator. In evaluating expressions (3.8) we have the
choice of 6nding the total value for a finite sample, or
the value per unit volume in a very large sample. We
shall use the latter procedure in treating pure metals,
and the former in discussing alloys. We now use the
erst procedure to discuss the physical meaning of the
expressions (3.8).

If the sample is finite, the integrations in (3.8) may
be taken over all space. We 6rst consider (3.8b);
carrying out a partial integration on the variable r; we

obtain

C= —(i/h)P; d'r,

X) dsr~L(Hs@)*r; s PP —%'*r; s P;He%'7

X dsr&Dq, +)*r; s p,e 4*q;(r—; s p;)%7, (3..9)

'2 A tensor virial theorem has been discussed by E. ¹ Parker
LPhys. Rev. 94, 1441 (1954)) in another connection.

's K. Fuchs and H. W. Peng, Proc. Roy. Soc. (London) A180,
451 (1942). These authors used the change of coordinates pro-
cedure and did a perturbation calculation on the one-electron
Hartree-Pock wave functions. They also derived the surface
integral form LEq. (4.10) of the present paper j, but expressed the
remaining terms in a diferent form than in the present paper.
Their derivation applies only to cases in which the wave functions
are periodic, while our results can be applied to alloys.

where the angular brackets denote the expectation value
taken with the wave function for the ideal configuration
and the primes have been dropped from the variables of
integration.

Equation (3.7) is exact in the case that the expecta-
tion value is taken with the exact wave function and is
seen to provide a generalized virial theorem. "

An approximate value of the effective stress" can be
obtained by evaluating (3.7) with an approximate wave
function. The approximate effective stress" calculated
in such a fashion is not necessarily equal to the deriva-
tive of the energy calculated in the same approximation.
(I.e., the approximate derivative of the energy may not
be equal to the derivative of the approximate energy. )
However, the two ways of calculating the approximate
stress do give the same answer in the important case of
the Hartree-Pock approximation. The equivalent result
to (3.7) in the Hartree-Fock approximation was derived

by Fuchs and Peng. "
We now note that the expression (3.7) can be re-

written as

where %' is (in this discussion) the exact many-electron
wave function. The first term in (3.9) is zero as 4 is an
eigenfunction of IIO and the second is zero as the wave
function becomes vanishingly small at infinity.

Thus, in the case under discussion, the entire contri-
bution to 88 comes from B. By Feynman's theorem, '4

the quantity (V„V) is equal to the negative of the force
on the p, th nucleus due to all the other particles in the
metal. As the total force on each nucleus must be zero
in order to maintain the configuration, an outside force
equal to (V„V) must be applied to the pth nucleus. The
quantity 8 is then seen to be equal to the work done by
the outside forces during the deformation described
by s.

As deep in the crystal each atom is surrounded sym-
metrically by its neighbors, (V„V) is appreciable only
for the atoms near the surface. In order to calculate bg
by the present method it would be necessary to know
the variation of the potential near the physical surface. "
Such a calculation would be quite dificult, though we
shall see in Sec. 8 that the difficulty can be obviated if
one is interested only in the change in 8E with alloying.

4. EFFECTIVE ELECTRON STRESS FOR A PURE
METAL IN HARTREE-FOCK APPROXIMATION

In this section an expression for the effective stress"
per unit volume is derived using the Hartree-Fock
approximation. We imagine that the sample is in6nitely
large, and that the wave function is normalized inside a
large volume Q. We calculate 8E inside a smaller volume
+, divide by co and take the limit as both ~ and 0 become
infinite.

In carrying out the above limiting procedure, care
must be taken to avoid divergences introduced by the
fact that the coordinates appear linearly in the expres-
sion for hE LEqs. (3.8)7. As the total potential is a
function of differences of coordinates, we could have
made the Taylor's expansion $Eq. (3.6)7 in terms of
differences of coordinates. Such an expansion in differ-
ences of coordinates would converge like the potential
itself. We could obtain the expression (3.7) from the
expression involving differences of coordinates by a
change of variables, provided that the regions of inte-
gration (or summation) of all coordinates are the same.
Thus, in calculating 8E inside co, we shall include only
interactions between particles inside cu, which guarantees
that the correct limiting value of 5E will be obtained.

In order to facilitate the calculation outlined above,
it is convenient to introduce a quantity V,(r;), which is
the instantaneous potential of interaction between the
jth electron and all the particles outside co. With the use
of V.(r,), the contribution of the volume ~ to C can now

'4 R. P. Feynman, Phys. Rev. 56, 340 (1939)."A calculation by this method would be similar to the calcula-
tion of the work function. See, for example, J. Bardeen, Phys.
Rev. 49, 653 (1936) or R. Smoluchowsiti, Phys. Rev. 60, 661
(1941).
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be written

C((o) = —(i/h)Q; "d'r, d'r;'J„

X I d'rg@*tHO V., r—; s p;jl, '

where + is the many-electron wave function.
We now make use of the Hartree-Fock approximation

and let the wave function 0' be a normalized determi-
nant of one-electron spin orbitals f (r,) which satisfy
the Hartree-Fock equation H&P = 8.f, where Hp is
the one-electron Hartree-Fock Hamiltonian and 8 is
the one-electron Hartree-Fock eigenvalue. We make the
convention that the quantum number n stands for both
spatial and spin quantum numbers and that when r;
appears as the argument of a f it stands for both
spatial and spin variables, integration over r, being
understood to include summation over spin variables.
We normalize the 1t to unity in the large volume Q.

