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fraction of normal component including both roton and
phonon contributions. But the phonon contribution is

x,p,
= TS„y,/c',

where c is the velocity of 6rst sound. Hence

Bx» T t' 1 Bc)= ——
)

V~»+2S»- —
~, (11)

Bp c' ( ' 'c Bpi'

and as S» and (1/c)Bc/Bp are known, r ' Bx»/Bp can
be obtained and subtracted from Bx/Bp to give Bx„/Bp.

Differentiating (2) and (3) with respect to p, (p/pe)
XBps/Bp may finally be determined from

pBpp 1 Bx, p Bh 1 Vn,
2——= +- + —

, (12)
pp Bp x„Er Bp 6 Bp (1+3kT/2A) S„Ep'

where Ez, the isothermal compressibility, and o,„, the
contribution of the rotons to the coefficient of expansion,
are known. ' Taking (1/u&)Bus/Bp from the measure-
ments of Peshkov and Zinoveva, ' (p/ps) Bps/Bp is
found to be +0.26. However, this result is very sensitive

r Kramers, Wasscher, and Gorter, Physica 18, 329 (1952).
s K. R. Atkins and R. A. Stasior, Can. J. Phys. 31, 1156 (1953).

to (1/Ns)Bus/Bp and, if the measurements of Maurer
and Herlin' are used, '(p/pp)Bpp/Bp varies from —1.12
at 1.0'K to —0.23 at 1.6'K. As it should, in principle,
be independent of temperature, we have preferred to
use the Russian measurements, but it would be desir-
able to make a further investigation of the variation of
N2 with pressure, placing particular emphasis on the
lower pressures to obtain an accurate value for the
initial slope. It is also important to note that all the
parameters discussed here are sensitive to the values
adopted for 8 and C. We have used the recent values
of Hercus and Wilks' which are about IO percent higher
than previous values.

If we accept (p/pp)Bps/Bp=+0. 26, Eqs. (6) and (7)
lead to (p/p)Bp/Bp= —1.8. It appears that the effective
mass p varies much more rapidly with p than either
6 or pe.

Equation (5) may now be evaluated to yield (p/Tq)
&(BT~/Bp= —0.42. The experimental value is —0.37.
In view of the approximation involved in neglecting
roton interactions, the agreement is very satisfactory.
It seems that both the negative coefficient of expansion
and the negative slope of the X curve are caused
primarily by the negative value of (p/d, )BD/Bp
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The Townsend model of dielectric breakdown is discussed. The transient equations describing the behavior
of the electron and positive ion current densities are solved rigorously with boundary conditions appropriate
to a simpli6ed Townsend model employing photoelectron production at the cathode as the only secondary
mechanism. The correct boundary condition is found to lead to a set of integro-difference equations. Solution
of the integro-difference equations allows rigorous specification of the criterion for breakdown. This criterion
is found to become equivalent to the familiar Townsend criterion in the asymptotic limit of large time
intervals. The results of our development may be applied to the calculation of formative time lags and to
the estimation of space-charge distortion effects.

1. INTRODUCTION

HEN a dielectric material is subjected to aa
electrical stress of sufhcient magnitude it is

converted into a conductor. Breakdown occurs when
the conductivity of the material becomes sufhcient to
maintain a current limited only by the external circuit.
In his pioneering work on electrical discharges Town-
send found that in most instances the conversion of an
insulator to conductor is caused by the ionization of
the original dielectric material.

The ionization of the dielectric can be initiated by
any of several well-known external means, or by the
presence of stray electrons in the system. The electrons
created by the initial ionization burst become acceler-
ated in the applied electric 6eld and in turn produce

additional ionization. Such an avalanche of ionization
can, however, produce no breakdown as long as the
Geld remains static and essentially homogeneous since
the electrons created in the ionization avalanche are
removed from the system by the applied field. In order
to achieve a self-sustaining discharge, it becomes neces-
sary to introduce a secondary, regenerative source of
electron production; although it is conceivable that in
some rare instances breakdown can be achieved purely
by some highly effective field distortion mechanism
instead of a secondary electron production process.

