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Electron Spin Resonance Absorption in Metals. II. Theory of Electron Diffusion
and the Skin ESect*

FREEMaN J. DYSONt
Departrnerst of Physics, Urtioersity of Califorlia, Berkeley, California

(Received December 2, 1954)

The theory of paramagnetic resonance absorption by the conduction electrons in a metal is worked out,
taking into account the diffusion of the electrons in and out of the thin skin into which the radio-
frequency 6eld penetrates. Calculations are carried through in detail for the case of a Qat metal plate. It
is found that the diffusion has no marked e6'ect on the width of the resonance absorption line, but has a
radical effect on the shape of the line. In particular, for a piece of metal thick compared to the skin depth
and with a relaxation time long compared to the diffusion time, the line is antisymmetrical about its center
and has an unusual characteristic shape.

I. INTRODUCTION

'HE solid-state physics group at Berkeley has
observed paramagnetic resonances arising from

the conduction electrons in metals. Their experimental
6ndings are reported in the preceding paper. ' lt was
realized from the beginning of the conduction electron
resonance work' that the diffusion of electrons in and
out of the skin of the metal would have a decisive eftect
on the shape and intensity of the observed resonance
lines. The present paper contains a quantitative theory
of this e6ect, which the author worked out while
attached to the Berkeley group during the summer of
1953. The comparison of theory with experimental
results is not made here as it is included in the experi-
mental paper. '

We build the theory upon a highly idealized model
of the electrons in the metal. The electrons are assumed
to diffuse like free particles, and the electron magnetic

. moments are treated like free-particle moments. This
is necessary in order to make the theory of the diffusion
effect reasonably simpIe. The comparison of the theory
with experiment will then show to what extent the
idealized picture is correct. The interest of the whole
analysis will ultimately lie, not in the diffusion effect
itself, but in the information which the experiments will

give concerning the nature of the metallic state after the
diffusion eftect has been correctly taken into account.

The following is the plan of the present paper. In Sec.
II the theoretical model is exactly described. Section III
gives a sketch of the physical processes which we believe
determine the line width; it is hoped that this rough
discussion will make the subsequent mathematics
easier to follow. Section IV begins the quantitative
treatment. In Sec. V we give a simple theory which is

mathematically exact for the limiting case of thick
samples and long relaxation times, and which is valid
whether the skin effect is in the classical or the anoma-
lous range. This simple theory already contains the most
important results of the whole investigation, and will be
sufficient for many practical applications. Sections VI—
VIII contain a more elaborate theory which is exact for
a Qat metal plate of any thickness and for any value of
the relaxation time, but restricted to the domain of clas-
sical skin effect. The extension of this theory to anom-
alous skin-e6ect conditions would be possible in prin-
ciple, but it is not done here. Section IX summarizes
the results of the whole paper.

where ts is the effective electron magnetic moment (not
necessarily equal to the value for a free electron). We
write

@=co p~ 7=co+v. (3)

Under the inRuence of the field (1), a certain macro-
scopic magnetization,

II. THE THEORETICAL MODEL

We suppose a piece of metal of volume V to be
placed in a resonant cavity in which there is a radio-
frequency magnetic field given by

Hi(r) e-'"'+c.c.

Here c.c. stands for "complex conjugate, "
co is a Axed

frequency, and Hi(r) is a complex vector function of the
position r. The whole cavity lies in a uniform magnetic
field H, which is varied slowly during the course of an
experiment. The resonance frequency between the two
spin states of an electron in the field H is

* Research supported by the OfFice of Naval Research and the
U. S. Signal Corps. M r e-'"'+c.c.,

t Now at the Institute for Advanced Study, Princeton, New
Jersey. will be created in the metal as a result of the turning of

' G Fe"«and A F Kip p«ceding pap«LPhys Rev 9 3" the magnetic moments of the conduction electrons. The
(1955)j.The notations in the paper by Feher and Kip and in the
present paper are somewhat different; their cue, xe, Tn, re are re- field Hl(r) in turn depends on M, because the pene-
spectively equal to our v, x, D, U; other symbols are the same in tration of radio-frequency field into the metal is
the two papers. ~ ~ ~

ph s Rev 88 951 (1952) Ki changed by the magnetization. It is to be expected that
Griswold, and Portis, Phys. Rev. 92, 544 (1953). M will show a resonant behavior and will become large
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when s is nearly equal to co, in the neighborhood of the
resonance the distribution of H~ will also change. The
experimentally observed quantity is the change in the
Q-value of the cavity as i or H varies. This quantity is
a measure of the total energy absorbed in the metal both
by eddy currents and by the resistive out-of-phase com-
ponent of the magnetization. To interpret the experi-
ment, we therefore need to calculate both Hi and M
as functions of H. The calculation naturally divides
itself into two stages: first, to calculate the magnet-
ization produced by a given Hi (r); second, to 6nd self-
consistent solutions of Maxwell's equations with this
relation between Hi and M. The problem is unusual
because the magnetization is carried around by the
electrons as they diffuse in the metal. Thus M at a
given place and time depends on Hi at neighboring
points and at earlier times.

The electrons which carry the magnetization are
assumed all to lie at the top of the Fermi distribution
of the conduction electrons and to move with constant
velocity v. Let P(P) be the probability per unit distance
travelled and per unit solid angle that an electron
changes its direction by an angle p as a result of col-
lision with lattice vibrations, other electrons, etc. Then
each electron "loses its memory" of its direction of
motion in a mean free path defined by

where I' is the "transport collision probability, "

P= ~I P(P) (1—cosg)dQ. (6)

A mean collision time r is defined by

We assume each electron to move as an independent
classical particle, the changes of direction being random.
If F(r, t) is the probability distribution for the position
r of an electron at time t, then over times large compared
with r the classical diGusion equation,

BF/ cii =—snAAF,

is satisfied. The boundary condition is

n. gradF =0,

where n is the normal vector at any point on the metal
surface.

