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It is shown by a rigorous development from fIrst principles that a relatively simple form for the partition
function of an imperfect Bose-Einstein gas can be obtained. This form is that of a 3X-dimensional integral
(N being the total number of particles) the integrand of which can be completely determined for any given

interparticle interaction provided certain, in general small, many-body quantum mechanical effects are
ignored. The 6nal evaluation of the partition function in closed form requires that this integrand be approxi-
mated by functions suKciently tractable that the 3$-dimensional integral can be performed.

I. INTRODUCTION

'HE derivation of the thermodynamic properties
of a system of ideal (noninteracting) Bose-

Einstein particles is well known. ' 3 Treatment of the
physical case, however, where interparticle interactions
are included, is in general much more difficult and the
partition function for such a system has as yet been
accurately evaluated only under very special circum-
stances, e.g., for temperatures sufficiently high that an
expansion of the interaction terms in inverse powers of
the temperature is rapidly convergent, or for very low
densities (virial coefficient expansion).

In this paper we will show, by a rigorous development
from first principles, that a relatively quite simple form
for the partition function can be obtained. This form is
that of a 3E-dimensional integral (S being the total
number of particles) the integrand of which can be
completely determined for any given interparticle inter-
action provided certain, in general small, many-body
quantum mechanical effects are ignored. The final
evaluation of the partition function in closed form then

* Supported in part by the OKce of Naval Research.
t This work was commenced when the authors were associated

at the Laboratory of Nuclear Studies, Cornell University, Ithaca,
New York. One of us (M.H.F.) then held a National Science
Foundation Post-Doctoral Fellowship. A preliminary report of
this work was given at the 1953 Washington Meeting of the
American Physical Society LPhys. Rev. 91, 465 (1953)g.' A. Einstein, Ber. Herl. Akad. 261 (1924); 3 (1925).

~ F. London, Phys. Rev. 54, 947 (1938).
s B. Kahn and G. E. Uhlenbeck, Physica 5, 399 (1938).

requires that this integrand be approximated by func-
tions sufficiently tractable that the 3S-dimensional
integration can be performed,

It is seen that the above-mentioned many-body eGects
contribute only to the long-range density fluctuations
discussed, e.g., by Feynman, ' and are therefore im-
portant only for temperatures sufficiently low so that
the average particle wavelength is greater than the
average interparticle separation. We hope to give a
more detailed discussion of these effects in a subsequent
publication.

A discussion of the application of these results to the
case of He4 is given in the last section, and a preliminary
rather crude model, similar to that recently proposed by
Feynman, ' which approximates to some of the more
important features of the partition function in this case,
is set up. The results of this model are evaluated in
the succeeding paper (hereafter called II).

II. DEFINITIONS OF THE PARTITION FUNCTION

The partition function to be evaluated is defined by

Z=p; exp( —pU;),

where P=1/hT, and U; are the energy levels of the
system. This may, alternatively, be written as the
Slater sum:

Z=g. (e., exp —(p(e,+a'))e.),
4 R. P. Feynman, Phys. Rev. 91, 1301 (1953).' R. P. Peynman, Phys. Rev. 91, 1291 (1953).
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III. EVALUATION OF THE PARTITION FUNCTION

In this section, we discuss the question of the evalua-
tion of (3). We will first consider very briefly the case
of the ideal gas, since the form then taken by (3) will

be interesting for the purpose of comparison when we
come to interacting systems.

1. Perfect Gas

Here we may write

1 (i
C, = exp~ —P p

(y)Nts l,A s-r )
1 (i

C,= exp) -p r (,
(V)~ts (A )

(4)

(4a)

the state j now referring to a particular set of the
momenta pt, p~. In (4a) we introduce, for con-
venience of notation, the 3E-dimensional vectors p
and r.

If we insert this in (3), and replace the summation
over Boltzmann states j by an integration over mo-
menta, i.e.,

pN

(2&)s~~

we find, after integrating over the momenta, that

where Ho is the kinetic energy operator for the S-par-
ticles, II' is the interaction energy of the complete
system, and the 4 are any appropriately symmetrised
wave functions which form a complete and orthonormal
set over the volume of the container of the system.

