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Interaction between Spin Waves and Conduction Electrons in Ferromagnetic Metals*
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With a view toward understanding ferromagnetic resonance line widths in metals, the relaxation time
due to the spin wave-conduction electron interaction has been calculated. The effect due to the interaction
of ferromagnetic spins with conduction electron currents is much more important than that due to the
interaction of ferromagnetic spins with conduction electron spins. In nickel, for temperatures between 4'K
and 300 K, the former process yields a relaxation time 10 —10 7 sec, while the latter yields 10 '—10 4 sec.
The interactions do not appear to be strong enough to account for the observed line widths.

I. INTRODUCTION

'HE role of relaxation processes in determining the
line width in ferromagnetic spin resonance ab-

sorption' has recently been discussed by several
authors. ' 4 According to the discussion of KA, 4 for
temperatures less than about one-half the Curie tem-
perature, the line width is determined by spin-spin
interactions of magnetic dipolar and pseudodipolar
origin. On this view, a calculation of the spin-lattice
relaxation involves the assumption that the ferromag-
netic spin system is in thermal equilibrium at a de-
finable spin temperature which is higher than the lattice
temperature. This is an attractive idea and it greatly
simplifies the calculation of spin-lattice relaxation times;
furthermore, the experimental evidence lends some
degree of support. However, this interpretation leaves
the line width still unexplained, for it has not yet been
demonstrated quantitatively that spin-spin interactions
can lead to the large temperature independent line
widths that have been observed at low temperatures. '
Whether or not spin-spin interactions can be responsible
for the line widths at low temperatures must therefore
remain an open question. In the calculation which
follows, we ascertain that the interaction of the mag-
netization (ferromagnetic spin system) with the con-
duction electrons cannot account for the major part of
the line width in ferromagnetic metals at low tempera-
tures. The line width must then be due to another
mechanism which, according to KA, is the spin-spin
interaction.

The direct spin-lattice relaxation time has previously
been calculated using a macroscopic interaction be-
tween spin-wave and phonon 6elds. ' In the present
work, a calculation is made, by similar techniques, of
the relaxation processes which transfer energy from the
ferromagnetic spin system to the lattice by way of the
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conduction electrons (s-electrons). Since the conduction
electron-lattice interaction is so strong (with a char-
acteristic time of the order of 10 " sec), r we may con-
sider the s-electrons to be part of the lattice and we
then treat the energy transfer as a "spin-electron re-
laxation. " The conduction electrons will be treated as
a degenerate electron gas by means of the single par-
ticle model in the plane wave approximation. The spin
waves will be treated by methods discussed by KA.

It has been shown' that in a ferromagnetic conductor,
the resonance frequency for the absorption of micro-
wave power is shifted by an amount inversely propor-
tional to the square of the eddy current skin depth 8.
In spin-wave language, this means that the only spin
waves excited by the rf field have wave vectors x whose
magnitudes lie close to the value 1/8. This is to be
compared with the situation in insulators where the
microwave excitation is limited to those spin waves
having wave numbers I(; near zero. In the case of the
direct spin-lattice interaction, the difference is insig-
ni6cant as the phonons of interest have wave numbers
very much larger than 1/8, and the previous calculation'
for the direct interaction which scatters &=0 spin waves
remains essentially unchanged in the case of metals.
In order to determine whether the interaction of spin
waves with conduction electrons can account for the
line width, it is necessary to evaluate the time constant
(relaxation time) of the decay of an excess number of
spin waves of wave number 1/8. If this interaction is
to account for the width, the relaxation time must be
as short as 10 '—10 "sec.

Previous work on spin-wave-electron interactions has
been reported by Samoilovich and Yokovleff" in con-
nection with electrical resistivity. Kondoh" has pub-
lished a report on a calculation using the dipolar inter-
action between s- and d-electrons in the spin-wave

It should be mentioned that the relaxation of s-electron spins
to the lattice is also expected to be very fast due to the large
spin-orbit coupling. See R. J. Elliott, Phys. Rev. 96, 266 (1954).
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finds that the spin-lattice relaxation time for ~=0 spin waves in
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approximation of Holstein and Primako8. " There is
essential agreement between his results and those of a
similar calculation which forms Sec. IV of this paper.

II. INTERACTIONS

The interaction operator which we adopt is

operator Kt ——J' y*Ht @dr, :

Xt——(eh/mc)P»»lb»*b»~ i

dre'&»' »&.r

XM (r), t (RXK~/gs)e21»' —Ki R—PRdR (6)

H; p=Ht+Hs,

e t M(r) (r—r,)Xp
&
—ai»—»eld»

mc&

Hs ——Pe H, .