It is supposed that the spin of each electron is an
independent quantum variable, which is only very
weakly coupled to the electron's orbital motion. The
spin is in general unaGected by. collisions and reacts
only to the local magnetic field at the place where the
electron happens to be. However, the weak spin-orbit
coupling exists and very occasionally, about once in

every 10' collisions in the case of sodium, causes the

spin state to change during a collision, ' To take this
effect into account, we do not introduce the spin-orbit
coupling explicitly, but we assume a relaxation-time U
with the following property. Given any time interval of
length 1, there is a probability exp( —t/U) that the spin
state of an electron will be undisturbed by collisions
during that interval, and a probability L1—exp (—1/U) j
that the final spin state will be randomly distributed
relative to the initial spin state.

The existence of such a relaxation time U produces a
finite line width proportional to U—' in the resonance
signal from nondiGusing electrons. This we call the
"natural width" of the line. Any other eGects besides
spin-orbit coupling which contribute to the natural
width are supposed also included in U.

In Sec. VIII a more general model is introduced, in
which the electrons have a finite probability of spin
disorientation when they strike the metal surface, in
addition to the steady relaxation eGects included in U.
For simplicity, the calculations are carried through in
Secs. IV—VII for the model without surface relaxation.
Exact results including surface relaxation are to be
found at the end of Sec. VIII.

It is assumed that the electron magnetization is
always far from saturation, so that M is small compared
with Hi. Terms of second and higher order in the static
magnetic susceptibility x of the metal are therefore
neglected throughout the calculation. This makes it
unnecessary to discuss the dificult question, whether
the radio-frequency field which effectively acts on the
electron spins is the field Hi, or the magnetic induction
B, or something intermediate. 4 With an error at most
of the order x', we suppose H~ to be the eGective field
acting on the spins.

The penetration of the radio-frequency field into the
metal will be limited by skin eGect. The classical skin
depth is given by

5= (cs/2s croi) l, (10)

where 0. is the conductivity of the metal. If 8 is large
compared to A, we are in the domain of "classical skin
eGect" and the field penetration is controlled by 8. If
8 is not large compared to A, we have "anomalous skin
eGect"' and the penetration is controlled by A..

III. QUALITATIVE ARGUMENT

It is convenient in what follows to use the symbol 8

to mean the actual skin depth, given by (10) in the
classical case and equal to h. in the anomalous case.
According to Eq. (8), an average electron will diffuse
across the skin depth in a time of the order of

D = (33s/2vA). (11)
3 This mechanism for the spin relaxation was proposed by R. J.

Elliott, Phys. Rev. 96, 266, 280 (1954). Reasons for believing that
it is the controlling mechanism are given in the paper by G. Feher
and A. F. Kip, reference 1, Sec. IV. C.2.

For a discussion of this point see G. H. Wannier, Phys. Rev.
72, 304 (1947).

s G. Renter and E. Sondhehner, Proc. Roy. Soc. (London)
A195, 336 (1948).
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The amplitude and phase of the field Hi will change by
factors of the order of e within the distance 8. Therefore
the average electron will feel the radio-frequency fieM
not with a fixed frequency co but with frequencies
spread over a band of width D—'. At first glance this
argument leads one to believe that diffusion should
increase the width of the resonance line from U ' to
D ' if D& U. The surprising fact is that the observed
width remains equal to U ', although the intensity and
shape of the line are changed by the diffusion. The aim
of the following discussion is to explain this result in a
qualitative way, and to draw an analogy to a more
familiar physical example where a similar situation
arises.

Suppose that the relaxation time U is long compared
with D. The radio-frequency field seen by one electron
will have the form

F(t) = f(t)e '"'+c.c., (12)

where f(t) is a modulation factor with a frequency band
of the order of D '. However, f(t) is not a completely
random function. It is composed of short pulses of
duration D, extending over the time U and separated
by irregular intervals. The pulses occur when the
electron comes close to the surface and the amplitude
of f(1) is large; the intervals occur when the electron is
far from the surface and f(t) is almost zero. Two facts
are here of decisive importance. (i) Each electron which
leaves the surface has a high probability of returning,
and so the f(t) for an average electron contains more
than one pulse. (ii) The phase of f(t) returns to the
same value each time the electron reaches the surface,
and so the integral of f(t) over a pulse has a finite
average value which is not zero.

Now consider the form of the spectrum of F(t). Each
single pulse will give a smooth spectrum spread over a
band of width D '. Two pulses separated by an interval
I will give an interference pattern, with maxima and
minima separated by a spacing of order I ', extending
over the band width D '. There will always be con-
structive interference at the central frequency
because of point (ii). Three or more pulses will give
a more complicated interference pattern over the
band D ', still with the central maximum at ~. Now
let this spectrum be squared to give the radio-frequency
power spectrum seen by one electron, and let it then
be averaged over many electrons. The interval-length
I will vary at random over values from zero up to U.
Therefore the interference patterns will average out to
a smooth curve of width D ', except for the central
maxima which will add constructively to give a single
peak with width of the order of U '.

Thus we expect the observed absorption spectrum
of radio-frequency energy, which is an average over
many electrons of the power spectrum acting upon one
electron, to have a structure of width U ' superimposed
upon a weaker background of width D '. This is in
fact what is observed, although the conditions of the

experiment are such as to make only the central struc-
ture clearly distinguishable.

The device invented by Ramsey' for observing
molecular beam resonances with two separated oscil-
lating fields is based on exactly the same principle. In
Ramsey's apparatus the molecules pass through two
short pulses of radio-frequency fi.eld. The phase relation
of the two pulses is fixed, but the time interval between
them depends on the velocity and so varies from
molecule to molecule. The observed resonance line
consists of a broad background with width determined
by the duration of each pulse, and a narrow central
structure with width determined by the interval between
them. For obtaining sharp lines, it is essential that the
molecular velocity is distributed at random over a wide
range. This random element in Ramsey's apparatus
plays precisely the same role as the random diBusion
of the electrons in Feher's experiment.

