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Cyclotron Resonance of Electrons and Holes in Silicon and Gerii1anium Crystals
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An experimental and theoretical discussion is given of the results of cyclotron resonance experiments on
charge carriers in silicon and germanium single crystals near O'K. A description is given of the light-modu-
lation technique which gives good signal-to-noise ratios. Experiments with circularly polarized microwave
radiation are described. A complete study of anisotropy eRects is reported. The electron energy surfaces in
germanium near the band edge are prolate spheroids oriented along (111) axes with longitudinal mass
parameter m~= (1.58&0.04)m and transverse mass parameter m&= (0.082&0.001)m. The electron energy
surfaces in silicon are prolate spheroids oriented along (100)axes with mi = (0.97&0.02)m; m~ = (0.19+0.01)m.
The energy surfaces for holes in both germanium and silicon have the form

E(k) =Ak'+[B'k4+C'(kz'ko'+k„'kP+k. sk~')]&

gee find, for germanium, A = —(13.0+0.2)(k /2m), ~B~ = (8.9+0.1)(k /2m), )C~ =(10.3+0.2)(k'/2m);
and for silicon, A = —(4.1&0.2) (k'/2m), (B) = (1.6&0.2) (k'/2m), (C

~

= (3 3+0.5)(k'/2m). A discussion
of possible systematic errors in these constants is given in the paper.

l. INTRODUCTION for equal line widths; frequencies, and numbers of
effective carriers. The Boltzmann factor in spin reso-
nance is to be taken into account in the de6nition of an
effective carrier. The substantial advantage favoring
the detection of cyclotron resonance is partly lost
because of the low carrier concentrations used in
cyclotron resonance.

The line width is determined by the collision relaxa-
tion time r, which describes the effect of collisions of
the carriers with lattice vibrations, impurity atoms,
and other imperfections. It is necessary that a,r& 1 in
order to obtain a distinctive resonance. In other words,
the mean free path must be large enough so that the
average carrier will get 1/2sr of the way around a
circle between successive collisions. For a,= 1.5)&10"
sec ', we require 7-=10 " sec or longer. At room
temperature the relaxation times of carriers in semi-
conductors and metals are commonly of the order of
10 "to 10 "second. It is usually necessary to work
with high-purity crystals in the liquid hydrogen or
liquid helium temperature range in order to obtain
relaxation times which are long enough to permit the
observation of cyclotron resonance with X- or E-band
microwave equipment.

The theory of cyclotron resonance absorption is
elementary, and for free particles goes back to Drude,
Voigt, and I orentz. Cyclotron resonance of free elec-
trons in the earth's magnetic field has been observed in
the propagation of radio waves in the ionosphere. The
idea that it might be possible to carry out cyclotron
resonance experiments in solids has been considered
independently by a number of workers. In 1951 Dorf-
mann' published the suggestion of the possible appli-
cation of cyclotron resonance to solids. Independently
and simultaneously, Dingle' published his work on the

' 'N cyclotron resonance the current carriers in a solid
~ - are accelerated in spiral orbits about the axis of a
static magnetic 6eld H. The angular rotation frequency
is

co.=+eH/rrt*c,

where m* is the eGective mass of the carrier. The
experiment determines the eGective mass directly, and
is the 6rst experiment to do so. Resonant absorption of
energy from an rf electric field perpendicular to the
static magnetic 6eld occurs when the frequency of the
rf field is equal to the cyclotron frequency f,=to,/2sr
The motion is not unlike that of the particles in a
cyclotron or simple magnetron. The & choice in Eq.
(1) indicates that holes and electrons will rotate in

opposite senses in the magnetic field.
We consider the order of magnitude of several

physical quantities relevant to the experiment. We
make the estimates using rle/nt=0. 1, which is not
unrepresentative. For f,=24000 Mc/sec, or co,=1.5
)& 10" radians/sec, we have H—860 oersteds. The
radius of the orbit is r= /&s, .oThe mean radius for
carriers in a Maxwellian velocity distribution at temper-
ature T is

~8ItTq —: 1

(~nt*)
(2)

as 8= (8AT/srrrt*): For T=4'K, 0—. 4X10e cm/sec, and
r—3)&10 ' cm. The transition probability in cyclotron
resonance is proportional to the square of the electric
dipole moment; in electron spin resonance the transition
probability is proportional to the square of the magnetic
moment. As the maximum electric field in a resonant
cavity is of the same order of magnitude as the maxi-
mum magnetic field, the ratio of the transition pro
bilities for cyclotron and for spin resonance will be
the order of

y /P (er)s/p s 1()is

' J. Dorfmann, Doklady Acad. Sci, (U.S.S.R, ) 81, 765 (1951).
of R. B. Dingle, Ph.D. thesis, Cambridge University, 1951

(unpublished); Proceedings of the fnternational Conference on
Very Low Temperatures, edited by R. Bowers (Oxford, England,

(3) August 1951),p. 165; Proc. Roy. Soc. (London) A212, 38 (1952).
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quantum theory of cyclotron resonance of a free
particle, and also discussed the possible application to
solids. Shockley' gave the solution of the problem of
the cyclotron frequency for an ellipsoidal energy
surface; his result is applicable directly to the conduc-
tion bands of silicon and germanium. He also derived
expressions for the effective mobility in transverse and
longitudinal cyclotron resonance. Later, Suhl and
Pearson' reported an unsuccessful experimental attempt
to detect cyclotron resonance in germanium at 77'K.
The present authors' reported the first successful
cyclotron resonance experiments, on germanium at 4'K.
Our original results on germanium were incomplete,
and important further developments for germanium
have been reported by Lax, Zeiger, Dexter, and Rosen-
blum, ' and by Dexter, Zeiger, and Lax.' The first
work on silicon was reported concurrently by the
Lincoln and Berkeley groups.
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2. CLASSICAL THEORY OF CYCLOTRON RESONANCE
FOR AN ISOTROPIC EFFECTIVE MASS 0 0.5

(dv 1 ) ( vXH)

&dl r) E c ) (4)

We take H as the static field along the s-axis and
neglect the rf magnetic field. For plane-polarized
radiation E, we have

1q e
m*1 m+ —

I
tt, =e+,+—o„8;

7. c

' W. Shockley, Phys. Rev. 90, 491 (1953).' H. Suhl and G. L. Pearson, Phys. Rev. 92, 858 (1953).' Dresselhaus, Kip, and Kittel, Phys. Rev. 92, 827 (1953).
6I,ax, Zeiger, Dexter, and Rosenblum, Phys. Rev. 93, 1418

(1954).' Dexter, Zeiger, and Lax, Phys. Rev. 95, 557 (1954).
See, for example, the related calculation by R. Jancel and

T. Kahan, J. phys. et radium 14, 533 (1953); L. G. H. Huxley,
Proc. Phys. Soc. (London) B64, 844 (1951).

We give now a brief classical discussion of cyclotron
resonance absorption by a carrier of isotropic e6ective
mass. The theory will be generalized in later sections
following a discussion of the experimental results. We
review briefly the elementary classical theory of the
process, assuming an isotropic effective mass nz* and
an isotropic relaxation time 7., both independent of the
velocity. In unpublished work we have developed the
theory from the viewpoint of the Boltzmann transport
equation, ' but it is not worth while to reproduce the
calculations here. The machinery of the Boltzmann
equation is useful if one wishes to include a specific
velocity dependence of the relaxation time, but we

have no direct knowledge of the velocity dependence
of the relaxation time in the circumstances of our
experiments.

The equation of motion for the drift velocity is

+IG. 1, Theoretical curves showing relative power absorption
at constant frequency as a function of the static magnetic field
intensity in units ca,/co, for various relaxation times in units car.
Curves are given for both linear polarization (Eq. L8)j and circu-
lar polarization of the rf field.

We solve for v„ finding for the complex conductivity,

1+i(ar
o =j./E. =Neo./E. = o p (6)

1+(a& '—tp')r' +2i rco

where
op= Nesr/m*

is the static conductivity; X is the carrier concentration.
The losses are proportional to the real part of the
conductivity. We express the result in convenient
dimensionless form by writing v=~v, v.=co.7-, the real
part o-& of o- is given by

1+ps p 2+ c
og op=

(1+v 2 ps)P+4p2
(8)

A high mobility does not in itself assure that a cyclotron
resonance experiment is feasible; an appropriate average
effective mass must also be considered. For narrow

This function is plotted in Fig. 1 for v=0.2, 1,. and 2;
it is seen that the resonance is quite well defined for
v= 2.