Equation (2) is, of course, quite general irrespective
of the type of statistics holding. The wave functions 0
must merely be chosen in accord with whatever sta-
tistics are being dealt with. In this paper we will be
concerned exclusively with Hose-Einstein statistics.
For this case it is easy to show that (2) takes the form

Z=(1/X!)Q jgj(4j exp( —P(Hs+H'))C';),

where E is the number of particles in the system, and
the 4; are any complete and normalized set of Ne-

symtrletrised (Boltzmann) wave functions. The symbol
P denotes some permutation of the set of coordinates
rt, rs, r~ of the particles, and P p implies a summa-
tion over all permutations. Thus C;~ is the same as C,
except that a certain interchange of coordinates is
effected by the P. Because of the summation on P any
set of wave functions C; for a Boltzmann system is
permissible —it is irrelevant in which way the wave
functions describing states of the same energy, for
example, are constructed.

Equation (3) forms our starting point for evaluation
of Z.

Here
)ts = 2s.tssP/m, (6)

and r~ is that position vector which replaces r in the
permutation P.

This is the partition function as obtained by Kahn
and Uhlenbeck' and yields the well-known properties
of the perfect gas, including the Bose-Einstein con-
densation. The replacement of the summation over the
states of the Boltzmann system by an integration is a
legitimate procedure as long as the subsequent integra-
tion over coordinates is correctly limited by the volume
of the container. '

2. Interacting Particles

Because of the simplicity of the wave functions (4) it
is tempting to try to evaluate (3) in the general case
also by continuing to choose the C; to be plane waves.
The difhculty then is clearly the evaluation of exp
X (—P(Hp+H'))C;.

Two methods which have been developed to tackle
this problem may be summarized as follows: Let us
introduce an operator S(P) such that

exp( —P(H +H')) =S(P) exp( —PHo). (7)

Then the operation of exp( PHs) on —C; is trivial
Lassuming the C, to be plane waves —Eq. (4)]. In
order to evaluate S(P), we note that this operator must
satisfy the equation:

c)S/c)P= S(P)H (P) (g)
where

H'(P) =exp( —PH )H' exp (+PHo) .

Equation (8) is subject, of course, to the boundary
condition S—+ 1 as P ~ 0.

Equation (8) may now be solved by an iteration
procedure in a manner familiar from electrodynamics
and yields for 5 the ordered exponential:

pP pPI P~

S(tl)=1++ (—1)"
~

dPt ~! dPs
n=l 0 0 0

Moreover, it is possible to carry out the operation of
each term of (9) on the plane-wave C s.

This expression, derived by Goldberger and Adams, v

is of use however only at temperatures sufficiently high
that the interaction involved in H' can be considered as
weak. It is essentially an expansion in powers of the
ratio of the potential to kinetic energies. But in most
physical systems of interest the interaction between

' Kahn and Uhlenbeck (reierence 3) actually let these limits be
infinite, but devise a prescription for obtaining the partition func-
tion below the condensation point. When the true limits of integra-
tion are retained, however, the evaluation of the integral (5) yields
a form for the partition function identical to that obtained by
London (reference 2), and the thermodynamic properties both
above and below the transition point can immediately be derived
(see Appendix, paper II).

7 M. L. Goldberger and E. N. Adams, J. Chem. Phys. 20, 240
(1952).
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X {Ho—exp(+PiH')Hp exp( —P(H'))+ . (11)

Here we have derived the semiclassical expansion of
Wigner' —as extended by Mayer and Band. ' The conse-
quences of the first term of (11) have, of course, been
studied by many workers, particularly as applied to
He' (e.g., Matsubara"). As we will see later, this term
gives Z accurately for temperatures suf6ciently high
that X&(rp, where rp is the range of the interparticle
interaction. In the case of He, for example, this means
temperatures )80'K.

The evaluation of higher terms in (11), operating on
the plane-wave C, 's, can in principle be carried out.
However, they become prohibitively complicated after
the 6rst two or three. But a very large number of terms
of (11) become important at the low temperatures of
so much physical interest (e.g. , the vicinity of the )(-
transition in He4). The expansion (11) cannot be em-

ployed therefore for a study of this low-temperature
region.