The qualitative theory of this section would be exact
if the only cause of radio-frequency energy absorption
in a metal were the Gipping of the electron spins. In
fact, however, the eddy-current losses play an equally
important part, and these have no analog in Ramsey's
experiment. Therefore the qualitative theory explains
only the fact that narrow lines are seen, and does not
predict the shape of the lines correctly. The shape
depends in a complicated way upon the phase rela-
tionships of electric and magnetic fields in the metal
skin, and a simple physical picture of these eGects is
still lacking.

s= (ui*eus). (16)

Since we are making the approximation of treating
the magnetization as linear in Hi, Eq. (15) may be
solved by first-order perturbation theory. Consider an

s N. F. Ramsey, Phys. Rev. 78, 695 (1950).

IV. CALCULATION OF THE MAGNETIZATION

We now begin the quantitative treatment of the
model described in Sec. II. In this section we calculate
the magnetization produced by a given magnetic field

(1). Consider a single electron whose spin is described
by the wave function

u(t) =ai(t) exp( —-', ivt)ui+as(t) exp(sivt)us. (13)

Here N~, N2 are the states with spin parallel and anti-
parallel to the direction of H. The amplitudes ai, as
vary with time by virtue of the interaction energy,

pa H, (r(1))e '"'+c.c., (14)

of the electron spin e with the field (1).The Schrodinger
equation for ai is

ihai 1i(Hi k——e '"'+Hi* ke""')ai. '

+p(Hi. se ' '+Hi* se'~')as. (15)

Here Hi stands for Hi(r(t)), k is a unit vector in the
direction of H, and s is the vector
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electron known to be in the state I& at any time t'.
At a later time t its spin state will be determined by
Eq. (15), and a simple calculation shows that the
expectation value of its spin vector will be

t

o (t,t') =k+ (ip/t't) ~ dues H,(r(it))e-'- —'"'s*

—s+ Hi(r(e))e '&"+'"'s]+c.c.

For an electron in the state n2 at time t', the expectation
value of the spin at time t is given by the negative of
(17). According to our model, there is a probability
U ' expL —(t—t')/U]dt' that an electron observed at
time t suGered its last random change of spin state
during the time interval (t', t'+dt'). Further, each
random change of spin state leads to the states N~ and
Np with unequal probabilities pi and pp, because of the
thermodynamical preference for the lower-energy state.
Hence the weighted average of the spin-expectation
value of an electron observed at time t is

pt
e(t) = (pi —pp) U 'J expL —(t—t')/U]o (t,t')dt'

= (Pi—Pp)k+(i /&)(Pi —P2)

X expL —(t—u)/U]duLs H, (r(e))

Xe ' " '"'s*—s* Hi(r(N))e '~"+'"'s]+c.c. (18)

We wish to calculate the macroscopic intensity of
magnetization produced by the electrons observed in
the neighborhood of a point r at time t. This is obtained
if we average Eq. (18) over the possible previous his-
tories of an electron which happens to be at r at time t.
So let G(r', u, r, t) be the probability that an electron
observed at r at time t was at r' at time N. I et E be
the number of electrons per unit volume taking part
in the magnetization. The product X(pi —p,) is directly
related to the static susceptibility x of the metal by

xI HI = px~&/t = &~(pi pp). (—19)—
Averaging (18) over the electron histories and using

(19), the magnetization density becomes

M (r, t) =x I
H

I
k+-', ixi ) exp L

—(t u)/U]du—

X~t G(r', u, r, t)dr'I s Hi(r')e —' "—'"'s*

—s* Hi(r')e '&"+'"'s]+c.c. (20)

This is the required nonlocal relation between M and
Hgo

It is required now to hand solutions of the Maxwell
equations consistent with (20). Assuming solutions
varying with time like exp( —i&et) as in Eqs. (1) and (4),

the Maxwell equations are

curlH i ——(4m/c) j, (21)

curlE = —(1/c) (dB/dt) = (icp/c) B, (22)

B=Hi+4irM. (23)

Here M is given by Eq. (20) inside the metal and M = 0
outside. The current j is

j=oE, (24)

if the spin effect is in the classical range. When the
spin effect is anomalous, j is a more complicated func-
tion of E but is still independent of M. The displace-
ment current is in any case negligible inside the metal.

The experimentally observed quantity is the radio-
frequency energy I' absorbed into the metal per unit
time and per unit area of surface. This is the real part
of the normal component of the complex Poynting
vector taken just outside the surface. It is convenient
to define the complex surface impedance,

Z= (4n/c)Ln (EpXHip*)]/I Hip I', (2S)

where Ep and Hip are the electric and magnetic fields
immediately outside the surface, and n is the unit
inward normal. This quantity Z is characteristic of the
metal surface and depends on the direction of polariza-
tion but not on the magnitude of the field Hi. The ab-
sorption rate I' is then given by

E= (c/4')'I Hip I
'(Rez). (26)

The imaginary part of Z gives the corresponding in-
ductive load on the cavity, and would in principle be
observable by a small shift in the resonant frequency
of the cavity as the steady field H is varied.

V. SIMPLE THEORY FOR THICK SAMPLES
AND LONG RELAXATION TIMES

In the case of a metal sample which has dimensions
large compared to the skin depth (either classical or
anomalous), we may idealize the problem by considering
the surface to be the plane a=0, the metal occupying
the half-space s)0, and the field Hi to be a function of
s only. The integration over the x and y coordinates in

Eq. (20) is then trivial. We may replace G by the
Green's function for the diffusion equations (8) and (9)
in one dimension, namely

G(s', N, s, t) = L(4/3) prvh It —uI]—l

X {exp(—3(s—s")/4' I
t—u I)

+exp( —3(s+s')'/4'
I
t NI)). (27)—

The integration over r' in Eq. (20) is replaced by an
integration over s' from 0 to ~.