Various schemes have been proposed to explain the
secondary electron production process active in the
breakdown of dielectrics by static fields. We shall
confine our attentions to what we shall term Townsend
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breakdown, and we define this phenomenon as the
breakdown of dielectric material in the presence of a
homogeneous static electric field where the only secondary
electron producing process active takes place at the
cathode surface. In excluding from our analysis the
possibility of ionization by positive ions or photons
in the bulk of the dielectric, we do not necessarily
imply that such processes may not be e6ective in
secondary electron production. However, we are of the
opinion that the mechanism we term Townsend break-
down plays an important role in many breakdown
studies and a complete analysis of this model may
prove to be valuable aid in elucidating the actual
mechanisms governing breakdown.

In what follows, we shall present a detailed analysis
of the transient growth of the ionization current in a
Townsend breakdown and subsequently derive the
criterion for breakdown. For the sake of convenience in
mathematical operation an especially simpli6ed model
has been chosen for the initial analysis. We shall
assume that the only active secondary electron pro-
duction process present is due to the action of pho-
tons at the cathode surface and that these photons,
created in the primary ionization avalanche, travel
through the dielectric material without absorp-
tion and with infinite speed. In later sections of this
presentation, we shall discuss modifications necessary
to include the action of positive ions at the cathode
surface and the consequences of photon absorption and
finite speeds of travel.

2. DIFFERENTIAL EQUATION OF BREAKDOWN

a. Equation of Continuity

We consider a quantity of dielectric placed between
two in6nite plane parallel electrodes at 5 cm apart. At
a given initial time, a voltage of constant magnitude is
impressed across the electrodes producing a homo-
geneous static field in the space occupied by the
dielectric. We imagine that at the instant the electric
stress is applied to the dielectric there arises an initial
current due to the action of the 6eld on either stray
electrons present in the system or electrons introduced
from an external source. For the sake of convenience
in mathematical operation, we restrict the initial current
to the origin of our coordinate system, which is con-
veniently placed at the cathode. As we shall show later,
no intrinsic difhculty is met with in considering the
initial current to have some arbitrary distribution in
space. The number of tedious mathematical operations
is greatly increased, however, if we depart from the
simple localized picture of the initial current which we
shall presently develop in some detail.

We shall 6nd it possible to obtain a complete descrip-
tion of the electron current in terms of the following
quantities: n, defined as the relative increase in current
density per cm in the direction of the field, P, defined
here as the secondary ionization coeKcient and used to

denote the eKciency of photoelectron production at
the cathode; and v, which is the electron drift velocity
and will be treated as a vector quantity. These three
quantities are functions of the nature of the particular
dielectric under consideration. In addition, n is a sensi-
tive function of the electric field strength while P may
be influenced by the nature of the cathode material.
For the system under discussion, the drift velocity is
assumed to be constant in magnitude and direction for
any given 6eld strength. We choose a Cartesian frame
with the x axis placed in the direction of the field. The
cathode is placed at the origin and the anode is placed
at @=8 cm. Denoting the time variable by t, the initial
time is chosen such that t=0 when the 6eld is 6rst
applied and the initial current makes its appearance at
the cathode.

We let i =i (x,I) represent the electron current density.
Then for the system under discussion the equation of
continuity takes the particularly simple form

(2.1)

where e is the drift velocity of the electron and n is the
primary ionization coefIicient. The solution of the above
diGerential equation must satisfy a boundary condition
incorporating the secondary electron generating process.
The boundary condition for the system under discussion
is given by the relation

(2.2)

where P is the secondary ionization coefficient for
photoelectron production at the cathode.