Consider 6rst the part of (4.1) which depends upon
the full Hamiltonian. We perform a partial integration
on the variable r;, obtaining an expression identical to
(3.9) except that the regions of integration are difFerent.
When the determinantal wave function is substituted
into the expression, the term analogous to the first term
on the right in (3.9) vanishes, as integration over all
coordinates except r; transforms the total Hamiltonian
into the Hartree-Fock Hamiltonian. Because of the
ortho-normality of the one-electron orbitals, the surface

(4 2)C(co) =D+G+X,

D= (—ih/2m)P. )~ dS

~

t (vP.)*r s pP.—4.*V(r s y)4.), (4.»)

X t d'r2P(r2)/~r& —r2~, (4.2b)
"0

X=+ s ~ d ry d f2/ (fy)J.
Xgs(ri)fp*(r2)4. (r2)rl' s' V1~ /~ rl r2), (4.2c)

where the sum a is over occupied states and the sub-
script 0 indicates that the integration is over the
volume outside of cv. The quantity p is the average
charge density due to the electrons, and P is the total
average charge density. They are given by

(4.3a)

integral reduces to a sum of integrals involving one P
at a time. The part of (4.1) which depends upon the
commutator of V, gives rise to terms representing an
electrostatic interaction of the electrons inside cu with all
particles outside of +, and an exchange interaction be-

(4.1) tween the electrons inside ~ and the electrons outside
of co. The expression for C in terms of the one-electron
orbitals is

P(r) =p(r)+P„eZ8(r R„), — (4.3b)

where —e is the charge on an electron, Ze is the charge
on a nucleus, and 8(r) is the Dirac delta function.

%e next make use of the periodicity of the wave
functions to transform 6 into a lattice sum inside or. We
then shall combine it with 8 to obtain a simple result.
We 6rst express G as a sum of integrals over atomic
polyhedra. These polyhedra are the same as the Wigner-
Seitz cells, the polyhedron about a given atom being the
smallest volume contained by the perpendicular bi-
secting planes of the lines joining the atom in question
to all other atoms. A polyhedron and a few of its
neighbors are shown in Fig. 3. These polyhedra have the
same symmetry as the space lattice; in particular, for
the hexagonal close-packed lattice, the total charge and
the dipole moment within a polyhedron are zero.

Denoting the polyhedron about the pth atom as Ql,
we have for 6,

FIG. 3. The central atomic polyhedron and a few of its neighbors

G= —P
~

d'r~p(r~)[R„+ (rq —R„)g s.p'„
[4

P(r2)
X

~

d'r2 , (4.4)
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where the superscript or on the summation sign means
that the summation is over those R„inside co. We specify
that the surface of or coincides with the bounding sur-
faces of atomic polyhedra. Thus, the field strength inside
or due to the charges outside or will be appreciable only
near the surface, there being no net charge outside or or
surface dipole moment on the surface of or. Since, in
(4.4), r& —R„ is always of the order of magnitude of an
interatomic distance, the part of 6 proportional to
r~ —R„will give a term proportional to the area of the
surface, and may be neglected in the limit of infinite
volume.

In the remaining part of (4.4), we write the integral
over the region outside of or as an integral over all space
minus an integral over the volume ~,

G= —Q R„s t d'rg)(rg)~g
~ (~l

P (r,)
X d'r2 —~t d'r2

P(r,)
(4.5)

The contribution of the first term in the square brackets
to the integral over the polyhedron represents the
average force on the electrons in the polyhedron, and
vanishes by symmetry. Expressing the remaining inte-
gral over or as a sum over polyhedra, we have

G=g R„s. d'rg d'r2p(rg)P(rg) ~g . (4.6)
le "

tv3

where the delta function cancels the interaction of the
p, th nucleus with itself. By summing these two expres-
sions and averaging over an interchange of p, and v, we
f1nd

S=B+G=', P'(R„—R„) s-
pv

1
~ d r, d'rB (r,)P(r,)~, . (4.8)

[el "
Ev3 xy —x2

We have Anally expressed the "eGective stress" due
to a many-electron Hartree-Fock state as the sum of
three terms,

"eE(s)=D+S+X, (4.9)

where the expressions for the individual terms are given
by Eqs. (4.2a), (4.8), and (4.2c), respectively. We next
shall discuss the physical interpretations of each of the
three terms.

We begin by discussing term D [Eq. (4.2a)7. We

Remembering that we must count only interactions
between particles inside ~, we express 8 [Eq. (3.8c)] as

P (rm) —Ze5 (r2 —R„)B=P ZeR„s ~„d'r, (4.7)
~N

make use of the periodicity of the wave functions to
reduce D to an integral over the surface of a unit cell,
obtaining

D((o)=P.D.= ((o/6)( i—h/2m)g dS

[(&4-)*r s pk- —4-*&(r s u)4.], (4.1o)

where D stands for the contribution to D from the one-
electron state n. The symbol 6 stands for the unit cell so
that the factor o&/6 is the number of unit cells in co. Due
to the fact that in the evaluation of term 5, the surface
of or was chosen to coincide with the surfaces of atomic
polyhedra, the unit cell used in expression (4.10) must
be composed of two neighboring atomic polyhedra, in
adjacent planes (see Fig. 3). Because the contributions
to D come from the region between atoms, the valence
electrons will be most important in determining its
value. In metals in which the interatomic distance is
large compared to the ionic radius, the contribution
from inner shell electrons should be negligible. In the
other metals, however, the contributions from these
electrons may have to be taken into account.