In addition we make the approximation of a long
relaxation time, that is to say we assume U to be long
compared with the diffusion time D given by (11).
This means that the time integration in Eq. (20) extends
eGectively over a time long compared with D, while the
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space integration extends only over values of s and s'
of the order of 8. Comparing Eq. (27) with (11), the
exponents in Eq. (27) will be small over the major
part of the space and time integrations of Eq. (20).
Therefore in the limit of long relaxation time we may
replace both exponentials in Eq. (27) by 1 simply. The
physical meaning of this approximation is clear; for
long relaxation times the magnetization produced by
the radio-frequency field at a depth s' in the skin will

diffuse evenly over the skin in a way which becomes
eventually independent of s'. Another consequence of
the long relaxation time approximation is that the
nonresonant term in y in Eq. (20) becomes negligible
compared with the resonant term in o.. Substituting Eq.
(27) into (20) with these approximations, the radio-
frequency magnetization is equal to (4), with M(r)
given by

M (r) = sixv
dp

dw[isseAw] l exp[—w(U —' —in)]

ds's Hi(s')s*, (28)
Jp

(30)

Thus Eq. (28) reduces to

M(r)= —E(1—ix) &[s (nXEp)]s*,
with

IC = (xvc/2(a) (3U/uA) ',

x=nU= (po —v) U,

(31)

(32)

(33)

and the complex square root in Eq. (31) to be taken
with positive real part so that we have explicitly:

[1—ix] &=2 '*(1+x') l[rf+iP], (34)

rf = [(1+x')&+ 1]&, p= (sgnx) [(1+x')i—1]i. (35)

By making use7 of known results on skin eGect, we
can now complete the solution of the Maxwell equations
with the constant magnetization M(r). The Eqs. (21)
and (22), when written in terms of B and E, are com-
pletely independent of the magnetization. This is true
both with normal and with anomalous skin effect.
Therefore the B and E fields inside the metal are given
precisely by the usual theory of the skin eGect without

' The subsequent argument is due to Professor Kittel (private
communication).

independent of the position r. The time and space
integrations are now separated and can be easily per-
formed.

With error of order x', we replace Hi by B in Eq. (28).
The second Maxwell equation (22) becomes, for fields
depending only on s,

(ico/c) B= (d/dz) (nX E), (29)
and therefore

magnetization. The boundary condition at the surface
is that the tangential components of E and H~ are con-
tinuous. Thus the fields immediately outside the surface
are

Ep= Ep, Hip= Bp—4m'M (36)

where Ep and Bp are the fields calculated without mag-
netization, and M~ is the tangential component of the

magnetization given by Eq. (31).
We write Zp for the surface impedance of the metal

without magnetization, given by

Zp ——(4~/c)[n (EpXBp*)]/IBpI'.

I.et b be the complex polarization vector of Bp,

b=Bp/IBpI, (b'b*)=1.

By Eqs. (30) and (37), we have

(37)

(38)

Z=Zp[1+Ec(1—ix) ~fZp] '
=Zo —Ecf(1—ix) *Zo, (4o)

neglecting terms of order y'. We have written

f=
I (s b) I

'=
I

(Ni*b cup) I

'
= (bXk) (b*Xk)+i(bXb*) k, (41)

where k is the unit vector parallel to the steady field H.
In general, f is a real number lying between 0 and 2,
measuring the proportion of the radio-frequency field
which is circularly polarized in the positive sense about
the direction of H. The maximum value 2 is attained
by f when b=2 '(1,i,0), i.e., for pure circularly polar-
ized radiation. In practice we shall usually be dealing
with linearly pola, rized fields, in which case b is real and

= sin'P, (42)

where g is the angle between the polarization directions
of Hi and H.

When the skin eGect is anomalous, the Reuter-
Sondheimer theory' will give the value of Zp to be used
in Eq. (40). When the skin effect is classical, Eqs. (21),
(22), and (24) give the classical result

Zp ——(1—i) (o 5)
—'. (43)

Substituting this into (40), using Eqs. (26), (32), (10),
and (11), we have the result

P= 48rol Hip Io[(1/2s.) xv f(DU)'$(1+x')=—'*] (44)

with x and $ given by Eq. (33) and (35). Thus the
absorption line, in the case of a thick sample with long
relaxation time and classical skin effect, has the un-
usual and characteristic shape given by the function
f(1+x') l. Since $ is an odd function of (o~ —v), the line
is in this approximation antisymmetrical about its
center. The width is proportional to U ' and inde-
pendent of the diffusion time D. These are the most

(n XEp) = (c/4n')Zp
I
Bp

I
b. (39)

Substituting (31), (36), and (39) into Eq. (25), the
surface impedance with magnetization becomes
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striking conclusions of the theory. The experiments'
support them qualitatively; however for a quantitative
comparison with experiment the discussion of a limiting
case is insufhcient, and the more detailed theory of the
following sections is required.

VL SOLUTION OF MAXWELL EQUATIONS
FOR A FLAT PLATE

To give an exact theory for a metal sample which is
not necessarily large or small compared with the skin
depth, we must choose a definite shape for the metal.
We shall confine ourselves to the case of a Oat plate,
which is a convenient shape both experimentally and
theoretically. Other shapes could be handled by similar
methods. We make no restriction on the relative mag-
nitude of D and U, but we shall assume henceforth
that we are in the domain of classical skin eGect, i.e.,
that Eq. (24) is valid.

The metal will again be considered to be infinite in
the x and y directions, thus it occupies the volume
0 &s &0 where 8 is the thickness. An important param-
eter in the problem will be the ratio of thickness to
skin depth,

(45)

It is also convenient to introduce the dimensionless
ratios:

R= (D/U)', (46)

a=XR= (38'/2pAU)**. (47)

As before, we assume the fields to depend on s only.
so that the problem is essentially one-dimensional. We
shall also make the arbitrary assumption that the
magnetic 6eld is equal on the two sides of the plate, i.e.,
an even function of (s——',8). This assumption is made
only to simplify the algebra; an unsymmetric field could
be calculated in exactly the same way. In particular,
for a thick plate (8))8) the fields on the two sides are
independent and the symmetric solutions apply un-

changed to unsymmetric conditions; for example, the
symmetric solutions may be used when the plate is

thick and forms part of the wall of the cavity.
The idea of the following analysis is to reduce Eq.