Here we have considered electrons with spin up. The
evaluation of the integrals which appear here is fa-
cilitated by the expansion of e"K' K)'" in spherical
harmonics. The result is

(3) BCt——(2~iek/mc) (2gi9~~) '[1—(q/») tan '(s/q) 7

where M(r) is the magnetization at the point r, r, is
the position of a conduction electron, y its momentum
and o its spin. H, is the magnetic field due to the ferro-
magnetic spins and has been given by Herring and
Kittel. is In Eq. (3), P is the Bohr magneton. Hi repre-
sents an interaction between the ferromagnetic spins
and the currents due to the motion of the s-electrons.
Furthermore 1/q is the screening radius'4 for the mag-

netic 6eld due to the s-electron currents and is given by
(mc'/4gtspe') ' where ep is the s-electron density. This
screening arises from the collective inhuence of the set
of s-electrons and is discussed fully in reference 14.
H2 is the ferromagnetic spin —s-electron spin interac-

tion in the Herring-Kittel approximation. The two inter-

actions H& and H2 will be treated separately since they
do not interfere.

The system of conduction electrons is treated as a
quantized free electron 6eld with the following conven-

tion for the 6eld operators:

spin up:
spin down: f=d»e'»', (4)

where e„, bK, dK, and their conjugates are annihilation

and creation operators and M, is the saturation mag-
netization. We work throughout in Gaussian units with

a sample of unit volume.

III. INTERACTION WITH S-ELECTRON CURRENTS

The interaction of spin waves with s-electron cur-

rents does not cause s-electron spin transitions so that
we may consider interactions with s-electrons of one

spin only. From Eq. (2), we get the perturbation

's T. Holstein and H. PrimakoG, Phys. Rev. 58, 1098 (1940).
'3 C. Herring and C. Kittel, Phys. Rev. 81, 869 (1951).
"D Bohm and D. , Pines, Phys. Rev. 82, 625 (1951).

where K is the electron wave vector. Following KA,
we have for the spin-wave field:

M+(r) =M, (r)+ iM„(r) = (2gPM, )& P„n„e'~',
(5)

M (r) =M, (r) —iM „(r)= (2gPM. )
'* P„a.*e '"',

XE».b»*b» K '[(KX~)+tr-.~+ (KX~) rs.7,

~=K—K'wo, (7)

plus another term which does not contribute to the
relaxation. The first term in square brackets creates a
spin wave of wave vector —x while the second destroys
one of wave vector x. In order to evaluate the decay
rate of spin waves of given wave number, we 6x f(: and
consider the rate of change of the population in the
state I(: if there is a nonequilibrium excess of spin waves
in that state. The nonequilibrium excess is due to the
excitation by the microwave field.

The net number of collisions per unit time which
transfer energy from the spin system to the s-electrons
is given by th, e kinetic equation

X,.ii ——(2s/h)Q»„((Ht'(' —(Ht (')b(s„+s» —e»), (8)

where Hi' and Hi' are those parts of Eq. (7) which

emit and absorb, respectively, a spin wave of wave
vector x, and e„, eK are the energies of a spin wave and
an electron of wave vectors x, K. Here e„ is equal to
(2gPA/M, )a' AH where A—is the macroscopic ex-

change constant and H is the applied constant field.
To set up the relaxation time, we fix ~ and identify

X„ii with ri„, the rate of change of population in the
state f(:. Further, we take the matrix elements of the
creation and destruction operators and average over
the directions of the vector KXx. The result for ri„ is

ri = (32m'/3) (e'AgPM, /m'c')

X[1—(q/s) tan '(s/q)7'~ 'P»(KX&)'
X[(e.+1)(1 f» )f» n„(l f—»)f» 7— —

X 8(s„+e» —s»), (9)
~= K—K~o.

Here n„ is the occupation number of the spin-wave
state» and f» is the probability of finding an s-electron
in the state E, that is, the Fermi distribution function.

