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alcohol excited molecules reradiating are known only
to an order of magnitude.

(c) Argon-Ethyl Acetate

Argon-ethyl acetate results at 40 mm Hg and 200
mm Hg total pressures, with 10 percent quenching
vapor, show longer plateaus that those for the argon-
ethyl alcohol mixtures. For example, at 40 mm Hg, the
ethyl alcohol plateau is only about 5 volts wide, whereas
the acetate plateau is about 40 volts wide. The value
of C, determined for ethyl acetate from the preceding
equations, was about 1.1)(10', or approximately the
same as C for ethyl alcohol, where C was 1&(10'. To

explain the difference in plateau widths obtained be-
tween ethyl alcohol and ethyl acetate, a difference of
only 10 percent in the value of C is required. However,
this is within the experimental error, and, therefore,
further conclusions cannot be made. The value of D was
the same for ethyl acetate as for ethyl alcohol, within
the experimental error.

ACKNOW. EDGMENTS

The authors wish to thank Professor F. A. Grant
for much valuable information concerning metastable
atoms and Professor R. D. Myers for his many helpful
discussions during the course of this work.

P H VS ICAL R EVI EW VOLUM E 98, NUM BER 2 APRIL iS, i9SS

High-Frequency Gas Discharge Plasma in Hydrogen*

DAvm J. Rosz, Bell Telephone Laboratories, 3flrray Hill, %em Jersey

SANBQRN C. BROWN, Department of Physics and Itesearch Laboratory of Electronscs,
Massachlsetts Institute of Technology, Cambridge, 3fassachlsetts

(Received January 13, 1955)

The high-frequency electric 6eld required to maintain a hydrogen plasma has been measured as a function
of pressure and plasma electron density. A theory of the plasma based on a solution of the Boltzmann
transport equation has been developed to predict this 6eld; it agrees satisfactorily with experiment. The
theory has no adjustable parameters, and uses only the probabilities of collision, excitation, and ionization
of the gas by electrons, and the ionic mobility.

I. INTRODUCTION

'ACDONALD and Brown' developed a theory of
- ~ the mechanism of breakdown in hydrogen at

high frequencies that is based on a solution of the
Boltzmann transport equation. Calculated breakdown
6elds agree well with their experimental results. More
recently, Allis and Brown' (A-B) simplified the method

of solution and calculation of the high-pressure case,
in which electrons diffusing from the discharge do not
remove an appreciable fraction of the total energy.
This simplified method may also be applied to the
calculation of breakdown in certain other gases. The
present paper generalizes these theories by taking into
account the effect of space charge, so that it will be
possible to compute from 6rst principles the microwave
6eld strength required to maintain certain simple

plasmas in the steady state. Calculations made on this
basis will be compared with experimental measurements
obtained for hydrogen.

The theory presupposes that the following additional
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'A. D. MacDonald and S. C. Brown, Phys. Rev. 76, 1634
(&949). &

~ W. P. Allis and S. C. Brown, Phys. Rev. 87, 419 (1952).

nonlinear phenomena peculiar to some plasmas and not
to breakdown may be neglected: (a) cumulative ion-
ization, (b) electron-ion recombination, (c) formation
of negative ions in appreciable numbers, (d) electron-
electron interactions, (e) plasma resonance. These
restrictions place an upper limit on the plasma electron
density for which the theory is applicable. Limits
arising from (a), (b), and (c) may be readily calculated.
Regarding limit (d), the work of Haseltine' shows that
the electron-electron interaction has least e8ect in
gases in which the collision frequency of electrons is
independent of electron energy. A posteriori calculations
show that for hydrogen limit (e) actually controls in
our experiments, at frequencies of about 3000 Mc/sec,
above a density limit of about 10"/cm', a value well
above those experimentally obtained here.