It is interesting to state in terms of the mobility the
condition ~v&1 for the observation of cyclotron reso-
nance. In esu, r =m*p/e; to have &or) 1 requires
p)e/cpm*. For f=24000 Mc/sec, the condition on p
expressed in practical units is, approximately,

(m*/m)IJ, )11 000 cm'/volt-sec
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energy gaps, the mobility divided by the gap energy
may be a useful guide to relative relaxation times, as
under some conditions m~ ~ E„approximately.

Several limiting situations are of interest:

(a) y.»y; y,»1. This situation is found in very
strong magnetic helds. We have

microwave cavity at a position of negligible rf magnetic
field. The stored energy density is e(E')A„/8n; the energy
dissipated per radian at resonance is a.ii(E')A„/a&, so

Q,y, i = au/87ro re =m*e(u/47rNe r. (»)
For the standard example described in the introduction,

o.~= o.p/y. s ~ 1//H', (10) Qeyci 10 /N (18)

so the losses well above the resonance field fall off as
1/Hs. The carrier orbits are tightly coiled and very
little drift is permitted in the direction of the electric
field.

(b) 1»y.»v. This situation is found at low fre-
quencies at room temperature, or at low frequencies in
weak magnetic fields at low temperatures. We have

Q„; = (kT/Npii') (A(o/&o). (19)

For the sake of comparison, we set the spin resonance
line width equal to the cyclotron resonance line width.
We take Der=1/r, so

This may be compared with the estimated Q for
electron spin resonance":

o g/o'p=1 ve )
Q.o, kT/NIJri—'(or = 10'4/N (20)

corresponding to a fractional resistivity change

~plp=y'= (ro.r)'= (HAJJ/&)',

where the mobility is written as

lJ, = er/m*.

(12)

This limit represents the low-frequency transverse
magnetoresistance in the absence of a Hall electric
Geld; in many actual problems, part of the transverse
magnetoresistance is canceled' by the effect of the Hall
field.

(c) y»1; y.=0. This situation occurs in the infrared:

o.ii/o p= 1/y'. (14)

(d) y=y,»1. This is the condition for cyclotron
resonance. We have, from Eq. (8),

~z/~p= 1/2

Thus, at cyclotron resonance, the conductivity is one-
half of the dc conductivity. If we had taken circularly
polarized radiation in place of plane-polarized radiation,
the ratio would have been unity. The factor one-half
represents the selective absorption of one of the two
circular components of a plane wave; the other compo-
nent passes freely in the limit considered. The compo-
nent which is absorbed at cyclotron resonance remains
in phase with the drift velocity throughout the motion,
just as in ordinary dc conductivity; hence the absorp-
tion of this component is identical with the dc absorp-
tion.

The rf conductivity at resonance is related to the rf
conductivity at zero magnetic field by the ratio

o.ii (res)/o. g (H =0) = y,s/2,

provided y,»1.For &o,r= 10, the ratio o~(res)/o~(V= 0)
is of the order of 50.

We now consider the Q of the sample at cyclotron
resonance. We suppose the specimen is located in the

' A. H. Wilson, Theory of Metals (Cambridge University Press,
London, 1953), second edj.tion n. 2]S.

rA(v = 1. (21)

For broad lines the position of maximum absorption
shifts slightly toward higher II. For cur = 1 the fractional
shift is approximately 1/9; for &or»1 the fractional
shift is of the order of 1/8(por)', which will usually be
unimportant. In our experiments on germanium and
silicon at O'I and 24 000 Mc/sec, the value of &or was
about 10.

Depolarization Effects

We show now that the electrostatic self-interaction
of the resonance polarization may be neglected at the
lower carrier concentrations with which we are con-
cerned, although at higher concentrations new and
undesirable effects enter. We consider the depolarizing
fields associated with the shape of the sample; the
effect of possible Lorentz fields is neglected. We suppose
for simplicity that the sample has axial symmetry
about the axis of the static magnetic held. In the axial
plane the internal electric field is

E;=E—I.P, (22)

where I. is the depolarizing factor. The polarization P
"C.Kittel and J. M. Luttinger, Phys. Rev. 73, 162 (1948).

under the previous conditions. The requirement that a
resonance may be detected may be stated roughly that
for a given line width a certain threshold 1/Q must be
exceeded, 1/Q being the measure of the absorption.
It appears therefore that cyclotron resonance should be
detectable at carrier concentrations lower by a factor
of the order of 10" than spin resonance; the factor
arises principally from the relevant matrix elements,
as we saw earlier in Eq. (3). There are several practical
considerations which act to reduce the factor, but it
would appear that it is in principle within the range of
existing equipment to detect 10' carriers in cyclotron
resonance.

The half-width at half 0-~ on the o-~ vs co curve is
determined by the condition
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is given by

P=xpE;+Ne) vdt=2tpE; iN—ev/pc; (23)

here yp= (e—1)/4v. , and s is the dielectric constant of
the host crystal exclusive of carriers. The internal field is

E+i(LNev/cp)

1+Lxp
(24)

and the equation of motion becomes (L;=L/(1+Lgp)).

K+(./. )vXH. (25)
1+Lxp

N =m* cp/sLe'. (27)

In the standard example N~4)&10"/L cm '. For a
sphere L=4v/3, so N~10" cm ', for a flat disk one
could quite easily get X„up to 10"cm '. In germanium
with 10" impurity atoms/cm' it appears that depolar-
ization eGects will enter somewhat above 10'K. It is
very important to avoid depolarization effects, and
this may be done by the use of thin specimens at low

concentrations, with the rf electric Geld parallel to the
plane of the specimen and the static magnetic Geld

normal to the plane.
Depolarization eGects can produce a fictitious cyclo-

tron resonance in a limited temperature range in the
following way: If coo. is too small for the normal cyclo-
tron resonance to be observable, it may still be possible
to have ~v'r/cd&1, so that a magnetoplasma resonance
will appear at a Geld H such that

(d07q=GP M~ &

where &, is the cyclotron angular frequency. This
equation describes the Zeeman effect of an oscillator
with the natural frequency ~„.If co' may be neglected,
we have the resonance condition

(ape pc,'= L,a p/r—=L;N—e'/rrc*. (29)

We have observed in p-Ge near 20'K a resonance
which possibly may arise from this effect; unlike the
actual cyclotron resonances, the resonance field varied
strongly with temperature and also with the shape of
the specimen. A displacement of the cyclotron reso-
nances in silicon has also been observed under conditions
of higher carrier concentrations. A distinctive magneto-
plasma resonance line has been observed in m-InSb;

The eGect of the carrier polarization is to replace a
in the equation for v by &uL1 —(&o„/&o)'j, where the
plasma frequency co„ is given by

cc„=(L,Ne'/rrc*)'*= (L,op/r)'*. (26)

The eGect will be important when co~ is of the order of
rv or larger. A critical concentration E„may be defined

by the relation

the line showed the expected dependence on frequency
and on sample shape.

The magnetoplasma eGect" appears to impose an
upper limit to the carrier concentrations at which
cyclotron resonance may be observed. It is hoped that
the eGect will be investigated further in order to
establish whether or not the predicted limitation actu-
ally occurs. A background of nonresonant carriers is not
necessarily troublesome, so it may be possible, for
example, to detect cyclotron resonance of a subcritical
concentration of electrons in the presence of a super-
critical concentration of holes. A further apparent
difFiculty which may enter at the high carrier concen-
trations encountered in metals is that the diameter of
the cyclotron orbit may be large in comparison with
the skin depth. Unfortunately the relevant transport
problem has not yet been solved, so one does not know
to what extent the line shape and intensity depend on
the ratio of orbit diameter to skin depth. In super-
conductors one has the plasma eGect, and also the
diKculty in obtaining penetration of the static magnetic
field. Even if a superconducting Glm is used which is
thin in comparison with the penetration depth for
parallel static magnetic Gelds, it is not possible" for a
Geld normal to the surface to penetrate uniformly over
a useful area. A preliminary attempt in this laboratory
by G. Feher to detect cyclotron resonance in a thin
superconducting film was not successful; the negative
result is not surprising, in view of the foregoing
objections.

3. EXPERIMENTAL METHODS

A brief account will be given of the microwave
apparatus which has been used in these experiments.
The experimental techniques will be described, including
the various methods which have been used to ionize
electrons and holes. Sample preparation and mounting
arrangements will be discussed. Some experiments
which allowed discrimination between resonance ab-
sorption due to electrons and holes will be described.