The system of equations presented by (2.1) and
(2.2) is the one appropriate to discussing Townsend
type breakdown in dielectrics. It is essentially the same
system that was treated by previous investigators in
the field. ' ' The differences between our model and
those employed by the authors cited above will be
elaborated on later. For the most part the remainder
of this paper will be concerned with presenting a
detailed solution of the above system of equations.

b. Steady-State Solution

Before proceeding to the main portion of our investi-
gation, it will be instructive to consider solutions to
the system of Eqs. (2.1) and (2.2) at steady state.
These solutions are well known and described in most
texts and articles on dielectric breakdown. The results
for steady state will be made use of in subsequent
discussion.

At steady state the time variation disappears and

' W. Bartholomeyczyck, Z. Physik 116, 235 (1940).
s H. L. von Gugelburg, Helv. Phys. Acta 20, 250, 307 (194/).
s P. M. Davidson, Brit. J. Appl. Phys. 4, 1/3 (1953).
4 H. W. Bandel, Phys. Rev. 95, 1117 (1954).
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di/dx=ni, i=i(x);

the equation of continuity for the electron current The solution of the above equation represents the
density reduces to central problem in characterizing Townsend breakdown

and is the major topic of our investigation.

along with the boundary condition

i(0) =ip+P i(x)dx (2.4)

In Eq. (2.4) the quantity ip must be interpreted as the
hypothetical steady-state value of the cathode electron
current in the absence of a secondary mechanism.

The solution to the system of Eqs. (2.3) and (2.4) is
given by

i0e
i(x) =

1—(P/~) I
e' —1j' (2.5)

as may be verified by direct substitution. Townsend
was the first to derive the expression given in Eq. (2.5)
on the basis of physical arguments. Recognizing that
physically this expression predicts a catastrophe when-
ever the denominator becomes zero, Townsend inter-
preted the onset of the catastrophe as the criterion for
dielectric breakdown. Consequently, it has become
customary practice to define breakdown in terms of the
relation

(8/ )L"—1j=1. (2 6)

It must be recognized that there is no reason to
believe steady-state conditions can ever prevail at the
point of breakdown and the process of analysis leading
to Eq. (2.6) as the criterion for breakdown must be
deemed unsatisfactory. The proper criterion for break-
down should be obtained from the solution of Eq. (2.1)
instead of (2.3). We shall now proceed to this task.

c. Transient System

The solution of Eq. (2.1) can be written down readily
in the form

i(x, t) = f(t—x/v)e"~, (2 7)

xq
f(t)=f(0)+tI ' fl t—— I'*dx

Jp ( v)
(2.8)

and on rearranging terms under the integral sign we
obtain the integral equation

t

f«) =f(0)+Pv e-" 'f(~)d~.
t—b/v

(-' 9)

where f(s) is an arbitrary function of its argument in so
far as the differential equation is concerned but is
required to satisfy Eq. (2.2) in order to represent a
solution to our problem. On setting x equal to zero in
(2.7) it is seen that f(t) is simply the cathode electron
current density at time t.

Substituting the expression (2.7) into Eq. (2.2) we
obtain

f(t)=—y„(y), ~=1, 2,

(e—1)t.&t&nt„

0&y~& f,

t, =B/J v[.

(3.1)

Setting the initial time equal to zero, Eq. (3.1) yields
the matching conditions:

yo(y) =0, n=o

~.(0)=~.—(1),
(3 2)

With the aid of the above definitions, Eq. (2.9) may
be written in the form

~1 pV

p„(y)= f(0)+p ' e'&p '@„ i(s)dz+X~~ e &" 'iP (s)ds
W 0

(3 3)
p—=Xe', X—=p5, o.—=n5.

The quantities, p, X, v have been introduced for the
sake of convenience in notation.