The physical process is the following: Electrons gain
energy from the applied 6eld, and lose energy by elastic
and inelastic collisions. Ionization of gas molecules
provides a source of new electrons, and Row to the
tube walls in the presence of density and space-charge
potential gradients provides the sink. The Boltzmann
transport equation in phase space expresses these
balances both in energy and in number; correspond-

3 W. R. Haseltine, J. Math. Phys. 18, 174 (1939).
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ingly, a solution is obtained by splitting it into two
parts.

The energy part will contain certain constant spatial
parameters describing the space-charge field and diffu-
sion length, and will yield the electron velocity distri-
bution. The spatial part will contain other constant
energy parameters (electron diffusion, mobility, and
ionization rate), and will give the current and space
distributions. The complete solution is obtained by
making these various parameters self-consistent.

The problem of the spatial distributions and current
flow have been treated by Allis and Rose' (A-R) and
these results will be used here. The effect of the space-
charge field upon the energy distribution, from which
the ionization rate is to be computed, must now be
considered.

II. THE BOLTZMANN EQUATION

The development of the Boltzmann equation will
follow the work of A-B as closely as possible, and their
notation will be used. The only difference is that a dc
space-charge field E, must be superimposed on the
high-frequency field so that

E= E,+E, exp(joit),

where E, varies with position, but E~ is assumed
constant. The distribution F of electrons in velocity
and configuration space is then determined by the
Boltzmann equation

Here, v„v„and v; are the collision frequencies of an
electron for momentum transfer, excitation, and ion-
ization, respectively. The quantity UFO is the rate of
appearance of new electrons at low energies as a result
of excitation and ionization; it is permissible to set it
equal to a delta function at the origin of velocity space.
Except for the additional field E„ these equations are
identical with Eqs. (5), (6), and (7) of A-B.

III. SEPARATION OF E IN SPACE AND ENERGY

A solution of Eqs. (4)—(6) is possible if F may be
separated into spatial and energy parts, F=X(r)f(v).
This means, in effect, that the velocity distribution
must be the same everywhere in the discharge, and
therefore that the diffusion coefficient and mobility
are constant.

It is possible to obtain the set of spatial equations
by integrating Eqs. (4) and (5) over velocity space.
The dc electron particle current,

r= I Fo'(4 '/3)d = —~„(D X)—„E,N, (7)

is determined by Fo' from Eq. '(5). Here E Iis the
electron spatial density, and the diffusion and mobility
coefficients are

D~= f (v'/3v, )Fpo4v vsdv;

BF/Bt = C V, vF+ V—. eEF/m. (2)

F=pi p& F&'P&(cosB) exp(jkppt),

=Fp'+v PFp'+F, ' exP(jo~t)$/v.
(3)

It may be shown that the three indicated items suffice
for the expansion discussed by Allis and Brown, even
if space charge is present, provided that the electron
density is sufficiently low that plasma resonance is not
encountered.

Allis and Brown have evaluated the collision terms,
and have separated the various harmonic terms of the
distribution. There are one scalar and two vector
equations:

(v*+v' —q) Fop= —(v/3) W. &o'+ (1/v)sB{t eve/6m)

XP(E„Fi').esi+2E, Fp'j

+Lm/Mfv, vsFoo)/Bv, (4)

v, Pp' ———vV,Fps+ (e/m) E,BFp'/Bv, (5)

(v,+jo&)Fi' ——(eE,/m) BFp'/Bv. (6)
' W. P. Allis and D. J. Rose, Phys. Rev. 98, 84 (1954).