It is possible to construct a classical analog of term D.
Consider a number of electrons per unit volume e
having velocity v and momentum p. The Qux of particles
through the surface element dS is ndS. v, and the force
on the surface element due to the momentum transport
is n(dS v) p. Now suppose that the cell is deformed by a
strain s. The work done by this force acting through the
displacement s x is given by

eE= —n (dS v)(r. s y).
~8

Equation (4.11) can be seen to be a classical analog to
(4.10) with v taking the place of the current operator.
Thus we call term D the "kinetic stress" due to the
electrons. We shall see in Sec. 6 that the term D
corresponds to the stresses estimated by Jones and
Goodenough.

Now we consider term S. Inspection of the structure
of Eq. (4.8) shows that S represents the work done
against the electrostatic forces between polyhedra in
carrying out the deformation described by s. As each
polyhedron is electrically neutral, it is to be expected
that S is small and that is what we find in Sec. 7.

The term X represents an exchange effect. It arises
from the increased attraction of the medium outside of
or for an electron in or, due to the fact that electrons of
the same spin are kept apart by the determinantal wave
function. A crude estimate of I in Sec. 7 indicates that
it may be appreciable.

Finally, we note that the formalism developed in this
section can be applied to find the linear change in energy
of any solid under deformation. Note that it gives the
change in energy of the total solid, not the change in
one-clcctron energy parameters. To find the exact
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change in Hartree-Fock energy parameters, a self-
consistent calculation wouM be necessary. Such a calcu-
lation has been discussed by Bardeen. "However, the
self-consistent calculation can be avoided in cases in
which Koopmans's theorem'~ is valid. For example, the
change in a certain one-electron energy parameter can
be calculated by calculating the change in total energy
for a state in which the one-electron state is occupied,
and subtracting the change in energy of another state
which divers from the first in that the particular one-
electron state is empty, and one electron is removed
from the crystal. The change with strain of the energy
parameters is of interest in connection with the change
with strain in the energy gap of a semiconductor, "the
explanation of the elastoresistance of germanium, "and
the deformation potential theory. "

[p'/2nt+z;(r) )P.(r) = h.y. (r) (5.1)

was solved in the polyhedron subject to the Bloch
boundary conditions at the surface of the polyhedron. ~
The sum of the energy parameters h so obtained was
found to be a very good approximation to the total
energy of the metal, relative to the state in which the
ions and electrons are infinitely dispersed. "

We now consider the effect of deforming the metal by
a strain s. The Schrodinger equation, (5.1), is un-
changed, but the boundary conditions do change. We
will repeat the device of changing coordinates, Eq.
(3.5), so that the wave function expressed in the new
coordinates satisfies the original boundary conditions.
Expanding to first order in s, we find

8h. (s)= P.~[—p s p/e+r. s.qz;(r)]P . (5.2)

"J.Bardeen, Phys. Rev. 52, 688 (1937).
'r T. Koopmans, Physica 1, 104 (1934). See also the discussion

in F. Seitz, Modern Theory of Soteds (McGraw-Hill Book Com-
pany, Inc. , New York, 1940), p. 313.

's See, for example, R. W. Keyes, Ph s. Rev. 92, 580 (1953).' K. N. Adams, Phys. Rev. 96, 803 1954).
'e J. Bardeen and W. Shockley, Phys. Rev. 80, 72 (1950). See

also W. P. Dumbke, Bull. Am. Phys. Soc. 29, No. '7, 15 (1954)."E.Wigner and F. Seitz, Phys. Rev. 43, 804 (1933); 46, 509
(1934).

22 Actually, Wigner and Seitz simplified the bouri dary conditions
by replacing the polyhedron by a sphere. J. C. Slater LPhys. Rev.
45, 794 (1934)jmade a calculation in which he satis6ed the Bloch
boundary conditions at a few points on the surface of the poly-
hedron. In this section we shall assume that the exact boundary
conditions have been satisfied."Wigner and Seitz also made a more elaborate calculation than
the one described above. However, we will con6ne our attention to
the simpler case.

5. EFFECTIVE STRESS IN THE
WIGNER-SEITZ-SLATER APPROXIMATION

In treating the cohesive energy of monovalent metals,
Wigner and Seitz" took the potential in which a valence
electron moves to be the potential v;(r) due to the ion in
the polyhedron in which the electron is instantaneously
located. The one-electron Schrodinger equation

Transforming to a surface integral as before, we find

Expression (5.3) is seen to be the same as D, Eq.
(4.10), except that (5.3) is calculated with the Wigner-
Seitz wave functions and (4.10) is calculated with the
exact wave functions. '4

The result (5.3) is very interesting, considering that,
in the simple Wigner-Seitz approximation, the sum of
the 8 is equal to the total energy of the metal. Un-
fortunately, the situation in a divalent metal is much
more complicated so that no simple analogous state-
ment can be made.