From Eq. (3.3), we obtain the particular relations:

~1

4 (1)=f(o)+P ' '*4-()d
J0

~1

& (o) =f(o)+P e '*4 i(s)«-
(3.4)

and consequently we check that the integral equation
(3.3) satisfies the matching conditions of (3.2). On
differentiating Eq. (3.3) with respect to y we obtain

4 -'(y) =V4-(y) PW- i(y) ~f(0),—C—=l-+~,—(3 5)

where the quantity q has been introduced for the sake
of convenience in notation and the prime denotes
differentiation with respect to the argument. An addi-
tional matching condition may be obtained by com-
bining (3.2) with (3.5) to yield

~.'(0) =~.—'(1), ». (3.6)

3. INTEGRAL EQUATION OF TOWNSEND
BREAKDOWN

a. System of Integral Equations

The form of Eq. (2.9) suggests that it represents a
set of diGerence equations. This may be demonstrated
in the following manner. The transit time of an electron,
t„ from one electrode to the other is simply 8/ l vl. The
time axis may then be divided in units of electron
transit times. We define a set of functions according
to the relation
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Thus, the P„(y) represent a function of time which
after the second transit time interval is not only
continuous but also smooth.

It is interesting to note that the system of equations
described by (3.3) bears some resemblance to systems
encountered in criticality calculations of nuclear reac-
tors. The resemblance is not too surprising if we
recognize that the Townsend model under consideration
is a sort of chain reaction itself.

BG(s,y) pO= (q p~)—G(~,y)+
Bp g—

(3.10)

where it is seen that G(s,y) is a generating function and
the power series is assumed to converge for small enough
values of s. On substituting f'„(y) for P„(y) into Eqs.
(3.5) and (3.2), multiplying by appropriate powers of
s, and adding, we' obtain

( 0
G(s,0) =sG(s, 1)+l 1—

l f0, qA p.
q
—p)

(p~) fo
(3.7) G(~,X) = —

I

pi v
—ps

@ ( )=f(o)+ ~ '" *'4 ( )d .

b. Solution for the Initial Time Span

Equation (3.3) takes a particularly simple form for
the initial electron transit-time span. Since 4 0(y) The solution of the above equation is given by
doesn't exist,

This is an elementary inhomogeneous Volterra integral
equation of the second kind. It is instructive to note
that with the exception of pathological cases the homo-
geneous Volterra equation possesses no nonzero solu-
tions. The above is not an exception to this rule and
consequently Eq. (3.7) can have no solution other
than zero unless f(0), which is the cathode electron
current density at zero time, has a value different from
zero. We stress this point merely to refute the conten-
tion of previous authors that the Townsend model for
breakdown can be described by a spontaneous creation
equation where the electron current is finite for times
greater than the initial time but is zero initially.

Equation (3.7) is readily solved by any of several
familiar methods to yield

4~b) =f0(1+0/v) L""—1j) '

c. Solution for General Time Spans

The solution of the set of equations given in (3.3)
may be accomplished by several methods. In Appendix
1 of this presentation we describe a direct solution of
the set of integro-difference equations by means of a
simple operational technique. Immediately below we
shall sketch briefly a solution of the analogous diGer-
ential-difference equations given by (3.5).

We defIne two functions in the following manner:

y(1—se "') 'l 1—
l
foe~' "'". (3.11)

g-ps)

The expression for p„(y) may be written in the form

& (3') 1 (p/0)" " ' (pl')'+e'" P (—1)&' e„„
~(0) ~ 1 (p/~)-

(3.14)

Expansion of the above expression for G(s,y) as a power
series in s and association of the appropriate coeKcients
in the expansion provides the required solution for the
p„(y) of Eq. (3.5) with the restriction q&p.