Here, C represents the effect of collisions; V'„and &,
are the gradient operators in con6guration and velocity
space; and v, e, and ns are the velocity, charge, and
mass of the electron. Following A-B, F is expanded in
spherical harmonics in velocity space and a Fourier
series in time:

ti—&= (4v/3) (e/m)Fo 9(v'/")/Bvldv (9)
o

The total excitation and ionization rates are

X(v )= I v Fpo4vvsdv,
Jp

(10)

X(v,)= v;Fpo4s v'dv;

also

E((v,)+2(v;)) = qFoo4v. vsdv

0

(12)

$(v;)=V, r. (13)

There is, in addition, an equation for the ion particle
current which in the steady state also equals F:

r = v„(D+P)+v+E,P,— (14)

where I' is the ion density. Finally, Poisson s equation

V, E,=e(P N)/eo—

represents the appearance of all new electrons. Equation
(4) may be multiplied by 4v v'dv and integrated over all
velocities. The term in braces vanishes at both limits,
leaving
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must hold. Equations (7), (13)—(15) determine the
spatial distributions from which the average ionization
frequency per electron (v;) is determined as a character-
istic value. It is these equations, with constant D s and
p, 's, that have been treated by Allis and Rose.

The presence of certain crossed space and velocity
terms in Eqs. (4)—(6) indicate that. the separation of
F into a product X(r)F(p) is not quite correct. It will
now be shown, however, that the dependence of f(p)
on space is weak, so that the separation is a good
approximation. First, the magnitudes of the terms
(Ev Fi')„,i and 2E, Fp' are compared. The first repre-
sents the energy gain of the electrons from the applied
alternating field, and the second their energy loss in
Qowing against the space-charge field. At values of
ph. & 1 each electron gains energy from Ev sufficient for
many exciting collisions and one ionizing collision, in
addition to that required to overcome the elastic recoil
losses. This total energy is many times the wall po-
tential, so that the space-charge term in Eq. (4) is
negligible. The E, term in Eq. (5), however, cannot be
dismissed, for it represents an inward mobility Row
that almost cancels the outward diGusion term.

Equations (5) and (6) are substituted in Eq. (4),
glvlllg

(v~+v; q)Fo = (p'/3—v,)V'„'Fp
—(ep/3mv, )v„(E,pjFpp/Bp)

+ (1/p)'aL(eu, /3m) v "(aFpo/av)

+mv, v'F po/M]/8 p, (16)
where

volts; from Eq. (16), one then obtains

(v.+v, q—)f+ (2eu/3mv, A') (f+u,df/du)
= (2/3/u) dttu'v, (u.df/du+3m f/3f)]/du (19)

I,et an eGective field E, be dined as

E,'= vP E '/2 (v,'+oio). (20)

When the specific dependences of v, v;, and v, are
inserted, Eq. (19) may be solved to yield a relation
between the three parameters p/E„E,A, and u, .
Furthermore, Eq. (19) may be multiplied by 47rv'dp

and integrated over all velocities. The right side
vanishes, and from Eqs. (8)—(12)

D —u,p =(v,)A'—=D„ (21)

which de6nes D„ the eGective diffusion coefficient. The
escape frequency of electrons, measured by D,/A', is
reduced from the free diffusion frequency D /A' on
account of the space-charge field measured by I„.
(v;) is correspondingly reduced, and so is the field E,
which maintains the ionization. Thus p/E, rises in the
steady state over the breakdown value.

From the solution of Eqs. (19) and (21), D, p and
D,/D may be computed as functions of p/E, and
E,A. Since Allis and Rose give D,/D as a function of
XQ'IJ, /D, where lVp is the electron density at the
center of a parallel plane cavity, it is possible to plot
contours of constant SpA' on the p/E, E,A plane. —
The special case cVpA'=0, whence D,/D =1 and u, =0,
corresponds to breakdown.

u, =eE,'/2m (v,'+ pi') (17)
IV. SOLUTION OF THE ENERGY DISTRIBUTION

The terms of Eq. (16) represent, in order, the excitation
and ionization processes, diffusion, the counteracting
space-charge mobility, energy gain from the applied
field, and elastic recoil.