In order to evaluate the terms in square brackets,
we set n„=n„'—An„where n„' is the value of n„when
the spin-wave system is in equilibrium with the s-elec-
trons and hn„ is the excess population in the state g

due to the resonance absorption. If An„=0, the term. s
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ri „=—(16m e'gPM, /3mc'Js) DN „

X[1—(q/s) tan '(s/q)$'(s„/s')

I K'dK(dfrc/dex)[1 F'(x,K—)),
F'( Ks) (1. (12)

The condition P'&1 arises from the integration over
8 where we must have cos'8&1. The factor dfx/dex
behaves as a 5 function, b(ex Ep) where—Es is the
Fermi energy for the s-electrons. This and the fact that
the wave numbers of interest for the spin waves are of
order 10' assure the smallness of F and it will hence-
forth be neglected. The integral is easily evaluated with
this 8-function approximation. The result is

1/r = —ri./AN. = (32m me'gPM, /3c%')
X[1—(q/s) tan '(s/q)]'(e„/ss)E&. (13)

This result is the relaxation time for spin waves of
wave number lr. In the case at hand we set s=1/8
= (4rmps/pc')& and find the relaxation time for those
spin waves which are excited by the microwave field.
Here p is the resistivity, co is the angular frequency of
the microwaves, and ip, 2 is the permeability at resonance.
For nickel, at 24400 mc/sec, we have lss

——17,s p= 7.74
micro-ohm cm,"and 8= 1.5&(10 ' cm at room tempera-
ture. Thus, from Eq. (13), we find the relaxation time
at room temperature in nickel

7 =6)&10 ' sec, T= 293'K. (14)

"The method used here is similar to that used in another con-
nection by A. W. Overhauser, Phys. Rev. 89. 689 (1953).

in square brackets vanish if one accounts for the energy
b function. Therefore, n„ is proportional to de„and
the terms in question become

—(dfx/d ex) e„Dm„. (1o)

Here we have taken into account the energy 5 functions
of Eq. (9) and expanded the Fermi factors f near the
top of the Fermi distribution. " The procedure is
justihed here since the maximum spin wave energy is
of order one-fortieth of the Fermi energy.

The resulting expression for ri„ in which (10) replaces
the square bracket of Eq. (9) is treated in the following
way: The sum is transformed into an integral over K
space with the introduction of a factor 2/(2s-)s where
the 2 in the numerator accounts for two possible spin
directions. The energy 8 function is expressed in terms
of K, sc and the angle between them, 8, by the sub-
stitution K'= K—x.

5(e„+ex —ex) = (m/J'i'Ks)5[cose F(—s,K) j,
(11)

F(K)K) = [(O'K /2m)+ eg7/(Ii KK/m)

The 6 function is annihilated by the integration over 8
and the remaining angular integration is trivial. The
result is

The temperature dependence below room temperature
is quite insignificant. The reason for this is that as the
temperature is lowered, the skin depth is reduced in
magnitude as the resistivity decreases. This results in
a decrease in the factor s s=P of Eq. (13) which is
oGset by a concomitant increase of the screening factor
which appears in the square brackets. The experimental
value of Jan and Gijsmanis for the resistivity at 14'K
is about 1/20 of the room temperature result. If we
use this value in our formulas we obtain

r= 2)&10—' sec, T=14'K.

One would ordinarily expect a somewhat stronger tem-
perature dependence of the resistivity in a very pure
sample. However, even if we assume that the resis-
tivity has decreased by as much as a factor 100, the
relaxation time at 14'K remains of the same order be-
cause of the compensation of the aforementioned screen-
ing and skin depth sects. At room temperature and
above, the relaxation time increases with 6 because of
the increased effectiveness of the screening, although
we must realize that the spin-wave approximation is of
doubtful validity before these temperatures are reached.

IV. INTERACTION WITH S-ELECTRON SPINS

The perturbation operator for the interaction of spin
waves with s-electron spins is given by

where" H, = —2s (2gPM, )'(x/xs) (n.s +n .*&+)e' "
Evaluation of this expression gives

3('.s ———2s.p(2gpM. )
* gx, (1/lr') (n.s +n .*a+)

X [fix*dx s +dx*&x K++ (&x*&x dx*dx )«.j—
XS(~+K' —K). (16)

The first two terms in square brackets involve s-electron
spin Aips while the third term does not. Consider first
that process in which an s-electron Aips from down to
up and a spin wave is destroyed. This and its inverse
process together give the collision rate by an expression
exactly similar to Eq. (8) where, for example,

Hs'= 2s P (2gPM—,) '*(~+jr /s')
X [(m.+1)(1—frc

—
)fx+]'*8(~+K' —K).

Here we have taken the matrix elements of the creation
and destruction operators. fx+, for example, denotes
the Fermi factor for wave vector K and spin up. For
this interaction, the rate of energy transfer is given by

ri „=(12gs'PsgM, /15js) Px,s„[(rs„+1)(1 fx )jx+- —

m„(1 fx+)fx —j5(sx—+s. ex-+), (-17)—
x+K'= K,

where we have averaged over directions of x. Here

"J.P. Jan and J. M. Gijsinan, Physics 18, 339 (1952).
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ex+=(IrtsK'/2nt)+PH. The terms in square brackets
are handled in a way similar to the treatment of Eq.
(9). We assume that there are equal numbers of s-
electron spins up and down with small error since
PH/kT«1. With this assumption, as in the case of
Eq. (9), the terms in square brackets reduce to Eq.
(10) with the same notation.