The method which we will now develop differs radi-
cally from the above approaches. Rather than expand-
ing in an in6nite series and being troubled by conver-
gence problems, we will deal with an in6nite product
which may be employed for evaluation of the partition
function not only for high temperatures but also for low.

Let us write

exp{ P(H 3+H ))f= lim[exp—(—PH'/e) exp( —PH3/e) j"
re~00

= lim exp( —PH'/e) exp( —PH3/e)
~~00

Xexp( —pH'/e) exp( —pHp/e). (12)

We also make use of the theorem, established in the
Appendix, that (we retain the 3X-dimensional vector
notation):

1
ds exp1 f')3 1——

Xf(r- &), (13)

where X„'=Xs/e. Thus the effect of the operator
exp( —pH()/e) is merely to "smear" or average the

' E. P. Wigner, Phys. Rev. 40, 749 (1932).' J. Mayer and W. Band, J. Chem. Phys. 15, 191 (1947).I T. Matsubara, Progr. Theoret. Phys. (Japan) 6, 714 (1951).

exp( PH 3/e) f(r) =—

particles is extremely strong (e.g. , very strongly re-
pulsive at short distances) and it is hopeless to attempt
to employ (9) at anything but high temperatures.

Another approach is to note that, instead of (8), an
alternative equation for S is

()SI()P= —H S(P)+$S(P) Hsf (10)

where t ] signifies that the commutator be taken. If
now (10) be solved by iteration, the first step being to
ignore the commutator of S and Ho on the right-hand
side, we obtain

S(P) =exp( —PH') 11+ ~ dPi
1

n—1

Xexp — P (8("))3 V„(r)V„(r—6('))
g&2 1 —1

XV (r—5o)—5(3')

X V (r $(i) $(3). . .g(~—i)) (14)
Here we have let

V (r) =II exp' —O'U(r')/e3

'U denoting the interaction between any two particles.
By completing the squares on the 6's in the ex-

ponential of (14) and transforming to the resulting
variables of integration, this equation now becomes

1Z=—— —Qi dr exp ——(r—ri) Q(r, ri), (15)
l((t ()3N g [ )(3

where

Q(r, ri ) = lim df( ) ~ ~ ~

shoo {)) 3N) (s—1)g

) exp ——P (6("))3 V'„r —Ai(r —ri)
v=1

—(1/2') ~"'—3 (3) '&"' —3(4) '*&"'

1'
f e-1~ 1

1

5(" ') V„r—As(r —r~)
(e—1) 0 e )

1g(n—i) .

( —1) i
~ ~ ~

«e 11
1XV„r—A„ i(r —ri) —

1

—
1

6(" " V (r). (16)
E e i

(3)1g(3) 3(3)1g(3). . .

Here the coefFicients A are given by the series:

n-1—m 1 esp
A =es (17)

()ji+es) (p,+es+1) ( e J

We see that in Eq. (15) we have an exact expression
for Z which is of a form very similar to the 6rst term
of the semiclassical expansion —Eq. (11). Indeed the
partion function (15) is the same as that of a "classical"
Bose-Einstein gas, with an equivalent temperature-
dependent interaction (which actually includes some
many-body forces—see later). When e is taken to be
merely unity, (15) is precisely the "classical" result.

function f(r) over small displacements of each co-
ordinate by amounts &X„.

On substituting (12) in (3), making use of (13), and
performing the integration over momenta exactly as in
the case of the perfect gas, we obtain for the partition
function:

1 f

Z=lim — — Pp drdb(' dt'3" dS " '
n~oo g ) {) 3Nja Jr

7r 2

Xexp — (r—ri —13&')—Q") . ~ g&" »)
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xII..I
.,——~,; I, (»)

v2

and
t/„(r;;) =exp{—//l'U (r,;)/33}.

Now since we are interested in the limit 33~ eo (i.e.,
X„—) 0), it is correct to expand the function t/„of (18)
to second order in the 5's. On omitting terms which
vanish on integration, (18) then becomes

{IIt/ (r;;)} ' dpi df')N II expl 5v'
I]

5, ~"-(',)
X 1+3Z—

'»' 2! t/„(r;;)

()'/}» & ( )

Also in the limit of no interaction (V„=1), we have
Q=1 and (15) immediately passes into (5).