6. COMPARISON WITH THE WORK OF
JONES AND GOODENOUGH

In this section we discuss the relationship of our work
to that of Jones and Goodenough. We find, that with
suitable assumptions, term D, Eq. (4.10), can be made
to yield the estimates of Jones and Goodenough for the
"effective stress. "

Both authors base their estimates on the weak-
potential model, " and neglect any changes in energy
gaps with strain. Such a neglect in the weak-potential
model is equivalent to assuming that the magnitudes of
corresponding Fourier coefficients of the potential are
unchanged by deformation. However, if the Fourier
coefficients were actually constant, the potential would
be "deformable;" that is, the potential after deforma-
tion is given in terms of the original potential by

z,[(l+s) rj=es(r), (6.1)

where vo and v, are the potentials before and after
deformation.

Using Eq. (6.1) for the transformation of the potential
and the method used before of changing variables to
calculate the change in the one-electron energy eigen-
value, we obtain

88.=D.'= — d'rP. *(p s p/m)P. .f
(6.2)

We have called this expression D ' as it is analogous to
D . It is to be noted that there is no potential energy
term in (6.2). If the wave functions are expressed as
linear combinations of plane waves, D ' becomes

D.'= —QKi a.(ir+K) i'(ttt'/rtt) (kyK) s (k+I), (6.3)
'4 The fact that expression (5.3) gives the change in the Wigner-

Seitz energy when the polyhedron is replaced by a sphere, was
pointed out by Fuchs and Peng (reference 13). They used the
expression to derive the formulas of H. Frohlich )Proc. Roy. Soc.
(London) A158, 97 (1937)g and J.Bardeen D. Chem. Phys. 6, 372
(1938)j for the dependence on volume of the Wigner-Seitz energy
of the state of wave number zero.

ss L. Brillouin, Qnantenstatestsh (Verlag Julius Springer, Berlin,
1931).

8h. (s) = —(ih/2rtt) ds" lot

~ [(&t('.)*r s pP f*—&(r s p)P.]. (5.3)
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where a (k+K) is the coeKcient of the normalized
plane wave of propogation vector k+K, and the K are
reciprocal lattice vectors multiplied by 2x.

In order to obtain the Jones and Goodenough esti-
mates we assume that the wave functions are the
nearly-free electron wave functions, "i.e., all a's are zero
except a few corresponding to the smallest magnitudes
of k+K. When s is given by (3.2), we distinguish three
cases.

(1) If the end of the vector k lies at certain points of
high symmetry, all the factors (k+K) s (k+K) have
the same value. As the sum of the a's is unity (due to the
normalization condition), we find

D.'= —(5'/m)k. s k. (6.4)

The expression (6.4) is the change with strain of a free
electron state with propogation vector k, and thus is
equal to the Jones estimate.

(2) For other points on the zone faces, the present
method is different from that of Jones, though the two
methods yield the same result in the weak potential
case. To 6nd the average change in energy of holes near
points such as the corners of the zone V and W, Jones
takes the change of free electron energy at the corners.

t The change in free electron energy at point V is equal
to the change in free electron energy at point W for the
deformation (3.2).j However, the quantity D ', evalu-
ated for the state at W (or V), gives the change in
energy of the state originally at W (or V). Under the
deformation (3.2) the two states move away from points
8"and V, and, in fact, the values of D ' associated with
the two states are not equal. In order to find the average
change in energy of holes originally near points V and 5'
we must average the two values of D ', weighting each
value with the appropriate density of states. If we use
the free electron densities of states for points V and 8',
we obtain the same estimate as Jones.

(3) In the case that the end of the vector k is near
to but does not touch a zone face, Eq. (6.3) gives,
besides the change in free electron energy, a contribution
which depends on the variation of the a's with k. The
value of D ' in this case works out to be the estimate of
Goodenough, plus a term k s.Vqh which is zero when
summed over the Fermi distribution as the tensor
defined by (3.2) has no trace.

We are now able to state the assumptions which will
lead to the theories of Jones and Goodenough. First of
all, the e8ects considered by these authors are contained
in term D. Further, they take only that part of D which
would result if the self-consistent potential were "de-
formable. "Finally, they evaluate the "deformable" part
of D using nearly-free electron wave functions.

'V. NUMERICAL APPLICATION TO BERYLLIUM

In this section we make numerical estimates of the
various contributions to the "eBective electron stress"
in the case of pure beryllium. We chose beryllium as it is

TABLE II. Results of calculation of term D, the "kinetic stress. "

(State)

D~ (OPW)

D~ (free)

0.714
0.984
0.865

D& (free)/e
(ev)

—22.4—22.4
13.2

alga[2

1.03
0.985
0.91

a
[ ay (2 is the absolute square of the coef5cient of the nearly-free electron

wave function in the orthogonalized plane wave function.

the only hexagonal close-packed metal for which one-
electron wave functions have been calculated for states
other than the central point in the Brillouin zone. The
wave functions available are approximate Hartree wave
functions calculated by Herring and Hill, " using the
orthogonalized plane wave method. s')

First, we discuss term D, Eq. (4.10). The individual
contributions from each state, D, are fairly easily
calculated with the orthogonalized plane waves. Each
valence-electron wave function is expressed as a linear
combination of plane waves and inner-shell wave func-
tions, the coefficients chosen to minimize the valence-
electron energy while keeping the valence-electron wave
function orthogonal to the inner-shell wave functions.
The inner-shell wave functions in the case of beryllium
are very small (about 10 ' of the value at the atom) in
the region between atoms where the surface of integra-
tion is located; therefore, we neglect the contributions
of the inner-shell parts of the wave function to the
"effective stress. "Thus, we need only evaluate D with
a combination of a few plane waves.