Apparatus

In order to fulfill the requirement that co.7 &1, the
experiments have been performed at microwave fre-
quencies, at or near O'K, in the range of 9000 and
24 000 Mc/sec. The apparatus used is essentially the
same as for conventional paramagnetic resonance exper-
iments, except that the geometry is modified so that
the microwave electric Geld is perpendicular to the
external applied magnetic field. This is in contrast to
the paramagnetic arrangement which puts the micro-

"C. Kittel, Proceedings of the 10th Solvay Congress, 1954
(unpublished).

'~We consider the maximum radius R which a thin super-
conducting disk of thickness a&(penetration depth d may have
without significant perturbation of the normal field B0. By the
London equation j=rXHp/2hc, this current produces in turn a
magnetic held aH = (2~a/c) J"(j /r)dr = (2stt c')aRH p We will.
have (nH/Hs)« t if aR«2d, using the relation ds=kcs/4s. This
effect was suggested by G. Feher.
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wave magnetic field perpendicular to the external
magnetic field. Absorption of energy under cyclotron
resonance conditions has been determined by measuring
the change in the Q of a microwave cavity in which the
sample has been placed. The applied magnetic field

may be varied in order to obtain the spectrum of power
absorption in the sample vs the magnetic field. From
the absorption spectrum the effective masses may be
obtained directly from the equations derived in Secs. 4
and 5 below.

The microwave circuit is a conventional one. Micro-
wave power from a stabilized klystron is fed into the
test cavity through a magic tee; 2K39 and 2K33
klystrons have been used at the lower and higher
frequencies, respectively. Some of the power rejected
back from the test cavity reaches a crystal detector in
another arm of the tee. The fourth arm of the tee is
fitted with a matched load so that all power incident
on the crystal has been reflected from the cavity. A
change in the loaded Q of the cavity resulting from
cyclotron absorption in the sample causes a change in
the power reflected to the crystal. This change in
reAected power is proportional to the loss in the sample
for small signals (i.e., for sample losses small compared
to other losses in the cavity). For small signals, the
change in output voltage of the crystal will be propor-
tional to the change in power incident upon it. Thus,
the crystal gives a voltage signal which measures the
variation . of power absorbed by the sample as the
magnetic field is varied.

One of the several modulation techniques is used to
produce an ac signal at the crystal. The ac signal is
passed through a detection channel consisting of an
ampli6er and a lock-in detector, the output of which
is put on a pen recorder. A 1000-cps modulation fre-
quency is used. The external magnetic field is caused
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FIG, 2. Typical cyclotron resonance results in germanium near
24000 Mc/sec and 4'K: direct copy from a recorder trace of
power absorption ns static magnetic held in an orientation in a
(110) p1ane at 60' from a L100j axis.

to sweep slowly from zero to a maximum of 10000
oersteds by means of an electronic control on the field
coil of a motor generator used to provide the magnet
current. Field markers are applied periodically to the
pen recorder. These markers are obtained from a
rotating coil in the magnetic field. The signal from this
coil is balanced on a potentiometer against another
signal from a coil mounted on the same shaft which
rotates in the field of a fixed permanent magnet. The
value of any given field is determined by the potenti-
ometer setting which gives a null signal.

In all the experiments low temperatures are provided
by liquid helium. In most experiments liquid helium is
allowed to enter the cavity, so that the sample is im-
mersed in helium. In some experiments pumping on the
helium has allowed reduction of the temperature to 2'K.

In experiments with plane-polarized microwaves the
samples were placed inside rectangular cavities made
from wave guide stock. The cavity was coupled to the
wave guide through an iris containing an appropriate
coupling hole, The construction of cavities used in the
circularly polarized microwave experiments will be
discussed below under that heading.

Experimental Technique

At the low temperatures required in these experi-
ments, the equilibrium number of free charge carriers
is usually too small to allow observation of resonance
absorption. In the original experiments on germanium
it was found that in both frequency ranges used the
microwave electric field in the cavity was sufhcient to
cause ionization of impurity atoms by multiplication
processes taking place in the sample. Only electrons or
only holes appear to be produced by this ionization
process, depending on whether e- or p-type germanium
is used. This results from the fact that energies given
to the carriers by the microwave field are only enough
to cause ionization of impurity atoms ( 0.01 ev in
germanium), and not enough to produce electron-hole
pairs by the removal of electrons from the valence band
to the conduction band (0.7 ev in germanium). In
silicon, where the ionization energy of the impurity
atoms is 0.05 ev, the available microwave power is
insufhcient to produce ionization, and other methods
must therefore be used to produce free charge carriers.
In experiments using the microwave ionization tech-
nique, the microwave power was amplitude-modulated
in order to provide an ac signal for the detection channel.

The microwave ionization method provides fairly
satisfactory information on the positions of peaks in
the absorption curve. However, the observed widths of
the resonance lines may vary between wide limits,
depending on the microwave power level used. This
effect results from the dependence of the multiplication
process on the applied magnetic 6eld. Thus, near a
resonance peak, charge carriers pick up more energy
from the microwave electric field and hence cause more
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FIG. 3. Typical cyclotron resonance results in silicon near 24 000 Mc/sec and 4'K: static magnetic
field orientation in a (110) plane at 30' from a $100$ axis.

multiplication. Since the size of the absorption peak
will vary with the number of carriers present, peak.
heights can be enormously increased, resulting in
apparently very narrow lines. Lines as narrow as 10
oersteds have been observed in some cases where
microwave power levels were so low that effective
multiplication occurred only very close to the resonance
peak.

A more satisfactory method of producing free charge
carriers involves the use of light excitation; it was 6rst
used by Dexter, Zeiger, and Lax." In this technique,
light from an incandescent source is focused on the
sample through a hole in the cavity. Since the light
produces hole-electron pairs, both hole and electron
resonance is observed, regard1. ess of whether the sample
is nor p-type. The fi.—rst observations on silicon were
made by this technique. '4 In our 6rst experiments
using light excitation, amplitude modulation of the
microwaves was used to provide an ac signal.

A slight modi6cation of the optical excitation method
is the most satisfactory method so far used. " The
modi6cation consists in modulating the light beam by
means of a rotating disk. This results in a modulation
of the free carrier density, which in turn gives a modu-
lated microwave absorption signal for operation of the
detection channel. An auxiliary light source incident
on a photocell is modulated by the same rotating disk.
After arnplification the signal from the photocell is
used as the reference signal for the lock-in detector.
The light-modulation method gives a very large im-
provement in signal-to-noise ratio over the earlier
techniques. Figures 2 and 3 show typical recorder
tracings of resonance lines in germanium and silicon
crystals.

Because of the high dielectric constants of both
silicon and germanium, samples placed in a cavity

"Dexter, Zeiger, and Lax, Phys. Rev. 95, 55/ (1954)."Dexter, Lax, Kip, and Dresselhaus, Phys. Rev. 96, 222 (1954).
is A. F. Kip, Physics 20, 813 (1954).

seriously perturb the resonant frequency of the cavity.
Furthermore, since at all but very low temperatures
the samples are very lossy because of their high con-
ductivity, it is difficult to determine the resonant
frequency without cooling to liquid-helium tempera-
ture. Both problems are minimized by using small
samples. A typical sample is a disk about 3 mm in
diameter and about 0.5 mm thick. Samples have
usually been prepared by rough-cutting from a single
crystal, grinding to size with abrasives, and etching
the surface for several minutes in an etch made up of
1 cc HF, 1 cc HsOs (30 percent), and 4 cc HsO.

The importance of anisotropy in the effective masses
of silicon and germanium requires that data be obtained
as a function of crystal orientation. A sample cut with its
surface in the (110) plane, oriented so that the applied
field can be directed along the L001$, L110$, and $111j
directions by rotation of the sample, provides all of
the necessary anisotropy information. To allow this
rotation while the cavity is immersed in liquid helium,
the sample is fastened with coil dope to a mushroom-
shaped Lucite holder. This holder is put inside the
cavity, with its stem inserted through a small hole in
the broad face of the cavity into a hole in the middle
of a brass wheel outside the cavity. The wheel can be
rotated from outside the Dewar in 1' steps. The light
hearn shines on the sample through another hole in
the opposite side of the cavity. The samples were
oriented by x-ray diffraction measurements by Professor
J. Washburn. The effective mass data are presented
in Secs. 4 and 5 below.

In the original experiments on germanium it was of
interest to verify the sign of the charge carriers in-
volved. For this reason, experiments using circularly
polarized microwaves were carried out, using n- and
p-type samples in both frequency ranges. Absorption
was observed only when the direction of circular
polarization corresponded to the direction of rotation
of the charge carriers.
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&xG. 4. Experimental arrangement for circular polarization
studies of cyclotron resonance.