If we set y equal to zero in Eq. (3.11), the following
expression is obtained:

~.(0) --1—(p/~)"- ~
+—A„g

y, (O) V 1—(p/V) —&A (p/0)" ' ' (312)
g i=o

where the A; are the coeKcients of s& in the expansion
of the generating function [1—se«&'& j ' and are given
by the expressions

(z—j)~

Ao ——1, A„= p (—1)' — p'e&" '~'. (3.13)
j'=0 jf

i -(x) =&-(x)—I I fo v& p(q—

G(e,y)=Xi (v)~' ',
1=1

e-=0/V)A--~ —(~/V) 2 A'(p/V)" ' '

(3.9)
The results of Eqs. (3.12) and (3.14) may be applied
to the case p=g if we make use of the relation

' Reference 4 quotes the results of some calculations made by
W. Kunkel. For the model under discussion here, that is, where
the only secondary mechanism active is photoelectron production
at the cathode, Kunkel's results would be in agreement with our
Eq. (3.8) providing his role of positive ion and photon mechanisms
were reversed. The time range of validity quoted in reference 4
would then be incorrect, however. Actually, Eq. (10) of reference
4 appears to predict that for our model; steady-state conditions
are obtained after a single electron transit time has occurred,

lim' 1—x
(3.15)

Equations (3.12) to (3.14) represent the required
solution to the original integral equation of (2.9).
Unfortunately the sums involving the coeScients A;
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the criterion for breakdown in the form

ppe0 —e'q
I

1—e'2 (—1)'—
(1—e ) ~=0 k!

the P„(y) according to the relation of (3.1). Making
use of Eq. (2.7) we find that the spatial distribution of
the electron current density at a given time may be
written as

(e'—1y ~

+e"'~ —
~

1—e" P (—1)~—=0, (4.7)
Ce —1) ~=0 tt!

..!

(*t)/ (0 t) = *4 b —/&)/4 ( )

y„(—s)=y, (1—s), O&s&1.
(5.1)

which requires that
—e«-» 0 (4.8)

p=q, Pe '=n+P. (4.9)

Equation (4.9) is the familiar Townsend criterion cited
previously in (2.6). It would have been possible to
obtain this criterion by inspection of Eq. (3.17) with
the sacrifice of some rigor.

c. Approach to Steady State
It has been established in the previous section that

for values of (p/q) less than unity the system can
approach a limiting steady-state condition. Since

1—x"
lim =, x(1,

1—x 1—x

q=X+0, p=Xe'.

In Appendix 8 we show that the second term of
Eq. (4.7) can be made to approach zero as n approaches
infinity. Consequently, the criterion for break. down
becomes asymptotically

In particular the electron current density at the anode
becomes

i(b, t)=$ i(y)e', (n —1)t.&~t&~nt, . (5.2)

The above relation confirms the fact that no electron
current can develop at the anode until a single electron
transit time has elapsed.

1 8$ l9J
+ = nzq

m Bt Bx
(5.3)

where m is the drift velocity of the positive ion and all
other symbols have been defined previously. The
solution to the above equation has to satisfy the
boundary condition

(5 4)

Solution to Eqs. (5.3) and (5.4) may be constructed
in the form

b. Positive Ion Current

The positive ion current density is denoted j(x,t) and
is found to satisfy a relation analogous to (2.1) in the
form

Eq. (3.14) provides
(n) 4-(0)

lim P„(y)=
~

—
~

(q) 1—p/q

'(x, t)=0, (t—ix/ei)&0,

j(x,t)=n i(s; t x/w+s/—w)ds, (t (x/s))&0—, (5.5)
(4.11) "0

1/u =1/i —1/w,

p/q&1.

Comparison of the above result with Eq. (2.5) verifies
that (4.11) predicts the correct asymptotic value for the
cathode electron current density in the event the system
is below the breakdown threshold.

The value of the cathode electron current for the
case p=q can be evaluated readily using Eqs. (3.17)
and (3.15). We obtain(stol).

y (0)= i
—+- iyi(0)+O(n)); p=q. (4.12)

4q q)

S. ELECTRON AND POSITIVE ION CURRENT
DISTRIBUTION IN SPACE

a. Electron Current

In Sec. 3. a. we have shown that the electron current
density at the cathode is described for given times by