From the computational view, there are two reasons
why the actual value of D will be di6erent from the
value predicted on the nearly-free electron model. Ke
may think of the wave function as being made up of an
inner shell part, a combination of plane waves which
would be the wave function in the nearly-free electron
approximation, and higher plane waves. The value of
D is then different from that for free electrons both
because of the contributions of the higher plane waves,
and because the coefficient of the nearly-free electron
wave function is dif'ferent from unity.

We have evaluated D for several states in the
Brillouin zone, the results being listed in TaMe II. The
labeling of states is the same as in the Brillouin zone of
Fig. 2. For simplicity, we express our results by giving
the ratio of our value of D to the value obtained on the
nearly-free electron model for the same point in the
Brillouin zone. For each of the states investigated, the
amplitude of the nearly-free electron part of the wave
function is nearly unity (see Table II) and the ampli-
tudes of the higher plane waves are small. As a result,
the computed values of D resemble the free electron

I C. Herring and A. G. Hill, Phys. Rev. 58, 132 (1940).
s' C. Herring, Phys. Rev. 57, 1169 (1940).
$ Pote added in Proof.—It has been brought to the author' s

attention that calculations have been performed for several
points in the Brillouin zone for magnesium. See M. Trlifaj,
Czech. J. Phys. 1, 110 (1952).
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values rather more than might have been expected a
Priori.

It should be noted that though the contribution to D
from each of the states listed in Table II is similar in
magnitude to the free electron contribution, the sum
over the Fermi distribution could be very much different
from the sum calculated using the free electron ap-
proximation. This is true because the total sum is a
small diGerence between large terms, so that a deviation
from the free electron value which is diQerent in different
parts of the zone could cause a large error in the sum.
Such an error would, of course, cause a large error in the
calculated value of the axial ratio.

From the information given in Table II, we can get
some idea about the effect of strain on the energy gap.
As F4 is the state just above the top face of the zone,
and F3+ is the state just below, the diGerence between
D(1'4—

) and D(Fs+) would be the change in energy gap
if one could neglect the eGects of terms S and X.
Table II shows that this change is of the order of thirty
percent of the change in free electron energy.

We now consider the contribution of term S to the
"eGective stress. "In order to make an estimate of S, we

approximate the total charge density as that given by
positive charges of 2e on the atomic positions and a
uniform negative charge of —2e per polyhedron. It is
then convenient to transform S to a somewhat different
form. It can be shown that

5(ee) =5W(ee)+ (2ee/i)) (4e/6)
J

d'rr a &Q(r), (7.1)

where 8$' is the change with shear of the electrostatic
energy of the simple model assumed above, and p is the
electrostatic potential of such a charge density.

The first term in Eq. (7.1), 8W, can be calculated
using the method of Ewald, "as developed by Fuchs."
That the variation of W with c/a is a factor in deter-
mining the axial ratio was pointed out by Herring and
Hill."We And

8W = —(2o~/6) 0.00155e'e/a. (7.2)

It can be shown that if @(r) were spherically sym-

metrical, the second term in (7.1) would be zero. We
imagine expanding P as a sum of multipoles. The largest
contribution should come from the quadrupole term as
the operator r e V has quadrupole symmetry when

operating on a spherically symmetric function. The
coeKcient of the quadrupole term in the expression
for @ has been calculated by Campbell, Keller, and

Koenigsberg. 30 Replacing the polyhedron by a sphere of

'8 See, for example, M. Born and M. Goeppert-Mayer, Huedbuch
der Physik (Verlag Julius Springer, Berlin, 1933), Vol. 24, Part 2,
p. 7i0."K.Fuchs, Proc. Roy. Soc. (London) A151, 585 (1935).

~ Campbell, Keller, and Koenigsberg, Phys. Rev. 84, 1256
(1951).

equal volume, we find for the second term in (7.1)

(4e/r1) d'rr a ~g—0.0025e'e/a. (7 3)

+6 (rs)4. (rs)(ri rs) a &(1/Iri —»I) (7 4)

As the Herring and Hill wave functions are Hartree
wave functions, expression (7.4) should be used in
calculating X.

In evaluating (7.4), we neglect interaction between
the valence electrons and closed shells" and replace the
valence electron wave functions by plane waves. In such
an approximation, the value of X depends sensitively
upon the occupation of states in reciprocal space, being
zero for a spherical Fermi surface. We attempt to
represent the eGect of the full zone which contains two
electrons per atom by assuming the electrons occupy an
ellipsoid of revolution which has the same volume and
quadrupole moment Lintegrated value of s (3k s—k') j as
the zone. With the above assumption, we obtain an
estimate of 0.1e ev per atom for X for beryllium. Though
the estimate is crude, it indicates that the exchange
eGect is important.