We now proceed as before. The energy 8 function
becomes (nz/It'Ktt)8(cose —F ), where F is as in Eq.
(11) save that 2PH is—added to the numerator. If we

had considered instead the process in which the elec-
tron of wave vector I has down-spin and K' up-spin
rather than the reverse, we wouM have gotten a factor
F+ with +2PH added to the numerator. A detailed
examination of the resulting expression for Q shows

that we may neglect the distinction between F, P+, and
F since PH«FF. We therefore account for the two
kinds of processes mentioned here by the replacement
of F+ by F and the introduction of a factor 2. From Eq.
(17) we obtain

ri „=—(64m ntPs gM, /1St'ts) An „(e„/x)

y, tKdK(dftr/dex), F'(tt, K) &1. (18)

As was the case with Eq. (12), F'& 1 for tt near 1/6 and
E at the top of the Fermi distribution. The integral
then reduces immediately to (nt/ttt').

If we had considered the third term in square brackets
of Eq. (16), i.e., processes in which the s-electron spin
does not flip, then we would have gotten the same ex-

pression as Eq. (18) but reduced by a factor 1/4. To
take all processes into account we need only multiply
Eq. (18) by 5/4. The relaxation time for the spin-wave—s-electron interaction is therefore given by

1/r = —ri „/Dn„= (8~/3) (ns'gP'M, /As) (e„/tr). (19)

We again set tt= 1/8 and ftnd for nickel,

r=2X10 '/8=10 —' sec at T=293'K
=10—' sec at T= 14'K.

V. CONCLUSION

The interaction considered in Sec. IU is negligible

compared with the "spin-current" interaction of Sec.
III. The latter results in a relaxation time whose tem-

perature dependence does not contradict the experi-
mental results for the line width between liquid hydro-

gen and room temperatures. However, the relaxation
time appears to be at least one order of magnitude too
large to account for the magnitudes of the observed
widths.

The present calculation does not apply to low-re-

sistivity ferrites" because the free electron model
cannot work well for d-band semiconductors such as
the ferrites.

It is of interest to discuss the relaxation time for the
"spin-current" interaction in the case that interactions
between ferromagnetic spins are so strong that they
account for the line width. In this case, according to
KA, the spin system is in an equilibrium state before
other relaxation processes have progressed appreciably.
The relaxation time for energy transfer to the lattice
via the conduction electrons is then determined by the
spin-spin relaxation time (line width) itself for the
following reason: the spin-current relaxation time for
spin waves having wave numbers near q is very short
indeed due to the negligible screening and the smallness
of tt (10' cm '). In this connection see Eq. (13). The
rate of energy transfer to the lattice is then limited by
the rate at which energy can be transferred from other
spin-wave states to those spin waves with wave numbers
near q by means of spin-spin interactions. This is be-
cause the relaxation primarily takes place through the
spin-wave states of wave number q and at a rate some-
what faster than the spin-spin relaxation time.

It should be noted that the calculation begins to lose
validity because of the inadequacy of the spin-wave
approximation as the temperature rises above about
one tenth of the Curie temperature (631'K for nickel).
At higher temperatures, one would expect that the
relaxation times will become somewhat shorter than
those predicted here. Within the limits of the spin-
wave approximation, however, the interactions dis-
cussed here do not appear to be strong enough to
account for the experimentally observed line widths.
which correspond to relaxation times of 10 '—10 "
sec. The interaction of spin waves and conduction
electron currents is stronger, however, than the direct
spin-lattice interaction calculated previously, espe-
cially at low temperatures where it gives much the
shorter relaxation time.
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Ãoteaddedin proof Apaperof T. Kasu.—ya [Busseiron Kenkyu
74, 1 {1954)j, in which a calculation is made which is similar to
the one reported here has come to the author's attention. Kasuya,
however, fails to include the effect of screening of the magnetic
field of the s-electron currents; nor does he attribute the break-
down to the ft:= 0 selection rule to the eRect of the finite skin depth.
The neglect of these effects yields a relaxation time an order of
magnitude shorter than the result of the present work.

'" Gait, Yager, and Merritt, Phys. Rev. 93, 1119 (1954}.