A description will be given of the problems involved
in the production and use of circularly polarized
microwaves. The klystron power was taken from a
conventional rectangular guide through a gradual
transition into circular guide, as shown in Fig. 4. The
microwaves then passed through a microwave quarter-
wave plate into another guide of circular cross section,
and thence through a circular iris into a cylindrical
cavity. The quarter-wave plate consisted simply of a
section of several wavelengths of circular guide which
had been squeezed into an appropriate elliptical shape.
If the polarized microwaves from the rectangular guide
are passed into this elliptical section with the plane of
polarization at 45' to the axes of the ellipse, two
mutually perpendicular modes of equal intensity will
be transmitted through the section. Since the wave
velocity depends on the transverse guide dimension
perpendicular to the E vector, these two modes will
travel with different velocities. Adjustment of ellip-
ticity and length of the elliptical section produces a
quarter wavelength shift in the phase of the two modes.
This adjustment is made empirically by use of an
analyzer placed at the position of the cavity at the
end of the circular guide. The analyzer is constructed
of a circular guide which makes a transition to a
rectangular guide. A crystal detector is placed at the
termination of the rectangular guide. Since the rec-
tangular guide will transmit only a polarized wave, the
analyzer will measure the intensity of the wave polar-
ized in any given plane, depending on the analyzer
orientation. When complete circular polarization is
achieved, the power picked up by the crystal is inde-
pendent of the orientation of the analyzer. In order to
prevent reQection of power not accepted by the rec-
tangular guide, both the analyzer and the transition
from rectangular to circular guide are provided with

absorbing fins placed in the circular guide. These fins
are so oriented as to absorb all microwave components
not transmitted or accepted by the rectangular guide.

Once circularly polarized waves are incident on the
iris of the circular cavity, there remains only the
problem of insuring that the cavity has perfect micro-
wave cylindrical symmetry. Any departure from this
symmetry will result in two different resonance fre-
quencies for the two mutually perpendicular modes
into which the circularly polarized mode can be ana-
lyzed. In general, satisfactory symmetry will not be
automatically achieved; therefore, provision must be
made for adjustment of symmetry. This is done in the
following way: A small rectangular Gn of polystyrene
is placed in the end of the cylindrical cavity. The fin
can be rotated about the axis of the cavity, and can be
inserted a variable distance from the end wall of the
cavity. The cylindrical axis passes through the plane of
the Qn. The plane of the fin is rotated until it contains
the E vector of the plane-polarized component for
which the wavelength in the cavity is longest. Because
of its dielectric constant the polystyrene makes the
cavity look longer to this mode without materially

affecting the perpendicular mode. Once proper orien-
tation is obtained, the fin is inserted further into the
cavity where the E Geld is higher and hence the pertur-
bation is greater. The adjustment is made empirically
until the two perpendicular modes are completely
degenerate. The method involves sweeping the klystron
frequency and adjusting the fin until the two resonant
modes of the cavity are made to coincide in frequency.
After adjustment of the cavity, the small cylindrical
sample is placed accurately on the axis of the cavity,
so as to maintain the degeneracy of the two modes.
The sample is held in position by partially filling the
cavity with layers of tightly fitting Styrofoam, between
which the sample is placed.

The problem of detection of the power reQected from
the cylindrical cavity is very simple with the arrange-
ment used. A pickup probe is placed in the cylindrical
guide of the klystron side of the quarter-wave plate.
This probe is oriented perpendicularly to the E vector
of the wave coming from the klystron through the
rectangular guide, and hence does not pick up a signal
from this wave. However, after the wave travels
through the quarter-wave plate into the cavity and is
rejected back through the quarter-wave plate again,
it has been rotated through 90' and hence is picked up
by the probe. The probe leads to a crystal detector.
Amplitude modulation of the microwave power allows
the usual detection channel to be used on the output
signal from the crystal.

The magnetic 6eld must be perpendicular to the
microwave E vector, and hence must be along the axis
of the cylindrical cavity. We therefore used a solenoidal
air core electromagnet into which the Dewars and
cavity were inserted. The direction of circular polar-
ization obtained was conGrmed by observing electron
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spin resonance in an organic free radical, this resonance
occurring in the same sense as electron cyclotron reso-
nance. Circular polarization has been used only on
germanium, where microwave ionization is possible.

A third method of ionization has also been used
which allows the selective observation of one sign of
charge carrier, depending on whether rs or-p-type
materials are used. In this method voltage is applied
to the sample through soldered contacts. The voltage
is modulated at the standard 1000-cps rate to give the
required ac signal for the detection channel. This
method gives the same selective production of conduc-
tion electrons or holes as given by the microwave
ionization method. It has the advantage of applicability
to silicon, and gives much better signal-to-noise ratio.
The resonance peaks observed are broader than for
optically excited carriers, probably because of shorter
relaxation times involved. Shorter relaxation times are
probably the result of the higher carrier energies
produced by the applied voltage. In this method the
sample is placed just outside a small hole in the broad
face of the rectangular cavity. This allows the sample
to be seen by the microwaves and at the same time
avoids the problems involved in bringing the wires

carrying the voltage into the cavity.

)'e '+k„'
E(k) =As~ +

2m, )
(30)

Here m~ is the longitudinal mass parameter and m& is
the transverse macs parameter. We have no evidence
as to the range in k-space over which this expression is
adequate; no departures were observed in our experi-
ments.

We wish now to discuss the energy levels in the
presence of a uniform static field II. The usual pro-
cedure is to take the effective Hamiltonian,

sc(P) =p,'+p„' p.s

+
2ml

(31)

4. THEORY OF CYCLOTRON RESONANCE IN THE
CONDUCTION BAND OF GERMANIUM

AND SILICON

The neighborhood of the conduction band edge in
both germanium and silicon consists of a set of sphe-
roidal energy surfaces located in equivalent positions
in k-space. We discuss now the theory of cyclotron
resonance for surfaces of this character. We choose
Cartesian coordinate axes with the s-axis parallel to
the figure axis of the spheroid, and we measure the
wave vector components from the center of the spheroid.
For points in k-space sufFiciently close to a band edge
point, the energy is described by the equation

and solve the equations of motion

v = V'ps('. (P); (32)

dp/d]=eLE+(1/c)vt&Hj. (33)

Here P=p —eA/c, where p is the momentum and A
the vector potential.

This procedure in a restricted form was discussed by
Jones and Zener"; recent discussions have been given
by Shockley ' Luttinger" and Adams. "

Shockley' has given the solution of the cyclotron
frequency problem for a general ellipsoidal energy
surface. We indicate the method of solution here. For
the spheroidal surface (31),

v= (P./mi, P„/me, P,/ m)i.

We take
(»)

(34)

H=H(sin8; 0; cos8).

Then Eq. (33) becomes, letting &o&=eH/m&c and &o&

= eH/mic,
io)I'.—cu]I'y cos0= 0;

icoP„oeiP, sln8+—oscP, cos8= 0;
icoP,+coiP„sin8 =0.

The associated secular equation has the solution

cos = coes cos'8+cocket sin'8.

(36)

(37)

Thus, the effective mass determining the cyclotron
frequency when the static magnetic field makes an
angle 0 with the longitudinal axis of the energy surface is

( 1 q' cos'8 sin'8

(m*) mP m,mt
(38)

In Fig. 5 we give a plot of the experimental points
obtained for electrons in germanium at O'K as a func-
tion of the angle between the direction of the static

magnetic field in a (110) plane and a $001$ direction
lying in the plane. The mass values derived from the
theoretical fit to the experimental points are m& ——(1.58
&0.04)m and mi ——(0.082+0.001)m; we assume that
there are a set of crystallographically equivalent energy
spheroids oriented along the (111) directions in the
Brillouin zone. Lax" et a/. have reported m~= 1.3m and
m&=0.08m from a similar experiment. Our original
observation" of one line in the $100$ direction with
m~=0. lim is in fair agreement with the later results.

In Fig. 6 we give a plot of the experimental points

"H. Jones and C. Zener, Proc. Roy. Soc. (London) A144, 101
(1934).

"W. Shockley, Electrorss amd Poles ere SessecorsdacCors (D. van
Nostrand Company, New York, 1950), pp. 424 ff."J.M. Luttinger, Phys. Rev. 84, 814 (1951); see also J. M.
Luttinger and W. Kohn, Phys. Rev. 97, 869 (1955)."E. N. Adams, Phys. Rev. 85, 41 (1952); 89, 633 (1953).