We are now in a position to try to make an estimate of
the total "eGective electron stress" in beryllium.
Following Jones, we think of the total stress as that due
to the full zone plus that due to overlap electrons minus
that due to holes. We will approximate the term D for
the full zone by summing the free electron value of D
over the zone. Such a sum yields

P, , D —0.8e ev per atom,

"In beryllium the exchange interaction between closed shells on
different atoms is negligible, but can be important in other metals.
LSee K. Fuchs, reference 29; also, Proc. Roy. Soc. (London) A153,
622 (1936); A157, 444 (1936).j However, to the extent that such
interactions are represented by central forces between nearest
neighbors only, they will produce no "effective stress" tending to
change the axial ratio.

We then 6nd for the approximate value of S in the case
of beryllium 0.006c electron volts per atom. Referring to
Table I, we see that this value is small compared to the
observed values of the "effective stress. " Though our
estimate of S is admittedly approximate, the small value
obtained is an indication that the contribution of term S
to the "effective stress" for a pure metal can be ignored.

Term X is very complicated and we have been able to
make only a rough estimate of its value. If, in deriving
the expression for the "eGective stress, " it is specified
that the one-electron wave functions are solutions of the
Hartree equations (instead of the Hartree-Fock equa-
tions), it is found that term X takes the somewhat
diGerent form,
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where the subscript z means that the sum is over the
complete zone. Adding this to the estimate of I for the
full zone made above, we have for the "effective stress"
due to the full zone

8. EFFECTS OF ALLOYING

In this section we discuss the change in lattice parame-
ters caused by alloying. We find that the method used
by Jones to calculate the change in axial ratio with
alloying is. incorrect, though we show that the correct
method may lead to conclusions similar to those of
Jones.

Besides changing the axial ratio, alloying causes
changes in the volume, and produces local distortions of
the crystal structure. We shall describe each configura-
tion by giving the average axial ratio and average
volume. For a given configuration the equilibrium posi-
tions of the nuclei are determined by the condition that
the energy is a minimum subject to the constraint on the
average axial ratio and average volume. We use the
parameter e as defined before, and introduce a parame-
ter b which is equal to one-third of the fractional differ-
ence between the average volume of the configuration
and the volume of the pure metal at absolute zero.

The equilibrium values of e and 6 are those which
minimize the total energy. The expansion (to second
order) of the total energy in terms of e and fi is

E=Es—o e—nb+-', pe'+-', vb'+r)eb. (8.1)

Minimizing (8.1) with respect to e yields

emin (o r/~)/p (8 2)

We could, of course, minimize the energy with respect
to 8, and make a theoretical calculation of both e and b.
However, we shall instead take 8 from experiment, ap-
proximate p, and p by the appropriate combinations of
elastic constants, and confine ourselves to the calcula-
tion of 0..

0-,=—0.9 ev per atom.

The observed "effective stress" in beryllium is minus
0.44 ev per atom (see Table l), about one-half our
estimate. If there occurred overlap at point E and holes
at points U and 8' as the results of Herring and Hill
suggest, the correction for the diGerence from a filled
band would increase the calculated "eGective stress"
even more.

The above estimate of the "eGective stress" is in
error due to the partial use of the free electron ap-
proximation in obtaining it. Even so, the approximation
is sufFiciently good to yield an estimate for the "eGective
stress" in beryllium of the right sign and order of

magnitude. For metals of larger atomic number whose
wave functions are more complicated, it is to be ex-
pected that the free electron approximation is less
accurate. In zinc and cadmium, the "eGective stress"
actually has the opposite sign to that predicted with the
free electron approximation.

It is seen that the axial ratio changes with alloying
because of three eGects: the change in elastic constants,
the change in atomic volume, and the change in the
"effective stress. "

We cannot say how large the eGect due to the change
of elastic constants is, since measurements of the
relevant elastic constants for alloys of hexagonal metals
have not been made. However, measurements on other
systems indicate that the percentage change in elastic
constants per atomic percent of solute varies from 0.5
to 5.32 From Table I we see that the percentage change
in e,b, per atomic percent of solute is of the order of j.0,
so that the change in elastic constants may well have an
important effect.

The change in axial ratio due to the change in atomic
volume, given by the last term in (8.6), is the same as
that derived by Jones using a somewhat different
argument.

The change in the "eGective stress" with alloying is
due to the changes in the "eGective phonon stress" and
the "effective electron stress. "We shall treat here only
the change in the "eGective electron stress" and neglect
the change in the "eGective phonon stress. "

The "eGective stress" is, as before, the negative of the
derivative of the energy with respect to e. A change in c

not only changes the average axial ratio but also aGects
the local distortions. We could express the actual
deformation as a homogeneous deformation which
changes the axial ratio, plus local deformations. The
local deformations do not cause a first-order change in
energy as the energy of the ideal configuration is a
minimum with respect to local deformations. Thus we

may obtain 0. by calculating the linear change in energy
caused by a homogeneous deformation.