In cases where the electron density is low, E, is
small, and only the diffusion term contains spatial
derivatives. Equation (16) then separates with V„'Foo
= —Fpo/A', where A is the cavity diffusion length. The
spatial distribution is determined by the diGusion
equation. On the other hand, when X and E, are large,
the mobility and diGusion terms nearly cancel, and
their diGerence is small compared to the other terms
in the equation; an approximation for the small differ-
ence will therefore suf6ce. A separation is still possible
provided only that R,X V „g, in which case V„'S
= —X/h. ' as before. This solution of the space equations
is the constant ratio approximation discussed by Allis
and Rose. It is correct both at very low and very high
electron densities, but is somewhat in error at inter-
mediate densities.

We assume, then, that

It is convenient to consider solutions of Eq. (19) for
the case of large ph. (greater than 1 mm Hg)&cm) and
small pA (between 0.1 and 1.0 mm Hg&&cm) separately.
All of the experimental measurements were taken
within the limit of validity of diGusion theory. '

At large values of pA, hence also of E,A, the escape
frequency is low, and the eGect of the current Qow on
the energy distribution becomes small. Correspond-
ingly, the second term of Eq. (19),being in ratio 1/(pA)'
to the remaining terms, is small. In this range, f is
determined principally by the balance between energy
gain and elastic recoil loss, since there are few electrons
in the inelastic range. If u, is independent of electron
energy, as is approximately the case with hydrogen,

f is close to Maxwellian. The small second term of
Eq. (19) can then be approximated by replacing df/du
by p f/D, which is t—rue in the average in any case.
With the aid of Eq. (21), Eq. (19) becomes

(v,+v; q) f+ (2eu/3mv, A,'—)f
= (2/3v u) dfu'v. (u,df/du+3m f/M)]du, (22)

E,= —u, VE/E, (18) where
A,'= A.'D /D, (23)

where I, is a measure of the space charge. We shall
also define the electron energy u=mv'/2e in electron-

~S. C. Brown and A. D. MacDonald, Phys. Rev. 76, 1629
(1949).
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defines an effective diffusion length that is larger than
the actual cavity diffusion length when the space-charge
field is important. Equation (22) is the breakdown
equation of A-8 for a cavity of diffusion length A„and
the existing methods of solution may be applied directly.
Steady-state values of E& zs p/E, will be replicas of
the breakdown values, shifted to lower E,A by the
ratio (D,/D )&.

At lower values of pA, hence also of E,A and p/E„
the diffusion term is not negligible, and simple approxi-
mations cannot be made for it. It is then necessary to
develop solutions of the general sort derived in reference
1. This has been done for the case of constant v..
De6ne the parameter

and M(n; p; z) is the confluent hypergeometric func-
tion. ' The constant C will be determined later.

The tail of the distribution lies above N„and the
function is given by Eqs. (31)—(33) directly. Rather
than solving exactly, it is much simpler to use the
asymptotic expansion

g=exp( —Az)z'(1 —d/z+ ). (37)

The invariant I of Eq. (37) is

I=A' 2A—b/z (1/—z)'Lb —b'+ 2Ad/(1 —d/z)
—2bd/z(1 —d/z)+2d/z(1 —d/z)), (38)

which is to be fitted as well as possible to the invariant
of Eq. (31).Thus

o = (2m/M) —(2eu, /3mv, 'A'), (24)
b =8/2A, (39)

u, = 2u, /3o, (25)

which is positive at large pA, and negative at small ph.
and large I,. Diferent solutions are required, depending
on the sign of 0. They dier only in slight mathematical
detail; thus, in the following, let o= ~o ~. Then the
upper and lower signs, where applied, represent the
positive and the negative cases, respectively. The
special case o-=0 has no particular signi6cance.