~ W. Shockley, Phys. Rev. 90, 491 (1953); the problem had
arisen also in connection with the de Haas-van Alphen eGect.

~'Lax, Zeiger, Dexter, and Rosenblum, Phys. Rev. 93, 1418
(1954).

~ See reference 4.
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obtained for electrons in silicon at O'K as a function of
the angle between the direction of the static magnetic
field in a (110) plane and a L001] direction lying in
the plane. The theoretical curves are drawn for m~
= (0.97&0.02)m and mi ——(0.19&0.01)m; we assume
that there are a set of crystallographically equivalent
energy spheroids oriented along the (100) directions in
the Brillouin zone. In earlier work" the values mg

=0.98m and m&=0. 19ns were reported under similar
conditions.

Theoretical calculations of band structure have not
reached as yet a state of development which permits
the deductive derivation of the central features of the
conduction band energy surfaces found experimentally.
The most ambitious theoretical program has been that
undertaken by F. Herman for germanium, but the
band edge points turn out to be too sensitive to the
details of the calculation to be reliable. Herman'4 has
suggested, however, that the conduction band energy
minima in silicon and germanium may arise from
different bands: in silicon the band which at k=0 is a
representation I'~5—of the cubic group is thought to lie

"Dexter, Lax, lip, and Dresselhaus, Phys. Rev. 96, 222 (1954).
si F. Herman, Phys Rev. 95, 847 (19.54).
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FIG. 5. Effective mass of electrons in germanium at O'K for
magnetic field directions in a (110) plane; the theoretical curves
are calculated from Eq. (38), with mi=1.58m; mi=0.082m. The
different types of points indicate different runs.

lowest, whereas in germanium the lowest band at k=0
is thought to be a representation of I'2 of the cubic
group.

The structure of the conduction band edge of ger-
manium determined by cyclotron resonance is con-
sistent with the interpretation by Meiboom and
Abeles" and by Shibuya of magnetoresistance meas-
urements on e-Ge by Estermann and Foner" and by
Pearson and Suhl."Similarly, the cyclotron resonance
results for the conduction band edge of silicon are
consistent with the magnetoresistance results of Pearson
and Herring" on n-Si. In fact, the assignment of the
energy surfaces in silicon to electrons or holes depends
on the correlation with the magnetoresistance data.

In Sec. 3, it was found that in a circular polarization
experiment on an m-Ge crystal in conditions of rf
ionization with B~~L100$, absorption was observed only
for one sense of the static magnetic field and not for
the opposite sense. If the orbit of an electron is circular,
absorption of circularly polarized radiation should occur
only for one sense, but with an elliptical orbit there
should be some absorption also in the opposite sense of
the static field. We now calculate this absorption for a
general orientation of the energy surface relative to
the static magnetic field. The equations of Inotion are,
using (33), (35), (36) and including an isotropic
relaxation time 7.,

(ice+ 1/r)P, op,P„=eE;—
(~'oi+ 1/r) P„+

(nip'/cubi)

P,= ieE. —
(39)

(40)

The coordinate axes are chosen with the static
magnetic field in the s-direction and the rf electric Geld
in the xy plane; the energy surface is rewritten so that
the principal axis of the surface makes an angle 0 with
the s-axis. The solution is independent of I'„and we
have set I',=0 for convenience. If co7&)1, the ratio R
of the power absorption at resonance in the weak sense
of rotation to that in the strong sense of rotation is
found to be

(41)

For electrons in germanium with the static magnetic
field in the L100] direction we have 0t—0.06, which is
not inconsistent with the observations.

S. THEORY OF CYCLOTRON RESONANCE
IN THE VALENCE BAND

The structures of the valence band edges of ger-
manium and silicon are qualitatively similar. We discuss
first the theory of the form of the energy surfaces near
the band edge and secondly, the connection between

ss S. Meiboom and H. Abeles, Phys. Rev. 95, 31 (1954).
"M. Shibuya, Phys. Rev. 95, 1385 (1954).
sr I. Kstermann and A. Foner, Phys. Rev. 79, 365 (1950)."G. L. Pearson and H. Suhl, Phys. Rev. 83, 768 (1951).
s' G. I.. Pearson and C. Herring, Physica 20, 975 (1954).
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I&~i)«~il pl'+)
n~'(r) = e,++ (A/nz)k Q

Ep —Ei
(42)

where lo.j denotes the state j belonging to the repre-
sentation o, in the band l; E& is the energy of the lth
band at k=O.

w F. Herman, Physica 20, 801 (1954).
"Bouckaert, Smoluchowski, and Wigner, Phys. Rev. 50, 58

(&936)."F. C. Von der Lage and H. Bethe, Phys. Rev. 71, 612 (1947).
"W. Shockley, Phys. Rev. 78, 173 (1950).
34 C. Kittel and A. H. Mitchell, Phys. Rev. 96, 1488 (1954).

the cyclotron frequencies and the parameters which
define the energy surfaces. The complete details of the
calculations will be given in the doctoral thesis of G.
Dresselhaus, of which a limited number of copies may
be available for distribution by request late in 1955.

Everything we know at present indicates that the
valence band edge occurs at the center of the Brillouin
zone (k=O), at which point the band edge state has a
threefold orbital degeneracy if the spin-orbit interaction
is not considered. According to calculations by Herman"
and others, it is most likely that the degenerate wave
functions transform under the operations of the full
cubic group according to the representation F25+ in the
notation of Bouckaert, Smoluchowski, and Wigner, "
or I'5+ in the rotation of Von der Lage and Bethe."In
chemical language, the degenerate wave functions at
the valence band edge have the transformation proper-
ties of p-orbitals arranged with opposite sign (bonding)
on each of the two fcc lattices which compose the
diamond structure. With spin-orbit interaction we have
to deal at the valence band edge with bonding p;
orbitals. The treatment below is quite general within
the scope of the one-electron approximation; we do not
make a tight binding assumption.

In order to establish a notation we 6rst set up the
solution to the problem without spin-orbit interaction,
as has been discussed briefly by Shockley. " We will
then extend the treatment to the actual problem with
spin-orbit interaction. We make use of the pseudo-Bloch
function representation introduced by Kittel and
Mitchell. '4

We make an arbitrary choice of a basis for the repre-
sentation I'25+ at k =0, taking the three degenerate states
to transform as e&+ ys; e2+ sx; &3+~my, following

here, as below, the notation of Von der Lage and Bethe.
We now construct three pseudo-Bloch functions from
the original basis; that is, we construct by perturbation
theory three functions I&'(r)e'"' which are eigenfunc-
tions of the crystal translation operator but which are
not in general eigenfunctions to the first order in k of
the Hamiltonian. However, linear combinations of the
ua' diagonalize the Hamiltonian to the first order in k.
The perturbation term in the Hamiltonian is K'
= kk p/m, where p= i H' is the moment—um operator.
Thus,
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FIG. 6. ERective mass of electrons in silicon at O'K for magnetic
field directions in a (110) plane; the theoretical curves are calcu-
lated from Eq. (38), with mt =0.98m; m&= 0.19m.

The perturbation matrix in this representation has
the form

(r+ Ik pI~rrJ)(~rrzlk'pI'+)
(r Ise'I s) =—P (43)

m ~~~' +0 +la

as the matrix elements of p among the states e;+ are
all zero. We can determine the dependence of (rIBC'Is)
on the components of k by a simple observation. If all
the E&„were equal, say to E&, the sum above could be
carried out, giving

m' Ep—Eg
(44)

with similar relations for other matrix elements. The
form of each element as determined in this way will not
change as we relax the above restriction on E~ .

We see immediately from the transformation properties
of the c;+ that

(43)
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The perturbation matrix is clearly of the form

Lk '+M(k„'+k, ') —X Nk k„Nk k.
Nk, k„ Ik„'+M (k,'+k.2) —X Nk„k,
Ek k, Nk„k, Lk,'+M(k, '+k„')

Here
«+IP. lf j&«jlp*l1+&

m «i &0-~i

(1+ I p. l~~j)(f~jl p, l1+)
M= —Q

m +0 +la

(1+ I p*l f~j&«~jl p. l 2+&+&1+ I p. I f~j&&f jl p*l2+&
N= —Q

m2 la7 ~0 +la

=0. (46)

(47)

so that only the four representations on the right can
perturb the valence band edge. The approximate order

ENERGY IN ev
-r,-

20-

IS—= P+

IO-

O
t lA
~ O
~ 2a4~ 6)
O
O

5-- r-
l5 Fzo. 7. Proposed order of

the energy levels at k=O
in germanium.