We shall calculate the change in "eGective electron
stress" with alloying using the formulation discussed in
Sec. 3, so that the total "eGective stress" comes from
the contributions of the surface atoms to 8 LEq. (3.8c)j."
We limit the discussion to the case of infinite dilution, so
that there is a negligible number of impurity atoms near
the surface. At first thought it might seem that the
impurity atoms could not contribute to the surface
stress due to the fact that the forces between atoms are
short-ranged. However, the s&ess field due to the
presence of the impurity atoms is long-ranged. In fact,
the field at large distances from the impurity can be
treated by classical elasticity theory, and falls oG as the
inverse cube of the distance from the impurity atom.

In calculating the excess in term 8 due to the
presence of the impurities, we may replace the summa-
tion over p, by an integration over the surface of the
sample, as the excess surface stress is a slowly varying

~ R. A. Artman and D. O. Thompson, J. Appl. Phys. 22, 358
(1951);A. D. N. Smith, J. Inst. Metals 80, 477 (1952).

"The quantity (»V) is zero for nuclei in the interior of the
sample. If this were not so, the energy could be lowered by
displacing interior atoms, but the energy of the ideal configuration
is a minimum with respect to such displacements.
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function. We find

hE=SEs+ ~(ds ~) s r, (8.3)

where bEO is the linear change in energy for the pure
metal and ~ is the stress tensor due to the presence of
impurities. As the leading term in the stress varies as the
inverse cube of the distance from the impurity, the
second term in (8.3) will be proportional to the total
number of impurities in the sample. '4 Thus the change in
lattice parameters will be proportional to the concentra-
tion of impurities (for small concentrations). The stress
field itself is determined by the atomic displacements
near the impurity atoms. A complete theoretical calcula-
tion of the change in lattice parameters with alloying
then involves a calculation of the local displacements. "

The results of the above discussion support the
simple view of a metal as being made up of atoms which
interact through short-range forces. That classical
elasticity theory can be applied to the problem of change
of lattice parameters has been recognized for a long
time. "The importance of the present results is that they
show that the simple "Brillouin zone effects" on the
change of lattice parameters with alloying as hitherto
calculated, do not exist. Note that there would be no
change in average lattice parameters if there were not
local distortions of the lattice, a fact in direct contra-
diction with the theory of Jones.

The reason for the failure of the Jones model can be
elucidated by the following discussion. Let us calculate
by our method the change with alloying of the contribu-
tion of term D t Eq. (4.2a)j to the "effective stress, "
remembering that such a contribution is analogous to
the stress calculated by Jones. We shall further assume
that there are no local distortions of the lattice. We
choose the surface of co to be far from impurity atoms.
We then find that D is unchanged by the addition of the
impurities. The reason is roughly this: the perturbation
of the charge distribution due to an impurity atom dies
off exponentially with distance from the impurity, so
that the charge density at the surface of a is the same as
for the pure metal. '~ Thus, though there may be a
contribution to the stress from the extra electrons
introduced by alloying, it is exactly cancelled by the
change in the stress due to the electrons already present.

In order to explain the experimental regularities in the

'4 Actually, there is also a constant term in the stress tensor due
to impurities. In the method of this section the magnitude of the
constant term is determined by the condition upon the average
axial ratio and average volume. A more straightforward procedure
would be to apply originally the boundary condition that there are
no surface stresses and determine the change in lattice parameters
from the surface displacements,

'5 For a discussion of the calculation of local atomic displace-
ments in several cases, see D. L, Dexter, Phys. Rev. 87, 768
(t952)."B.Ya. Pines, J. Phys. (U.S.S.R.) 5, 309 (1940).

37 Actually, it is necessary that the contribution to the charge
density at the surface of co from each group of states with the same
energy is unchanged by alloying. See J, Friedel, Advances in
Physics 3, 446 (1954).

change in lattice parameters it is now necessary to ex-
plain why there are regularities in the local displace-
ments caused by alloying. "We present here a rough
argument which indicates that such a program is pos-
sible. We assume that the behavior of the electrons near
the impurity can be described in the effective mass
approximation. " For the sake of argument, let us as-
sume that the energy band structure is that proposed by
Jones and discussed in Sec. 1 of this paper. There will be
several types of states with energy near the energy of
the Fermi level, corresponding to the different regions
E, V, and 1.Let us consider the region l. In analogy
to the weak potential case, we may expect that the
effective mass parallel to the c axis is smaller than that
perpendicular to the c axis. Thus the orbit of an electron
of effective mass corresponding to region F and which is
bound to the impurity would extend further away from
the impurity in the direction of the c axis than perpen-
dicular to the c axis. Thus the contribution to the excess
charge density from such electrons would extend farther
up the c axis than perpendicular to it, causing a greater
repulsive force on nuclei which lie in the direction of the
c axis away from the impurity atom. Thus, electrons in
states such as I' tend to increase the axial ratio, the
same conclusion as that drawn by Jones. Naturally, a
sudden onset of overlap at F would cause a change in the
excess charge density, which in turn would effect the
lattice parameters. The same reasoning gives a con-
clusion qualitatively the same as Jones's concerning the
region E, though the effect of the holes at points V will
depend on details of the band structure which are not as
easily ascertained.