De6ne the additional parameters: S=A+ (P/2),

T=b—3.ge

(42)

(43)

satisfying the term in 1/z. The remaining term in 1/z'
will be set equal to —,', at z=z„so that

1/d =E2A —2 (b—1)/z, )/t b(b —1)+—,
' )+1/z, . (40)

Above u„we have, then,

f=R/exp( Sz))z—(1 d/z), — (41)
where

1/P'= 1+(2u,/E, A)'

Q =6(2m/o M —1),

and a new energy variable

(26)

(27)

Here, R and C are determined by matching value and
slope of f at z . The derivative Ms'(z) can be eliminated
by use of the Wronskian

W (z) =M i'Ms —M s'M i ——Lexp (z) )/2z&. (44)
Then

z= u/u, p. (28)

The quantity q in Eq. (19) will be set equal to a delta
function at the origin, and the excitation plus ionization
rate will be approximated by

exp[z, (1—P)/2) expSz,
g

2z, v(1 —d/z. )$M, '(z,)+EMi(z,))
C= {Ms'(z,)—(expz, )/2z. LMi'(z, )

+EMi(z.))}/Mi(z,), (46)
(29) wherevz+ vi= vchz(u uz) y—

where u, is the first excitation potential. Equation (19)
is now expressed in normal form in terms of the variable
z, so that

f=z lg exp(WPz/2),

d'g/dz'= LA'+ 8/z —3/16z')g,

A'= (o+4h,u, P')/4o. ,

8=
t (Q&3)oP+4h, u, P'z, )/4o.

(30)

(31)
where

(32)

(33)

V= T+as, (47)
R'= A ——,

' —LT+d/z. (1—d/z, ))/z, . (48)

The distribution function f is now determined.
There are two methods at hand for completing the
solution. One method consists, 6rst, of computing D
and p from Eqs. (8) and (9), the integration being
performed numerically.

One may set, similarly to Eq. (29),
v;= v,h;(u —u;), (49)

The body of the distribution function is that part
lying below I„in that region v = v;=0, and one must
set h, =0 in Eqs. (31)—(33). The solution in the body
is then

f= expL —z(1+p)/2)$ —t-"Mi(z)+Ms(z)), (34)

(v;)= v,h;
4 us

(u u;)f4xs'dz— .

= 2~v,h~(2e/~)1 (u,p) sts

where m; is the ionization potential. Then

where

Mi=M{I 3—(Q~3)p)/4; 3/2; z},
M =z 'M{11—(Q~3)P)/4 1/2 z}

(35)

(36)

Pexp( —Sz))zr(1 —d/z) (z—z;)dz. (50)X
Jz;

' A. D. MacDonald, J. Math. Phys. 28, 183 (1949).
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Let
y= Ss. (51)

V. EXPERIMENTAL PROCEDURE

A block diagram of the experimental apparatus is
shown in Fig. 1. The discharge cavity is constructed of
QFHC copper. It is a right circular cylinder with a
radius of 3.57 cm and a height of 0.635 cm that gives a
resonant wavelength of 9.4 cm in the TMpyp mode, and
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FIG. 1. Block diagram of the microwave system.

' K. Pearson, Table of the INcotaptete Guttttau FNNctsoa (Cam-
bridge University Press, Cambridge, 1946).

The integral in Eq. (50) may be performed by parts
and expressed in terms of the incomplete gamma
function' I(y;; V). Then

(v;)= 2s o,RJ;(2e/m) &(N,P)'I'/Sv+', (52)
where

J =h (j1—Sd/V —y,/V
+Sdy, /V(V —1)X1—I(y;; V) jI'(V+ 1)
—(y"/expy') L~dy'/V (V—1)

—(y;/V)+~d/V(V- 1)j} (53)

The values of D, tt, and (o;) are now substituted in
Eq. (21), which is a transcendental equation involving

p/E„E,A, and tt, . By this method D /tt is also
determined; it can thus be demonstrated that D /tt is
practically independent of tt„and is a function of p/E,
alone, as is shown in reference 2.