The energy eigenvalue E& is related to a root ) by

EI, (PP/2m——)k'+X.

We now examine in detail the matrix elements which
occur in the sums L, M, and X above. %e note first
the selection rules on (r+ Ipllnj&; p is a vector and
transforms as the representation F is . The direct
product

in energy of the several representations at 4=0 in
germanium is shown in Fig. 7, based on calculations by
F. Herman. " It is seen that the states F2—,F~5—,and
I'~2—in the conduction band are likely to provide the
most effective perturbations on the state I'25+ under
consideration.

There are a number of relations which simplify the
matrix elements. Although we do not intend to calculate
the matrix elements, we will learn more from the energy
surfaces as determined experimentally if we can simplify
the expressions for the matrix elements. We first
observe that the sum over representations n in L above
need be carried out only over the representations I'2—

and F~2, as the other matrix elements are seen to
vanish on examining the reQection properties of the
integrands over the basal planes. For example, we know
et+~ysand p, x, so et+p xyz. Reference to character
tables shows that the characters of the representations
F~5, F» under rejections in the basal planes are
positive, while hays changes sign on reQection; therefore,
the corresponding matrix elements vanish. We note
the operation JC4' is equivalent to a reBection. In a
similar way we see the sum over representations e in
3f above need be carried out only over representations
1 g5

—and F25—.
We now show that L, 3f, S can be expressed in terms

of a single matrix element for each representation, so
the sums are reduced essentially to sums over the band
index; in practice only one band is expected to con-
tribute significantly. For the I'2 representation, we
define

UJ
cp cn

Ch
UJ X

C(
cf CO

A2p=-
m

I&1+ Ip-IP~ &I'

jV,
(50)

-IO- p+
l

where Pg belongs to the one-dimensional representation
F2—.For the I'~2 representation, we define

l&1+Ip*f~ ~ )I'
G=—P

m2 ~ EO-E&
(51)

'~F. Herman (private communication); we are indebted to
Dr. Herman for his cooperation on this and other occasions,
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We choose 7», y2 so that the group elements are repre-
sented by unitary matrices; this is not done by Von
der Lage and Bethe. For example, we take yr ——x'+ay'
+ass' and ys=x'+aPy'+cps' a,s a pair of functions
transforming according to 1»~+, where co'=1. If we
denote (1+ I p, lyr ) by R, we have

(52)

as is seen on rotation by s./2 about the x-axis. By
similar considerations we may show that

&2+ Ipslvt &= —~'&2+
I pwlvs &=~~ (53)

Using (52), we have
L=F+2G.

For I'»5 representation, we define

l&1+Ip. l~» )I'

Eo—Eg
(55)

A2

&2=-
m l

I&1+ Ip. lesi &I'

Eo—Es

where e3 belongs to F25, the matrix elements with
vanish. We have the result

M= Br+Ps.

In the sum X a11. representations appear which satisfy
the selection rule (49). The contribution from I's is
simply F, as

(5g)&1+Ip l&=&2+Ip. IP &,

by reflection in the (110) plane. The contribution from
I'» is —G, using Eqs. (52) and (53). The contribution
from I'rs is IIr, by reflection in the (110) plane. The
contribution from F» is —II2, by reRection. Thus,

where 63 belongs to F»~ . The matrix elements with
8», 82 vanish, as seen by their behavior on reRection
in the appropriate basal planes. For the I'25 represen-
tation, we define

Fro. 8. Figures of constant energy in the (100) plane of k-space
for the two fluted energy surfaces which are degenerate at the
valence band edge; constants as for germanium.

results of Elliott. "We beIieve now, however, that the
results will be more accessible to experimentalists and
more closely related to the band energy calculations of
Herman and others if presented in terms of a transfor-
mation from the e,m, representation to the Jng, J
representation. '~

We note first that to a good approximation we need
only be concerned with the transformation of the initial
unperturbed states e;+ belonging to the representation
I"2~+. A sum of the form

&. &~+ l~'l~j&&~jlx'I~+&,

as in Eq. (46), is invariant under a unitary transfor-
mation of the states Io.j).If we may neglect the changes
in the energy denominators Eo—E& caused by possible
spin-orbit splitting of the states lrrj&, it follows that
the values of the matrix elements &r I

K'
I s& as in Eq. (43)

are not altered by a transformation of the states Inj& to
diagonalize the spin-orbit interaction. We may restrict
ourselves to spin-orbit effects on the initial states &;+.

If we represent the 3&&3 matrix in Eq. (46) by I',
the corresponding 6&6 matrix in the e;+m, represen-
tation is, symbolically,

1V=F G+Hr Bs. — —(59)
]I' Oy

&0 I ) (60)

It may be possible to neglect B2 in silicon and ger-
manium because of remoteness from the valence band.

We must now include the eGect of the spin-orbit
interaction, which splits the valence band edge into
two levels, the upper level being fourfold degenerate
(pf) and the lower level being twofold degenerate (p;).
Our original band had a total degeneracy of 3&(2=6,
the factor two arising from the two possible orientations
of the electron spin. The diamond structure has a center
of inversion; it may be shown that each band is doubly
degenerate; that is, for a given energy and given k there
will be two states. In our original work we incorporated
the spin-orbit interaction in the problem using the

We wish to add to the perturbation the spin-orbit
interaction,

Ivvgp) ~,
4m'c'

(61)

and then to diagonalize the energy matrix with respect
to the spin-orbit perturbation; the Jnzg representation
is diagonal in the spin-orbit interaction.

The transformed secular equation is, in terms of the

ss R. J. Elliott, Phys. Rev. 96, 266 (1954).
3' This type of approach was carried out Grst by E. ¹ Adams

II (unpublished).
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matrix elements II;, defined by Eq. (43),

H 11 +H22

Hls+iH2s

H 1 1 —H22+2iH12

Hla+iH2s

H1 1 —H22+2sH12

Hls —iH2a

Q3

4Hss+Hl1+H22

H1 1 —H22+2sH12

2+3
H 11+H22 —2H 2 a

3+2
Hla+iH2a

H 1 1 —H22 2$H12

2+3

4H as +H 1 1 +H22

6

Hls+iH2s

Q3

Hls —iH2a

Hl 1 +H22 2Hsa

3+2

H 11 —H22 —2$H12

Hls —iH2a

Hl1 +H22

H1 1 H22 —2$H12

His —iHsa

Hls —iHas

H11+H22 —2Has

3+2
Hl 2+iH2a

H1 1 —H22+2sH12

Hll+H22+Haa

H jl —H22 —2iH12

Hls -iH2s

H 11+H22 —2Hsa

3+2
Hls+iH2a

Q6

H 11+H22+Hss

3

0. (62)

In Eq. (62), 6 denotes the spin-orbit splitting of the

p,*, p; levels. As all II;, are of order k', we may approxi-
mate the determinant by considering only the elements
in the 4X4 block in the upper left corner and in the
2)&2 block in the lower right corner. The elements in
the two 2&4 strips neglected in this approximation
aGect the roots only in the order k'/D. The roots of
the 4&(4 are

E(k) =Ak'+I 8'k'+C'(k 'k '+k 'k '+k 'k ')]i (63)

where
A = -', (I.+2M)+ k'/2tis;

8=-s'(I.—M);
C'= -', [1P—(I.—M)'].

Each root occurs twice, so that each of the two bands
is double; this degeneracy results from the inversion
symmetry element of the diamond structure, and is
presumably lifted in the zinc blende structure, which
includes InSb and other 3—5 semiconductors. The
energy surfaces described by Eq. (63) are nonspherical
for C/0, and are known as fiuted or warped surfaces.
In Fig. 8 we have plotted in the (100) plane in k-space
lines of constant energy for the surfaces in germanium.

The roots of the 2X2 block in Eq. (62) are

where the constant A is identical with that in Eq. (64)
if the spin-orbit splitting 6 may be neglected in com-
parison with the relevant energy denominators, which
are of the order of the forbidden energy gap. This
approximation is likely to be satisfactory in silicon,
where 6 may be of the order of 0.04 ev, but in ger-
manium 6 is thought to be about 0.3 ev, according to
the analysis of Kahn" of infrared absorption results in
p-Ge. It should be noted that if 6 in silicon is indeed of
the order of 0.04 ev, our quadratic expression (63) for
the band edge may not be an adequate approximation
to describe carriers in thermal equilibrium at room
temperature.