9. SUMMARY AND CONCLUSIONS

The main purpose of this paper was to investigate the
bases of the theories of Jones and Goodenough concern-
ing the change in axial ratios of hexagonal crystals with
alloying. As explained in the introduction, the theories
are interesting as they seem to afford easy ways of
getting information about the band structure. In order
to elucidate these theories we carried out two separate
investigations which, surprisingly enough, turned out to
be rather unrelated.

The first investigation (Secs. 3 through 7) consisted of
examining the factors responsible for the deviation of
the axial ratios of pure metals from the ideal close-
packing value. The major factor found was the "kinetic
stress, "which resembles the stresses estimated by Jones
and Goodenough. In fact, in beryllium the contributions
of each one-electron state to the "kinetic stress" are

' Another kind of argument to show that the "effective sizes"
of solute atoms (and thus local dispiacements) depend upon the
relative valency of the solvent and solute has been made by J. H.
O. Varley, Phil. Mag. 45, 887 (1954).

'9 For a discussion of the validity of the eGective-mass approxi-
mation as applied to impurity states, as well as a discussion of the
character of the exact solutions, see G. F. Koster and J. C. Slater,
Phys. Rev. 95, 1167 (1954).
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numerically very much like those given by the Jones
theory. It is pointed out, however, that the sum of the
contributions from all states could be very much
different. Two other factors tending to change the axial
ratio were found, one of which, the exchange stress,
could be appreciable. A rough estimate made of the
"effective stress" in beryllium was pf the right order of
magnitude.

The second investigation concerned the change of the
lattice parameters with alloying. It was found that the
change in axial ratio with alloying is due to a different
mechanism from that proposed by Jones. However, use
of the effective-mass theory allowed us to establish a
connection between the band structure and the change
in axial ratio when the correct mechanism is taken into
account. It is remarkable that using the correct method,
we draw the same qualitative conclusions concerning

band structure as does Jones! It may be necessary to use
a more sophisticated method in order to obtain nu-
merical agreement with experiment, but the e6'ective-
mass treatment doubtlessly contains the essential
physics. Thus, the most attractive feature of the Jones
theory remains, i.e., the possibility of getting informa-
tion about the band structure from the alloying data.

In the course of the 6rst investigation a formalism was
developed which is capable of giving the first-order effect
of a homogeneous deformation on the energy band
structure. Several possible applications of such a
formalism were mentioned in Sec. 4.

The author wishes to express his sincere gratitude to
Dr. E. N. Adams II for his invaluable advice and
encouragement. Thanks are also due Dr. Conyers
Herring for making available copies of the wave
functions.
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Properties of Gerissartium Doped with Nickel
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The temperature dependence of electrical resistivity in p- and m-type nickel-doped germanium crystals
indicates that nickel introduces two acceptor levels in germanium at 0.22+0.01 ev from the valence band
and 0.30~0.02 ev from the conduction band. Ionization energies deduced from infrared photoconductivity
studies at 77'K are in agreement with the values obtained from resistivity measurements. Ã-type samples
show higher photosensitivity than p-type samples and demonstrate quenching effects. The distribution
coefFicient for nickel in germanium is about 2.3&(10

I. INTRODUCTION

HIS paper presents measurements of electrical
and optical properties of germanium crystals

containing nickel as the major impurity. Results are
similar in most respects to those reported previously
for Fe-doped' ' and Co-doped' germanium crystals. In
a paper primarily concerned with the effects of Ni and
Cu on carrier lifetime in germanium, Burton et a/. have
reported low-temperature conductivity and Hall co-
efhcient data which indicated that Ni introduces an
acceptor level at about 0.23 ev from the valence band
of germanium. This conclusion is confirmed. In addition,
evidence is presented indicating that Ni introduces
another acceptor level at about 0.30 ev from the con-
duction band. A summary is given comparing the prop-
erties of Fe-, Co-, and Ni-doped germanium crystals.

'W. W. Tyler and H. H. Woodbury, Phys. Rev. 96, 874 (1954).' R. Newman and W. W. Tyler, Phys. Rev. 96, 882 (1954).
s Tyler, Newman, and Woodbury, Phys. Rev. 97, 669 (1955).

Burton, Hull, Morin, and Severiens, I. Phys. Chem. 57, 853
(&953).

II. EXPERIMENTAL RESULTS

A. Crystal Preparation

The methods of crystal growth and sample prepara-
tion used with Ni-doping experiments were similar to
those used in previous work with Fe- and Co-doping. ' '
Experimental techniques used in studying the Ni-
doped samples have also been described. ' '

Johnson Matthey Company (JM) "spectroscopically
pure" Ni and Sigmund Cohn (SC) "chemically pure"
Ni were used for doping. Initial experiments using the
JM Ni indicated that about 10 percent of the carriers
introduced into the Ge crystals as a result of doping
were probably due to low ionization energy acceptor
impurities in the Ni. The SC Ni proved somewhat more
satisfactory either because of a lower concentration of
specihc low ionization energy acceptor impurities or
because acceptor impurities were compensated by donor
impurities. Spectroscopic analyses of both sources of
Ni indicated "barely detectable" amounts of 8 and
"traces" of Al. The SC Ni analysis also indicated a