(20) to a tractable form by introducing the eigenfunc-
tions P„(r), N=O, 1, 2, ; these are defined as a
complete orthogonal set of functions satisfying the
eigenvalue equation

(48)

with the boundary condition

n grad/„=O,

and the normalization

Hi(r) =P„h„P„(r), h„= &~*Hidr, (53)

where the coeKcients h„are vectors. Substituting from
Eq. (52), (53) into Eq. (20), the space and time inte-
grations can be performed immediately. The radio-
frequency magnetization then appears in the form (4)
with

M (r) = -', i xi p„p„(r)[it„(s h„)s*—|' (s* h„)s], (54)

rt =[U-'+-'vAp —in] ' i =[U '+ ', pAti
— ip-] '. —

(55)

The nonlocal relation between M and Hi given by Eq.
(54), (55) is completely general, holding for a metal of
any shape and for any kind of skin effect.

Now we specialize to the Oat plate with classical skin
eGect and symmetrical fields which are functions of s
only. The eigenfunctions which appear in Eq. (53) are
then

f„=[p„/8]'* cos[2mvs/8], p, „=47r'n'/8', (56)
where

&0=1, e„=2 fol Q+0, (57)

and the normalization is per unit area of the plate. The
Maxwell equations (21), (22), (23), (24) give, inside

the metal,

2i8 '(Hi+4'-M) = (4n-o/c) (d/ds) (nX E)
= (d'/ds')[nX (nXHi)]= —(d'/ds')H~, (58)

where H~ is the component of Hi perpendicular to n.
Let M~, the component of M perpendicular to n, be
expressed as a series expansion

M~(s) = (1/4m)g„m„g„(s). (59)

We multiply Eq. (58) by P„*(s) and integrate over z

between two limits lying just inside the surface at s= 0,
a=8. The right side is then integrated by parts twice,
using Eqs. (49) and (48). The result is

2i8-&(h„,ym„)

=(4 /)4-*(0)[( XE)—( XEo)]

~ (d'P */ds') Hgdz

The Green's function G which appears in Eq. (20)
satisfies Eqs. (8) and (9) as a function of its arguments
(r,t) and reduces to a 8 function, h(r —r'), for t= u. These
conditions determine G as the series expansion:

G=Z-0-*(")0-(r) -pL —l At -(t—)]. (52)

Let the field Hi(r) inside the metal also be expanded in
a series

f *f dr=5 „.
J~

(50) = —(8ma/c)[p„/8]'*(nXEp)+p h a. (60)

In particular, the first eigenfunction is a constant:

fp(r) = V &, tip
——0. (51)

Here h ~ is the component of h„perpendicular to n.
The electric fields at the surfaces are Ko and Eg ———Eo
because of the assumed symmetry.
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The information we need from the Maxwell equations
is all contained in Eq. (60), while Eq. (54) gives the
coefficients m„ in terms of the h„. One could solve Eq.
(60) and (54) for the h„and thus obtain the complete
field-distribution inside the metal in terms of the
electric field Eo at the surface.

The solution of the equations becomes simple because
all the m„are proportional to x and may be treated as
small. With an error of order y, Eq. (60) implies that
all the h„are parallel to the vector (nXRO), which is
parallel to the polarization vector b defined by Eq. (38).
Therefore we may write in Eq. (54), with an error of
order y',

Z= [P (~'u' —-', i 2)-&)-i (72)

shape of the observed resonance line for the various
ranges of values of the parameters which can occur
experimentally.

Using Eqs. (56) and (57), the summation in (70) may
be replaced by a summation over integers e from minus
to plus infinity. Taking the inverse of Eq. (70) and
again neglecting terms of order y',

Z= (2/~9)(F+k~~xo'UI"[fG(~) f'G—(v) j), (71)

(s h.)= (s h) (b* h ), (s*.h„)= (s* b) (b* h„). (61) G(~) =V P(~'u2 ——;as)-'[~'I'y-,'a'(1 —ix))-' (73)

A comparison of Eq. (54) with (59), using Eq. (61),
gives the relation

where x, X, a are given by Eqs. (33), (45), (47), respec-
tively. Now introducing the notations

(b* m„) =g„(b*.h„), (62) u = ,'X (1—+i), (74)
with g„defined by

g =2mvxi[fq„. f'i „]— (63)

Here f is defined by Eq. (41) and f'by
f'=

~
(s* 1) ~'= (bXk) (b*Xk) —i(bXb*) k (64) F= —I tanu, (76)

u = ,'a(P+-ig), w'= 2a'(i-x 1),— (75)

with f and iI given by Eq. (36), the sums (72) and (73)
become

so that for linearly polarized fields

f'= f=sin'P, (65)

i cot%
G(n) =- 2u'

(u' —u')' u

cotl
+(w' —3u')

with P defined as in Eq. (42). Taking the scalar product
of Eq. (60) with the vector b* which is perpendicular to
n, and using Eq. (62), we obtain

(8«/~) [~-/ej'[h* (nX Eo)3
= Q —2'—'(1+g.)g(h* h.). (66)

The radio-frequency power absorbed per unit area
of metal surface is given by Eq. (26) and (25). Since
Hio* is almost parallel to b*, with an error of order y'
the surface impedance Z may be written

Z= (4ir/c) [b* (nXEo) $/(b* Hio). (67)

Since H~ is continuous across the surface, Eqs. (53) and
(56) give

(b* H„)=P„[„/0]'(b* h„). (68)

+ (m' —u') cosec'u . (77)

The real part of Z, determined by Eqs. (71), (76), and

(77), gives the explicit form of the line shape for any
values of the ratios ) and u. We now proceed to consider
the simplifying approximations which can be made for
values of P and a lying in various ranges.

(a) Thin Case

'A &4, or 0&48.