's A. Kahn, Phys. Rev. 97, 1647 (1955); thesis, Berkeley, 1954
(unpubhshed).

The energies near %=0 of other states not split by
the spin-orbit interaction are

&'k' ( 2 I(~'I p*l sti+& I'l
~(i'i') =

I 1+—2
2m( mr ~ Z,—Z,

I(a~I p. l
eti'&I')

&(I' ') =
I

1+—Z
2m E m rssw Es Ei—

(66)

(67)

5F»s+

h2

E=
m2 r26+

jV0 jV)

Ib i'I p*I eti'&I'

0
—gg

(69)

In germanium, where the F~ state is believed to be the
lowest conduction band state, the energy near k=0 is

E(1's )—k'L(h'/2tis)+ IF I]. (71)

Using the experimental values of the constants Lsee
Eq. (81)], this gives res*/m —0.034. Estimates of the
efrective masses for other higher conduction states at
k=0 seem unjustified, as the perturbations on these
states will include important terms other than the F25+
valence state.

The Quted or warped quality of the energy surfaces
near the valence band edge has a complicated eGect on
the cyclotron resonance frequency. There is no longer,
as with the ellipsoidal surfaces, a single cyclotron
frequency for a given orientation of the static magnetic
held relative to the axes of the energy surface, but
there is now a distribution of resonance frequencies.
We give a discussion of the distribution on the assump-
tion that the quantum numbers involved are suKciently
high so that a semiclassical treatment is valid; the
quantum theory has been discussed by t,uttinger and
Kohn, 39 and they find departures from the classical
theory at low quantum numbers.

's J. M. Luttinger, and W. Kohn Phys. Rev. 97, 869 (1955).

E(I' +) =k'(i''/2tts+ /+K) + (I—E)Lk' —3 (k,'k„'

+k 'kg'+kPk. ')]1 (68)
where
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We suppose that we have a general eQ'ective mass
Hamiltonian K(P), where P=kk. The magnetic field
in a classical limit does not change the energy of a
particle moving on the energy surface, nor does it
change the projection I'~ of the P vector along the
magnetic field direction. The motion of the particle is
confined to the region in dPII at PII and with energy in
dE at E; the region has been called a tube by Shockley. "
The eGective mass for cyclotron resonance on any
closed tube has been given by Shockley. From Eq.
(33) we have cdI'=ev Hdt, where v is the scalar
magnitude of the projection of the group velocity v on
a plane perpendicular to the magnetic field. Then

cdP 2x

eHV or,
(72)

where co, is the fundamental angular frequency of the
motion. Higher harmonics are present generally, but
are not derived in our present analyses. We define a
tube mass m* such that &v, = eH/m*c; thus,

m*= dP 2xv (73)

It is always possible, of course, to work directly with
the equations of motion, but we have found the integral
expression for the mass to be quite convenient. We
should emphasize that this equation has been derived
in what is essentially a classical limit; the fact that
the experimental results appear to be more or less
independent of the rf power over a wide range gives us
some confidence in the equation; variations in temper-
ature by a factor of two also do not have obvious
sects on the positions of the resonance lines.

The cyclotron tubes with kII=O have the important
property that their effective mass remains unchanged
as the particle is accelerated and the orbit opens out
under the inhuence of the rf electric field. It is likely,
particularly in conditions of high rf power, that the
orbits of small k~ have an important eGect on the
resonance line arising from a Quted energy surface. In
other words, the distribution function may be changed
by the rf field so as to emphasize small kr~.

We introduce for k a cylindrical coordinate system,
kH, p, p, with kH parallel to the applied magnetic field;
p is the radial coordinate in the plane in k-space perpen-
dicular to k~. By an elementary transformation of
Eq. (73), we have

pdgm*=-
2v (BE/Bp)

(74)

The application of this result to the valence band edge
of silicon and germanium is generally formidable. The
result is fairly tractable for H parallel to a (110)
plane and for the equatorial tubes k~=0. Ke have,

40 W. Shockley, Phys. Rev. 79, 191 (1950l.

2 A~&a+(C/2) ]-:

C'(1—3 cos'B)'
X

645&'+ (C/2)']'f A +L&'+ (C/2)']')

+''' (77)

This result is exact for the L111] direction; in other
directions the contribution of the next term in the
expansion is not greater than about 1 percent in silicon
and germanium.

We have evaluated the constants A, 8, C by making
a fit of m* as given by Eq. (77) to the experimental
data on the two cyclotron resonance lines associated
with the valence band. This procedure is justified if
the position of the center of the resonance line is given
approximately by the carriers which have k~=0. There
are two arguments which support this procedure; the
first argument given above is that the orbits near
k&=0 maintain their frequency constant as they are
accelerated outward; the second argument is that m*

is fairly independent of kII, except for high kII, which
are discriminated against by a geometrical factor in the
density of states. In Fig. 9 we give the results of calcu-
lations of m~ vs kyar for germanium in the L100] and
L111] directions. The contributions of high kIr are
principally in one wing of the resonance line.

In Fig. 10 we give a plot of the experimental points
for holes in germanium at 4'K as a function of the
angle between the direction of the static magnetic field
in a (110) plane and a 1001] direction lying in the
plane. The constants A, 8, C in the expression (63),

E(k) =Ak'+LB'k'+C'(k, 'k '+k 'k.'+kgk~'")]' (78)

are determined from the experimental data, using Eq
(77). The theoretical curve in the figure is calculated
using the values

A = —(13.0&0.2) (It'/2m);

~

8
~

= (8.9&0 1) (k'/2m); (79)

~

C
~

= (10.3+0.2) (k'/2m).

These values represent our best fit for germanium.
Dexter, Zeiger, and Lax" have reported A = —13.6(h'/

' Dexter, Zeiger, and I,ax, Phys. Rev. 95, 557 (1954).

under these restrictions,

p 7r/2 dQ
m*=(h'/ ) I (75)

A~ (&'+-'C'L1+a(4)]) '

where A, 8, C are defined by Eq. (63), and

g(&f ) = —(3 cos'8 —1)$(cos'0 —3) cos4&+2 cos'p], (76)

with 0 the angle the magnetic field makes with the
L100] direction.

An expansion in power of g(p) gives
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J8( =1.3(A'/2m); (C( =3.6(A'/2m). An attempt by us
to take into account the distribution of k~ gives the
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(rs'/2m).
Using relations (54), (57), (59), (64), together with

the experimental results from (79) and (80), the values
of the sums over matrix elements in germanium are

L= —31.8 (rs'/2m) F= —28.6(h'/2m) '

~= —5.1(h /2m) G= —1.6(h'/2m);
1V= —32.1(h'/2m); EIr = —5.1'/2m)

B2=0;
and, in silicon,

(81)

L,= —1.9(k'/2m);

M = —6.7 (hs/2m);

cV= —7.5 (h'/2m);

F= —1.2 (lP/2m);

G = —0.4 (5'/2m) .

Hr —6.7 (k'/2——m) .

H2= 0.

(82)

If we neglect the spin-orbit splitting of the valence
band edge in comparison with the other energy de-
nominators, the effective mass of the p;-band should be,
from Eq. (65), m*—0.08m in germanium and m"
=0.25m in silicon. The value for germanium is in
satisfactory agreement with Kahn's interpretation of
the infrared absorption spectrum of p-Ge. These con-
stants are not uniquely determined from 3, 8, and C,
because Eqs. (64) are not linear. The constant Hs was
assumed zero due to the presumed remoteness of the
F25

—state from the valence band. The choice of con-
stants above was made because the sums over matrix
elements are all negative, as expected if the conduction

FIG. 9. Calculated values of nz* 'r)s the component k& of the
k-vector along the direction of the static magnetic Geld, for the
L1007 and L111jdirections in germanium.

0,40

0.36
a'~o~o

A = —(4.1&0.2) (rs'/2m);

IaI = (1.6~0.2) (as/2m);

~ cI = (3.3&0.5) (rs'/2m).

(80)

2m); (8( =9.1(rs'/2m); (C~ =11.2(k'/2m). Our error
estimates in (79) represent the scatter of the experi-
mental points about the theoretical curve; because of
the use of the assumption k~=0, the correct constants
may possibly lie outside of the indicated limits. An
attempt by us to take into account the distribution
of k~ gives the following approximate constants:
A = —(13.2&0 1) (As/2m);

~
8

~

= (8.9&0.05) (iver, '/2m);
I c~ = (10.6&0.2) (rs'/2m).