Once this fact is established, a second and somewhat
less laborious method may be used. It consists in
evaluating Eq. (12), after insertion of f The in.tegral
has a value at the lower limit, and one obtains

(o„;)+(o,)= or (2e/m) st'(tt, P) tE.s/3o„(54)
where (o„.)=(o,)+(o;). In principle the two methods
are related through integration by parts; but the
approximation made in Eq. (37) will, in practice,
introduce small and different errors. (o,) is given in

Eq. (52); (v ) and J, are identical with Eqs. (52) and
(53), with the subscript x rather than i Equati. on (54)
becomes

2tt P'R(J +J,)/oSv+'=1. (55)

This is again a transcendental equation in p/E„E,A,
and tt, . Through Eq. (21), and A-R, one obtains the
desired relation between P/E„E,Band XpAs. .

a diffusion length of 0.200 cm. Hydrogen can be
admitted either through a heated palladium leak tube
or directly from Qasks of spectroscopically pure gas.
A liquid nitrogen trap isolates the cavity and leak tube
from all parts of the vacuum system which cannot be
outgassed at temperatures above 300'C. The vacuum
system can be pumped to pressures of the order of
10 'mm Hg.

Experiments were performed in hydrogen in the
pressure range 0.5—20 mm Hg. The procedure for each
run was as follows: The gas was admitted to the
desired pressure, and the discharge was initiated by
adjusting the incident power level with the power
divider. The light output of the discharge, monitored
by a photocell, was noted. The magnetron frequency
was then varied, the incident power being adjusted so
that the light output was the same. At each frequency,
the standing wave ratio and position of the voltage
minimum on the slotted section, and the incident
power, as read on the thermistor bridge, were recorded.
In this way, a part of the resonance curve of the cavity
plus discharge was determined. The electron density
(and light output) was then set to a new value by
changing input power, and the measurements were
repeated. These measurements, plus the known char-
acteristics of the empty cavity, suffice to determine the
maintaining electric field and electron density. '

The measurements give both the discharge conduc-
tance g~ and susceptance b~. The ratio is

gIt (I ttltII,. df—dg
bd ~ p (o '+co') dtt

tempo df——dtt, (56)
~p (o'+co') dtt

as can be seen from the integral over the velocities of
Eq. (6). This gives the ac current which, in turn, is
directly related to the complex conductivity of the
plasma through Eq. (8) of Part III of reference 8. The
right side of Eq. (56) is a weighted average (o,)/co. The
present measurements yield, for hydrogen,

(v,)=4.85X10'p sec '&2 percent.

The value is constant over the range 0.01&p/E, &0.10
cmXmm Hg/volt covered in this experiment. The
probability of collision P,= v,/pp for hydrogen, above
4 ev is proportional to 1/e, and in that region v, =5.9
X10PP; below this value it is approximately constant.
If the actual value of o, (n) is averaged over the distri-
bution functions of Sec. IV, a value close to 4.85X10'p
results for all values of E./p experimentally realized.

The experimental results, obtained in a T3fpyp mode
cavity, do not correspond exactly to results that would
be obtained in a plane-parallel system of infinite extent.
Two corrections must be made. The first takes into
account the radial variation of the applied field. The
field varies with radius r as Jp(2.405r/R), where Jp is

s S. C. Brown and D. J. Rose, J. Appl. Phys. 23, 711, 719,
1028 (1952).
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the p/E, E—,A plane. The contour XpA'=0 represents
breakdown, and the contour Ega= ~ represents ambi-
polar diffusion. At large values of XpA' (&~10s) and
intermediate to small values of p/E, (&0.05) the
calculations have not been made sufFiciently exactly to
warrant their inclusion in this figure. The difliculty
may be traced to the approximation Eq. (37) made in
solving the tail of the distribution function. The
following parameters pertaining to hydrogen have been
used in the calculation:

(a) t,=4.85&&10PP sec ' (P=mm Hg);
(b) I =8.9 ev. This choice is explained by Ramien'

on a quantum-mechanical basis.
(c) tt;=16.2 ev.
(d) h, = tt;= 1.D(10 ' (volts '). These quantities

are adjusted so that the products t,h, (tt —tt,) and
o,h;(tt —I;) are in agreement with the published values
of the probabilities of excitation and ionization.