~t
j(o,t) =nu f(s)e "&' '&ds, -

t—8/e

(5.6)

where f(t) is given by Eq. (2.9).
We shall have no occasion in this presentation to

calculate specifically the positive ion current density.
However, we wish to point out that the results devel-
oped in previous sections permits us to calculate both
the electron and positive ion current density distri-
bution in space for arbitrary times. Having made these
calculations we can then proceed to find the resulting
electric field, E(x,t), from the relatio'n

aE/at =j (x,t)+i(x,t)+C(t), (5.7)

where i(x, t) is given by Eq. (2.7).
In particular the positive ion current density at the

cathode is given according to Eqs. (5.5) and (2.7) by
the relation
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and C(t) may be obtained from the requirement

Vo= —
)i~ E(x,t)dh,

0

(5.8)

M f
i(0,t) =i(0,0)+ j(0,()+—p ~

i(x, t)dh. (6.1)

where Vo is the value of the externally impressed
voltage, and we have used mks units in the above
equations. Equation (5.7) provides a description of the
field under the assumption that field distortions due to
space charge are negligible. The consistency of this
argument may be tested by solving for the field accord-
ing to (5.7).

6. DISCUSSION

a. Generalized Townsend Model

In the previous sections we have developed in detail
the description of the electron and positive ion'current
in a Townsend discharge system where the only active
secondary mechanism present was the photoelectron
production at the cathode. Several other forms of
secondary mechanisms have been considered instru-
mental in Townsend discharge. For present purposes we
need only consider secondary mechanisms occurring at
the cathode. There are then two important alternatives
to consider, photoelectron production and electron
production due to positive ion impact at the cathode.

We may generalize and consider that both photons and
positive ions are eGective in producing electrons at the
cathode. The efficiency of electron production due to
photons will be denoted by P as before, while the
eS.ciency due to the positive ions will be denoted by
the quantity &u/a. We are still required to solve Eq.
(2.1) but the boundary condition of (2.2) is now re-
placed by

Additional difficulties are encountered if the simpli-
fied model chosen here for discussion is made more
realistic. For example, we have assumed the initial
electron current is restricted to the cathode. If at the
initial time there is a finite distribution of electrons in
space, we are required to construct relations analogous
to Eq. (2.2) for each localized source of initial current
and obtain the net current by superposition. In the
event the dielectric material under consideration has
an appreciable photon absorption coe%cient, Eq. (2.2)
must be amended accordingly. The effect of absorption
causes no undue difficulty in treatment only as long as
the coeKcient is a well-defined function of space and
time. The fact that photons travel with finite speeds
instead of infinite, as we have tacitly assumed, may
also be accounted for by amending Eq. (2.2); this
correction, however, is negligible in most cases of
physical interest.

APPENDIX A.

Consider the integral operator

rw
I= dse &"—'& (A-1)

b. Formative Time Lag

The application of the results given in Sec. 3 to the
calculation of formative time lags is obvious. It is only
necessary to find the time intervals required by the
relation (3.17) to reach some arbitrary value adjudged
equal to the value of the electron current density at the
cathode during breakdown. In order to compare our
results with experimental data it would be highly
desirable to estimate accurately the magnitude of the
breakdown current at either the cathode or anode.

Making use of Eqs. (2.7) and (5.6), the above may be
written

f(/) =f(0)+cog~~ e""&' '~f(s)ds
t—5/u

(1-»)~ b) =f.; (A-2)

and the solution of this equation provides the relation

Equation (3.7) of the text may be written in terms
of I as

With co=0, Eq. (6.2) becomes equal to (2.9). With
P=O, it becomes analogous to (2.9) and the solution
proceeds in the same manner, the role of v being replaced
with N. When the quantities cog and Pv have comparable
values, Eq. (6.2) must be solved as stands. The equation
may be converted into an integro-diGerence equation
analogous to (3.3) providing the electron transit time
t, (t,—=8/~ v~) is an integral multiple of the positive ion
transit time t„(t„=e/~ M ~). The solutio—n of (6.2) is then
carried out in the same manner as the development
presented in Sec. 3.