In Fig. 11 we give a plot of the experimental points
for holes in silicon at O'K. The theoretical curve is
calculated using the values
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Dexter and Lax4' have reported A = —4.0(ls'/2m);
~ R. N. Dexter and B. Lax, Phys. Rev. 96, 223 (1954).

FIG. 10. ERective mass of holes in germanium at O'K for
magnetic 6eld directions in a (110) plane; the theoretical curves
are obtained from Eq. (77), using the constants in Eq. (79).
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FIG. 11. EGective mass of holes in silicon at O'K for magnetic
field directions in a (110)plane; the theoretical curves are obtained
from Eq. (77), using the constants in Eq. (80).

4' F. Herman, Phys. Rev. 95, 847 (1954).

states furnish the main perturbation. In silicon there is
another set of solutions in which all sums over matrix
elements are negative, but the order of magnitude of
the constants seemed unlikely. The constants above
are in line with the model proposed by Herman. 4' We
note that perturbations with I'2 are dominant in
germanium, and with I'~5 are dominant in silicon.

We have analyzed, using Eq. (8), the line widths
observed at 4'K in the specimens which gave the
sharpest lines. The relaxation times for electrons were

approximately isotropic, with r(Ge)—6X10 " sec and
r(Si)—7X10 " sec. The effective relaxation times for
the light mass hole resonances were r(Ge) —7X10 "
and r(Si)=7X10 " sec; for the heavy mass hole reso-
nances, r(Ge)&SX10 " sec and r(Si)&6X10 " sec.
These data were taken with optical excitation of
carriers. The lines did not appear to sharpen appreciably
on pumping to 2'K, but the specimens may possibly
have been at a higher temperature. At rf power levels
below the ionization limit it did not appear that the
widths were dependent on the rf power levels in the
range covered. The line shapes of the electron reso-
nances appeared to be approximately Gaussian, while
the elementary theory predicts a Lorentzian shape.

Several remarks can be made about the relative
intensity of the light and heavy mass hole resonance
lines. At the resonance maximum the energy losses are
proportional, according to Eq. (15), to the static
conductivity o s 1Ve r/m*. Ther——efore,

I-

FIG. 12. Possible extra
line, as indicated in ger-
manium at 55' from a $001)
direction in a (110) plane.
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I(~)/I(h)=(m!m)'( / ) (85)

In silicon and germanium it appears that v.
~
—r~, so

we would expect, roughly,

Ge: I(l)/I(h) —-', ; Si: I(l)/I(h) ——,'; (86)

as the average mass ratio is about 8' for germanium and
-', for silicon.

The integrated intensity will be proportional to the
product of the peak intensity and the line width
Aco, = 1/r= (e/m*c)AII, so that the integrated intensity
ratio is

S(l)/u(h) = (m,/m, )~.

We therefore expect

(87)

Ge: a(t)/S(h)=1/20; Si: S(l)/a(h)=—1/5. (88)

The experimental ratios are consistent with these
estimates.

0. FURTHER REMARKS

Kip44 at the Amsterdam Conference reported the
tentative observation in germanium of several extra
lines, that is, lines which cannot be assigned to the
hole or electron band edge energy surfaces. The obser-
vational situation on the extra lines is rather unsatis-
factory at the moment, as one of the lines (the one
shown in Fig. 12) is feeble and does not often appear.
The second extra line (not shown) is erratic in appear-
ance, and when it does appear it is rather too strong
to be creditable; we are inclined to believe that at
least in our own work the appearance of the second

44 A. F. Kip, Physica 20, 813 (1954).

If the population ratio Xi/Xs of the two bands is
determined by considerations of thermal equilibrium,
we have

N i/JtI s (mi/ms) 1——, (84)

as the volume in phase space corresponding to an
energy range AE is proportional to (m*) *. Thus,
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line may often be accounted for by a slight misorien-
tation of the specimen, as a 5' misorientation can
remove the degeneracy of one of the electron resonance
lines in the (110) plane by a splitting of as much as 200
to 300 oersteds for some directions. There are several
mechanisms which one might invoke for the production
of extra lines, including (a) the possibility of resonance
on excited bands or near higher local minima on the
usual band; (b) partial breakdown of the selection rule
he=&1 on the Quted surfaces, as suggested privately
by Dexter, Lax, and Zeiger; (c) nonclassical effects at
low temperatures, as hinted at by Kohn and Luttinger4~;

(d) distortion of the form of the energy surfaces in the
valence band at small k as a result of the Zeeman
splitting of the band edge states; and (e) if the plot
of m* vs k~ should be horizontal at several separated
k~ values, extra lines should appear.

We have recently observed cyclotron resonance of
electrons and holes in InSb, and we have a preliminary
indication of cyclotron resonance in InAs. Details of
this work will be published separately.

"W. Kohn and J. M. Luttinger, Phys. Rev. 96, 529 (1954).

ACKNOWLEDGMENTS

We have had a great deal of valuable assistance from
many persons and organizations in this work. Financial
support is gratefully acknowledged from the U. S.
Ofhce of Naval Research, the U. S. Signal Corps, the
National Science Foundation, and the Pittsburgh Plate
Glass Foundation. We are especially indebted for the
supply of semiconductor crystals to the Bell Telephone
Laboratories, to Sylvania Electric Products, Inc. , and
to the Westinghouse Research Laboratories. Liquid
helium was kindly furnished by Professor W. F. Giauque
and Dr. D. N. Lyons. The crystals were oriented by
Prof. J. Washburn. J. Ubbink, G. Feher, and Glen
Wagoner assisted with the measurements. We wish to
express our thanks to the Lincoln Laboratory group
associated with Dr. B. Lax for their friendly exchange
of information on their work. We have profited from
correspondence and conversations with E. N. Adams II,
P. Aigrain, W. B. Brattain, E. Burstein, E. Conwell,
R. E. Davis, R. J. Elliott, H. Y. Fan, R. Fletcher,
M. J. E. Golay, F. Herman, C. Herring, R. Longini,
F. J. Morin, H. M. O'Bryan, F. Seitz, W. Shockley,
and A. F. Siefert.

PH YSICAL REVIEW VOLUME 98, NUMBER 2 APRIL 15, 195S

Measurement of Shot Noise in CdS Crystals
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The noise power spectrum associated with photoconduction current in CdS crystals with indium electrodes
is found to flatten oG at low frequencies at a value that corresponds closely to the noise inherent in the
photon absorption process itself plus that associated with the random nature of the carrier recombination
process. It is found that the noise power is not a unique function of the photoconduction current, but varies
as the square of the applied voltage, and linearly with light intensity, as suggested by a simple model not
unlike that of the photomultiplier.

"EASUREMENTS of noise associated with the
- ~ passage of current through semiconducting

materials have led to a variety of theories, '—' most of
which center about boundary layer phenomena. The
essential observations that these models seek to derive
are (1), the large excess of noise relative to thermal
and (2) a 1/f spectrum down to extremely low fre-
quencies. Most of the models are complicated and have
the Qexibility to account for a wide range of spectra
and often do, in fact, give a fairly good fit with observa-
tion. There are simple models' involving processes
within the body of the semiconductor itself which yield
spectra that Qatten oG at low frequencies and give noise
levels much lower than those reported by most

' W. Schottky, Phys. Rev. 28, 74 (1926).' G. G. McFariane, Proc. Phys. Soc. (London) 59, 366 (194/).' A. Van D. Ziel, Physica 16, 359 (1950).' W. M. Buttler, Ann. Physik. 11, 362 (1953).
'B. Davydov and B. Gurevich, J. Phys. (U.S.S.R.) 7, 138

(1943).' J. H. Gisolf, Physica 15, 825 (1949).

observers. These models are rather straightforward and
simple, and represent a possible reference for the study
of inner processes in semiconductors, for if the strong
Quctuations associated with boundary layer phenomena
could be eliminated, one would gain a useful tool for the
study of current ffow in solids. It is the purpose of this
note to describe work wherein it was found possible
to make noiseless ohmic contact to CdS crystals such
that the noise associated with the passage of current
through the crystal could be interpreted in terms of
processes within the CdS crystal itself. '

In the study of the electrical properties of crystals
there is always the important general question of
separating out the eGects of contact electrodes and
their interaction with the material under study. Such
interactions often cause nonlinear volt-ampere charac-
teristics and nonlinear potential distributions within
the body of crystals. The use of gallium' or indium as

' Shulman, Smith, and Rose, Phys. Rev. 92, 857(A) (1953).
s R. W. Smith, Phys. Rev. 92, 857 (1953).