For X &1, the term n=o is much the greatest in the
series (72) and (73), and we may neglect the other
terms. Hence Eq. (71) becomes

Substituting from Eqs. (68) and (66) into (67) gives the
final explicit formula for Z: C

f f'
—i+2~v@ U~ —

)
. (78)

(1 i Un 1—i Uy)—

or, neglecting terms in x',

Z '= (2~/~)Z- ~-[(u-—»& ') '

+2iB 'g (p„2i8 ') 'j— (70)

VII. EVALUATION OF THE LINE SHAPE FOR
FOR A FLAT PLATE

In this section we first calculate in closed form the
sum of the series (70). We then discuss in detail the

This result is entirely independent of electron di6usion.
The energy absorption, which is proportional to the
real part of Z, varies with II approximately as
[1+U'u'$ ', and so gives an absorption line of the
ordinary symmetrical Lorentz shape with the natural
half-width U '.

The result (78) will still be reasonably accurate up to
X=4. The higher terms in (73), being small and spread
out over a width greater than U ', will hardly be
observable.
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(b) Intermediate Case

X&4, a&4.
Experimentally the relaxation time U is of the order

of 10 sec, while the diffusion time D is not shorter than
10 " sec. So the ratio R= (D/U)'= (a/X) is not less
than about 1/10. Therefore, this intermediate case can
occur only when 4&X&40, i.e., when the metal is
thick but not very thick compared to the skin depth 8.

When 4&X&10 it will be convenient to calculate
with the first few terms of the series (73), which still
converges rapidly although the term m=0 is no longer
predominant. When 10&X&40 and a&4, it will be
more convenient to use Eqs. (76) and (77) with the
good approximations

tanl = i, cosec~n =0. (79)

This gives for the central part of the absorption line,
where x= Un&1, the shape

Z= (2/o8) [—iu —nrvxa'U f(cotw/w) $ (8.0)

Naturally this intermediate case is more complicated
to calculate than either the thin or the thick case. For-
tunately, the intermediate case corresponds to metal
thicknesses in the range 10 4—10 ' cm, which is an
awkward range for experimental preparation and will

not often occur in practice.

(c) Thick Case

X&4, u&4.

These conditions are always fulfilled for sufficiently
thick samples, say for 0&405. And the results for this
case will be independent of the shape of the metal, so
long as the radius of curvature of the surface is every-
where large compared to 5.

The imaginary part of w given by Eqs. (75) and (35)
is in this case always large compared to 1. Hence we

may put cotw= cotu= i in Eq—. (77). This gives for Z
the formula

and so

f f'
Z= (o.5)-' 1 i—+ (1+i)m vx U~

&1 i—Un 1 i—Uy J
(84)

As with Eq. (78), this result is independent of difFusion.
But the absorption line is now no longer symmetric,
since the real part of Z varies approximately like

(1—Un)/(1+ U'n') (85)

giving the algebraic sum of the real and imaginary
parts of the electron susceptibility. That this result
(85) holds in the absence of diffusion is well known. '

(c2) Thick Case, Narrow Natura/ Line

X)&a))1, R«1.
This is the case which will usually occur in practice

with bulk'metal samples, and it shows the eGects of
diffusion in the most typical and interesting way. For
these reasons we discuss this case in more detail than
the others.

To simplify Eq. (82), knowing that R((1, it is neces-
sary to consider the center and wings of the absorption
line separately. At the center, o. is of the order U ', x is
of order 1, and all terms in R' in Eq. (82) are negligible.
Therefore,

L=2R '($ iq)(1+x'—) *' (86)

At the wings, n is of the order D ', and E'x=Dn is of
order 1. In this case Eq. (82) gives

L,= (Dn —1) '[2 (sgnn —i)
~

Dn
~

l+ (1 i) (Dn——3)7.
(87)

The approximations (86) and (87) overlap and are both
valid in the range U '( ~n~ (D '. The observed ab-
sorption of radio-frequency power per unit area is the
quantity I' defined by Eqs. (26) and (81).For the center
of the line, Eq. (86) gives

Z= (o6)
—'[1 i ~vxD(fL f'L'—)], —

I.= [Rs(x+i)—1$—'{4R—'((+ig)—'

+ (1—i)[R'(x+i) —3j},
and I.' the same as I. with n replaced by p. In the
absence of magnetization, Z reduces correctly to the
classical formula (43) for a thick plate. Equations (81)
and (82) are compact enough to be used for numerical
calculation of the line-shape for any value of E.. How-
ever, for a general discussion it is convenient to specialize
further to the limiting cases E»1 and E«1.

and for the wings Eq. (87) gives

', "ooo
~ His (

'{1/27r ——,
'-vxD[f (Dn —1)-'

X (2 sgnn
~

Dn
~

'+Dn —3)
—f'(» —1) '(2(DV) '*+»—3)J). (89)

The term in p is small and slowly varying, and has been
neglected in Eq. (88) compared with the rapidly varying
n term.

Equation (88) is identical with the result (44) ob-
tained from the simple theory of Sec. V. Equation (89)

' C. Kittel, Phys. Rev. 78, 155 (1948), Sec. IV.

(c1) Thick Case, Broad Naturai Live

a»)»1, E»1.
Then, Eq. (75) reduces to

L= (1—i)R '(@+i) ' (83)

(81) Z= —,'S~
I
H, o

~

' —vxf (DU)'(sgnn)
2'

t (1+U'n')' —1) t

(82)
(88)

1+U'n'
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shows that the simple theory is incorrect for frequencies
far off resonance, even when the sample is thick and the
relaxation time long so that the assumption X))a))i is
valid. However, the complicated and low-intensity
wings of the absorption line will be difficult to measure
with any accuracy. In the central part of the line, which
is all that can be clearly seen in the experiments, the
shape will be given by Eq. (88) provided the frequency
cu is high enough so that U))D. As the frequency co is
lowered, D increases and the shape will gradually go
over into Eq. (85).

v = —3'pi1LgradF/F j, (9o)

at least when averaged over a time long compared with
the collision time 7. Therefore, the number of particles
lost per second per unit area of metal surface is

2ipA(n gradF), (91)