(1—XI) '= (1+XJ) J=
~

dse«& '~. (A-3)
0

After adding and subtracting the' term pi&„&(y) on
the right of (3.3) we obtain

(1—~I)y. (y) =f,—pry„, (y)
+e'"L4 -(0)—4 i(0)j, (A-4)

where use has been made of (3.4). Application of the
operational algebra of (A-3) to (A-4) yields the differ-
ence equation

y„(y)—y„(0)e~~=4,(y) —4, (0)e&&—pJ4. &(y); (A-5)
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and. the solution of (A-5) is given by

n—1

0-(y) = Z (-1)'P"J" 4i(0)-L1-o'"7

uyJ"(ae'") = o'",
1nf

(qy)"
a)=(—1) 'aq e'~P (—1

0 h~
(A-7)

+.( 1)may
—m

+p &(0)e&&
I, (A-6)

where use has been made of Eq. (3.8).
The following relations involving the operater J are

now required:

30=1,

(z—j)&

A„=e"~P (-1)t (pe-~)t.
j'=0 jl

(A-14)

The set of linear equations given in (A-13) may be
inverted by standard matrix methods. %e note, how-

ever, that the coefIicients a~ are the coeKcients of

(—1)~s" in the expansion of the generating function
F(s)=1 s—e« "' Consequently, we may obtain the
elements of the triangular matrix inverse to the matrix
of aA, by collecting the coefIicients of s~ in the expansion
of P1/F(s)7. Proceeding in this manner, we obtain

n—1

4„=PA;0
j=0

a= constant.
Equations (A-11) and (A-14) correspond to Eqs. (3.14)

Substituting the above results into (A-6) and combining and (3.12) and (3.13) of the text, resPectively.

terms yields
APPENDIX B.

o e—i ~ i(p-y) i

@-(y)=-& (0) 2 (P/q) "+2 (—1)" &= (o)""
q t!a-0 k 0 kl

g n—1 k (qy)"—~.(0) Z Z (-1)"(p/q)"
q k=0 A=O hI

The lrst sum or the right side of the above equation
is a geometric series. We introduce the following
notation:

o 1 (P/q)"—
R.(X,o) —=—P (p/q)'=-, p/q, (A-9)

q- 1 P/q ——

%e are indebted to Dr. H. Poritsky for suggesting
the method of proof described below. It is required to
show that

lim e""~1—e' g(—1)'st/j! =0, N)s. (3-1)

Vfe write, for complex s and t,

n n+1

p( —1)&'s&/j!=- — dte "p t
0 27'

and note the following useful property of the poly-
nominal R„(X,o):

1
dte—st

2%i

t
—(n+1)-

(3-2)
t—1

= (p/q) "$E„Jt.„7. — (—A-10) where the contour is taken to include the origin and
unity on the positive real axis. According to the theory
of residues,

The order of summation in the last term of (A-8) is
now inverted and the results of (A-9, 10) are applied to
obtain the final form e

—st

e '=- dt,2' t—1
(3-3)e i (py)"—

4-( )—4 (0)&-(» )= '"2 (—1)'
0 Ik.

the contour being extended to infinity. Combining
fy„ i(0)—yi(0)E i(X,o)7. (A-11) results, we find

A set of relations may be obtained for the P;(0) on
setting y= 1 in expression (A-11).Using the notation lim e"" 1—e' P (—1) 's '/ j!~

Z (—1)"ax+. a=e.,
k=0

80= 1q ap,
——e&p'" '&/(k —1)!,

e =~/q, s;=-(-/q)(p/q)'-'.

4 (0)+-=4-(0)—4 (0)&-(&, ),
we obtain the set of equations

(A-12)

(A-13)

t' oa
~

++1 o
—8(t—1)

= lim-
""2~i Et) dt. (3-4)

Since u is finite and e " is analytic for positive t at
least up to infinity, the quantity on the right of (3-4)
may be made to approach zero by choosing t large
enough. This completes the required proof.