(e) tt+/tt =32. The value tt+ ——14.7 cm'/volt-sec at
760 mm Hg and 18 C given by Tyndall'~ is used. This
value is constant over the dc range 0&8/p &20 volts/
cm-mm Hg, and should be independent of the micro-
wave field. Allis and Rose show that the dc space
charge 8/p is less than the upper limit except in the
immediate vicinity of the walls for a few combinations
of high electron density and low pressure. Since p,

= e/rno, for constant t, we have at 18'C, in mks units,
tt„=1.12/p, tt =36/p.

(f) D+tt /D ts~ 0, an appro——ximation justified by
A-R.
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Fro. 2. Theoretical calculation of the quantities D,/D and
(D.)/D as a function of EpA'ts /D. -

the zero-order Bessel function, and R is the cavity
radius. The measured field at the center must be
decreased slightly to correspond to the equivalent
constant field throughout the cavity, The data are
therefore corrected according to the theory of Herlin
and Brown, the correction amounting to no more than
5 percent.

The second correction arises because the plasma
density itself has a radial variation, and this introduces
a variable D, for diffusion to the ends of the cylinder.
If the field were uniform, a radial dependence o
and Pq

Eo Jp(2 405r/R), .
Po

f S
Figure 4 shows the theoretical results of Fig. 3

plotted as a surface in EQ, P/E„XpAs space. The
(57) surface in the region of large XpAs and small EQ has

would be correct at both the free and ambipolar limits,
and approximately correct in the transition region.
Since the height of the cavity is much less than its
radius, it is possible to define an average (D,) for the
discharge. It is

(Total electron flow to the walls)
(D.)= X~'

(Total number of electrons present)

IQQ
90
eo
7Q,

60
50

40

40
OlI-
0~ 20

4J

I D, ($)X( )2 d
~0

1V (r)2srrdr. (58)

Allis and Rose give the quantity D,/D . The integration
can be performed graphically, to give (D,)/D ss Xp,
the electron density at the center of the cavity both
radially and longitudinally. Figure 2 shows the quanti-
ties D,/D and (D,)/D ss XpAstt /D computed in
this manner.

The theoretical results for hydrogen are shown in
Fig. 3, where contours of constant SpA' are plotted on

P M. A. Herlin and S. C. Brown, Phys. Rev. 74, 1650 (1948).
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FIG. 3. Theoretical results for hydrogen where contours of
constant morph.

' (in units of cm ') are plotted on the p/E, EQ—
plane.

"H. Ramien, Z. Physik 70, 353 (1931).
"A. M. Tyndall, 7'he 3fobility of Positive fons in Gases (Cam-

bridge University Press, Cambridge, 1938).
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FIG. 4. A theoretical surface on which the experimental results are plotted. The experimental points are shown as dots,
and their projections in the p/E, direction into the theoretical plane as crosses.

been obtained by extrapolation of the theoretical calcu-
lations of Fig. 3. The experimental points are shown as
dots; their projection in the p/E, direction onto the
theoretical plane, as crosses. The average of the experi-
mental points is in good agreement with the theory
(within 10percent) both at large EQ and near EQ = 10.
At the lowest values of E,A and p/E„ the electronic
mean free path is about equal to the diffusion length,
and diffusion theory can no longer be applied. The

discrepancy at intermediate values, amounting at
worst to about 20 percent in p/E, near the ambipolar
limit, may be traced to the approximation made in
solving the tail of the distribution function. In this
region, near the ambipolar limit, the high pressure
approximation begins to fail, and the asymptotic
expansion Eq. (37) converges slowly. In each case,
the error tends to raise p/E, for a given E,A. The
experimental error is believed to be about six percent.