VIII. THEORY INCLUDING SURFACE RELAXATION

The theory so far developed falls short of realism in
one respect. The relaxation time U is supposed to take
account of the disorientation of electron spins in col-
lisions with lattice vibrations and other electrons. It is
likely that such a relaxation time will exist and be
roughly independent of position throughout the interior
of the metal. However, an electron colliding with the
metal surface may be subjected to stronger spin-
dependent forces, arising from surface irregularities or
paramagnetic surface impurities, than an electron in
the interior. An electron colliding with the surface will
therefore have a certain probability e of spin disorien-
tation during the collision, in addition to the steady
probability U per unit time which exists for all elec-
trons. We assume this ~ to be an average value taken
over all collisions with the surface; it is not necessary
that the probability be the same for electrons incident
at diferent angles. In this section we shall recalculate
the results of Secs. VI and VII, including the effects
of surface relaxation as specified by the parameter e.

The eGect of the surface relaxation is to change the
boundary condition Eq. (9) for the diffusion equation.
The probability distribution F(r, t) will now describe
the probability of finding, at the point r at time t, an
electron which has not su8ered a spin disorientation by
surface collision before the time t. Thus F(r, t) describes
a diffusion of particles which are lost with probability e

every time they hit the metal surface. To find the correct
boundary condition, we observe that the mean velocity
of the particles at any point is

lt „=Lp„/e)l secu„cosL2u„(z ——,'e)/e j,
t2„=4u„'8-', „=2u '(u„'+Q'+Q) ',

(94)

(95)

where N0, N~, 02, , are the positive roots of the equa-
tion

x tanx=Q, Q=-,'go= (3pg/8h). (96)

With these definitions, the results of Sec. VI up to Eq.
(59) inclusive are still valid. However, the integration
by parts which led to Eq. (60) now gives an additional
term which by Eq. (93) reduces to

—2gLp„/ttf snip. (97)

The additional term will be carried into the subsequent
equations (66), (67) if (n)&Ep) is replaced by

(n&(Ep)+ (cg/42ro) Hip. (98)

Therefore, Eqs. (69) to (71) will be correct with the
new definitions of p, „and e„, provided Z is replaced by

~+ (g/o) (99)

The formulas for the line shape are now, instead of
Eqs. (71)—(73),

Z= (2/ott) (F—Q+-'prixa2UF'LfG(n) —f'G(y) j}, (100)

F P P u 2(u 2+Q2+Q) —1(u 2 u2) —1$—1

0
(101)

G(n) = —4iu2 Q u„'(u '+Q'+Q) '
0

&& (u„' u')-'(u„'—w') ' (—102).
The sums can be evaluated in closed form by the fol-
lowing simple physical argument. The value of Z for
y= 0 is obviously independent of Q, since for zero mag-
netization it does not matter how rapidly the spins are
disoriented. Therefore, (F—Q) in Eq. (100) is equal to
F given by Eq. (76), and the sum of the series (101) is

F=Q—u tanu. (103)

This result can be checked by direct evaluation of Eq.
(101)using contour integration. Knowing Eq. (103),we
deduce at once from Eq. (95):

The Green's function G is now given by Eq. (52),
where the P are still solutions of Eq. (48) but with the
boundary condition,

n. grad1t „=gP, (93)

instead of Eq. (49). Specializing to the case of a flat
plate and solutions even in (z—-,28), we find instead of
Eqs. (56) and (57):

n gradF=gF, g= (3p/4A). (92)

where (gradF) is taken at a point just inside the surface,
and n is the inward normal vector. But the number of
particles striking the surface per second per unit area
is 4~F, and the number lost is by hypothesis 4evF.
Equating this number to Eq. (91), we find the desired
boundary condition

2s K —3s

(w' —u')' w tanw —Q u tanu —Q

u' sec'u+Q
+ (w' —u')

(u tanu —Q)'

G(u) = iu(d/du) ( (w' —u') —'(F—'(u) —F—'(w) j)

(104)
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We next briefly investigate the sects of surface
relaxation on the line shapes of Sec. VII.

C2

f—i+2v AU]
&1+1 i Un—

(a) Thin Case

X &4.

In this case, Q is small compared to 1, and the smallest
root uo of Eq. (89) is approximately equal to Q'*.

Keeping only the term +=0 in the series (101), (102),
we find instead of Eq. (78):

(b1) Thick case, broad Natural line

a»X»1, R»1.
In this case, the P-dependent terms in Eq. (109) are

negligible and we still have the results (84) and (85).

(b2) Thick case, sparrow natural lime

X&)a))1, R((1.
In this case, Eq. (109) gives for the central part of

the line

L=4R '($ irt @—)[P—+(rt+f)21 '. (1.11)

l'= (U/TB), Te= (2%v).

The surface relaxation leaves the Lorentz shape of the
line unchanged, but increases the width from U ' to
(U '+To '). This was to be expected, since Te is the
average relaxation time for an electron travelling back
and forth between the two surfaces of the plate and
disorienting its spin with probability e at each impact.

For a metal sample of arbitrary shape, and dimen-
sions small compared with the skin depth, Eq. (105)
will still hold with

If f&(1, this reduces to Eq. (88). For f))1, the line has
a diferent limiting shape:

P= ', boy
~
Hio [

'(-(1/2v) —2vx fig-'(DU) l (sgnn)

&& [(1+U'n')' —1)'} (113)

but is still approximately antisymmetrical about its
center.

For making precise comparisons of theory with experi-
ment in the thick case, the exact Eq. (109) must be
used. However, it seems likely, from the rather sharp
lines observed in experiments with small particles of
metal, ' that f is small compared to 1. If this is so, then
the only effect of surface relaxation is a possible broad-
ening of the lines in the thin case, and the results of
Sec. VII will apply to the thick case without serious
error.

(107)Ts ——4U/ev5,

where V is the volume and S the surface area of the
metal. The physical interpretation of Tg as a relaxation
time is the same as before. For example, for a small

sphere of radius r,

(108)Ts 4r/3ev. ——

(b) Thick Case

) &4, a&4. IX. CONCLUSIONS

Thus the central part of the observed absorption line
fl has the shape given by

7

+t ' & - P= ',Rr)HM-~'j(1/2v-) —vxf(DU)i(sgn~)

(106) X[(1+U'a')-: —1)l[(1+U'n') ~

+4((1+U'~')*'+1)'+kP3 '} (112)

Putting the approximations tanzv= tanl=i into Eq.
(104), we find that Eq. (81) holds with

(2+ (1+i)W)'
L= [R'(@+i)—1] '

R($+ig+iP)

2RQ+ (1—i)[R'—(x+i)—3], (109)

where we have written

P= (2Q/a) =e(3U/8 )-'*. (110)

The ratio (r/U) is the probability of spin disorientation
for an electron in a single scattering collision inside the
metal, and in Li and Na may be of the order of 10 ',
while e is the corresponding probability for a collision
at the surface and may be larger by a considerable
factor. We do not know a pri ori whether P will be large
or small compared to 1.

The results of this analysis may be summarized as
follows:

(1) For thin samples (8(4b), the absorption line has
the usual symmetrical shape [1+n'U'j ', with a width
U '= U '+To ' where U and Te are the volume and
surface relaxation times.

(2) For thick samples the line has a central structure
of width equal to the natural width U ', with wings
extending over a band D ' if D & U.

(3) The central structure is always markedly more
intense than the wings, so that under normal experi-
mental circumstances the apparent width of the line
will be of the order of U '.

(4) The characteristic effect of electron diffusion is
not to broaden the line but to make a radical change in
its shape.

(5) For thick samples with a broad natural width

~ G. Feher and A. F. Kip, reference 1, Appendix A.
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~ (1+Us~')' —1q —:

sgnn
1+Us~s ) (114)

(7) For thick samples, the intensity of the line at the
center is reduced by the diffusion eGect by a factor of
the order of (D/U) i. When D«U, the integrated inten-

sity of the line comes mainly from the diffuse wings and
not from the center.

(8) Results (1)—(7) are independent of the shape of

(8»8, D»U), the line has the shape

5(1—~U)/(1+~'U') 3.

(6) For thick samples with a narrow natural width

(e»8, U»D), and not too strong surface relaxation

(f«1), the central part of the line has the antisym-
metrical shape

the metal, although the detailed calculations of Secs.
VI—VIII apply only to Qat plates.

Experimentally, it is found convenient to measure
not the actual energy absorption for a given H but the
change in absorption resulting from a small modulation
of H. Thus the measured quantity is the derivative of I'
with respect to v. This has the effect of further accen-
tuating the center of the line as compared with the
wings. In particular, the shape (114) appears as a very
strong symmetrical peak with shallow minima (depth
about 6 percent of the central peak) on either side.

The author wishes to express his thanks to Professor
Kittel for suggesting this problem to him, to the whole
of the Berkeley solid-state physics group for their
active cooperation, and to the Department of Physics
of the University of California for its hospitality during
the time this work was done.
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Qscillatory Therrrj. omagnetic Properties of a Bismuth Single Crystal
at Liquid Helium Temperatures
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Measurements of the thermoelectric power, thermal conductivity, and electrical resistance have been
made on a bismuth single crystal in magnetic 6elds up to 13 kilogauss at liquid helium temperatures.
The results for two newly discovered effects, namely the oscillatory magnetic 6eld dependence of both
the thermoelectric power and the thermal conductivity, are presented in detail. The crystal was mounted
transverse to the 6eld with the trigonal axis parallel to the crystal length. The heat current was also parallel
to the crystal length. Most of the data were taken with the magnetic field parallel to one of the crystalline
binary axes where only one oscillating component was found. For this orientation the oscillations in the
two thermomagrietic properties were periodic in H ' with a period of 7.1)&10—' gauss '. This result is
compared to the calculated period obtained from susceptibility oscillations (de Haas-van Alphen effect)
of bismuth and found to agree very well. Temperature and 6eld dependence of the amplitude of the oscilla-
tory eGects are discussed.

INTRODUCTION

HE thermal and. electrical properties of bismuth
have a long history of peculiar behavior especially

when placed in a magnetic field. These peculiarities
are emphasized when low temperatures are combined
with strong magnetic fields. Thus, the pioneer work of
de Haas and van Alphen' on the oscillatory susceptibil-

ity of Bi opened the door to susceptibility, magneto-
resistance, and Hall eGect experiments on many other
metal single crystals. The latter two properties fall in

the catagory of galvanornagnetic eGects. Such measure-
ments have been made on Bi and have revealed that
both the magnetoresistance' and Hall coeKcient' exhibit
the same type of magneto-oscillatory behavior as the

'W. J. de Haas and P. M. van Alphen, Leiden Comm. 212A
(1930).' P. B.Alers and R. T. Webber, Phys. Rev. 91, 1060 (1953).

BReynolds, Leinhardt, and Hemstreet, Phys. Rev. 93, 247
(1954). See also Laird C. Brodie, Phys. Rev. 93, 935 (1954).

susceptibility. However, there has been only a little
work done4' on the thermomagnetic properties of Bi
single crystals at low temperatures.

The present investigation was undertaken to deter-
mine if the thermoelectric power and thermal conduc-
tivity of Bi exhibit the same type of magneto-oscillatory
behavior as do the susceptibility, magnetoresistance,
and Hall coefficient. On the basis of thermodynamic
arguments relating the galvanomagnetic and thermo-
magnetic coefBcients, ' it was believed that such
properties as the thermoelectric power and thermal
conductivity would show the oscillatory dependence
on the magnetic field strength. Bismuth was chosen
as the metal to study since its magnetic behavior is
much more pronounced than most other metals at

' S. Shalyt, J. Phys. (U.S.S.R.) 8, 315 (1944).
s de Haas, Gerritsen, and Capel, Physics 3, 1143 (1936).

H. B. Callen, Phys. Rev. 85, N (1952).