%e shall now show that, on the basis of an approxi-
mation which is justified at all temperatures except
those very close to absolute zero, (16) can be put in a
form which enables Q to be evaluated for any given
interparticle interaction.

Consider first, for simplicity, the evaluation of Q
when r /=r

I
the identity permutation 8=1 (say)).

Let us go through the steps by which Qv i would be
calculated. The first operation is that of "smearing"
the function V„(r), i.e., (we forego the 3N-dimensional
notation here) we have to perform

(
3J3/

dpi df)N II expi ——8„3
I

The second and third terms of (19) give the changes
which have been affected by the operation exp( p—H()/33)
on the function IIr/„. The third term represents three-
body interactions, and shows that the final form for Q
must involve many-body interactions of all orders up
to N. However, on writing this term of (19) in the form

ri~ ' r~a——{IIv-(r', )} 24'»i
{)de„(r,~)/dr~)] X [d7)„(r;/,)/dr; sJ}x

v„r;, v„r;~

we see that it should be small compared to the second
(two-body) correction term of (19) provided we can as-
sume the end result that the most probable distribution
of particles in the gas" is one of uniformity throughout
the container. In this event, those particles which are
interacting with any given particle are on the average
symmetrically disposed around this particle, and (14)
would depend on fluctuations from this average for its
contributions. It should therefore be much less im-
portant than the second term of (19), in which all
terms of the summation are additive for the average
distribution.

If we assume, therefore, that for physical systems of
interest the third term of (19) is unimportant, we then
find that, to second order in the expansion of r/„, (18)
is identical to the expression

I (II d5 expl ——53 Iv-(I r' —&I) (20)
(g 3)N(N—i)/2 q&i X„s )

Thus, on the foregoing approximation, the result of
operation (18) is again a product of the form

'&/» v„(r;;)t/„(r/3)

3 V't/„(rg)
{II .(';)} 1+—l.'2

4s- '» e„(r;,)
1. ~e„(r;,) ps„(r;,)

43r '»&3 t/ (r;,)i/„(r;s)
(19)

&n

Q~,=II q(r,;), (21)

In this manner we can work right through expression
(16).We have, then, that

q(r;/) = lim
s~~ {l( 3}(s—i)~

f33 n—1

df);;"). . .d5 "(" ') exp ——Q (5,;("))''
/~2 ~1

1 1 /33 —1qi
x)3 . r. . i/2 5, (i)+1(s)kf)..(3)+.. . .

I I
f)..(~—i)

Xt/ r;,—V2 (as) if) "(')+-'(-3)&6 "(3)+
2 f'/3 —1q i

8 ..(n—i)
n, 1) r3 i—

/' v ) * v (v+1) i v (33—1/1
I5 + I I5 + +."

I I5 =
&v+1) v+1 &v+2) r3—1 0 n

pr3 —1l '
Xt)„r;;—42I I

f) " ') v„(r;/). (22)
e

"That is that distribution which contributes most to the integral of (15).
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Although the limit of n going to infinity has to be
taken to get q(r;;) exactly, in practice it is possible to
choose a sufficiently large but finite e such that q is
obtained to a desired accuracy. Even so, the amount

of numerical work necessary to evaluate q(r;, ) from
(22) is, of course, extremely large. For this purpose,
however, the following approximation to (22) is quite
adequate:

1 II s n 1

q(r;;)~lim dG. oi do &" "'& —
exp ——P (8 i "i)'

nmoo () 3)(n 1)J— g 2 „

Xe„r;;—v2 —fi "&'i+ (-')15 "&'i+
2

'

Xn-fr'-~2t (-')'& "'+(-')'& "'+ 3

( p q' (v+1)&»- r'-~
i
—

I
~ '"'+( —

I
& '"+"+"

E p+1& &i+2)

(m —1y &

Xe„r@—W2~ i
6;;&" 'i n„(r@). (23)

e

The reason for this is that in each s„of Eqs. (22) or
(23) only the first few "smearing" variables 6;, i"& are
important, and (except for the very first s„) it is largely
irrelevant whether the smearing variables" are the
square-bracketed terms of Eqs. (22) or (23).

Thus, from Eq. (23), q may be evaluated by per-
forming (e—1) operations of the form

,
db exp ——

~P f()r,;—nS~).
'A ' (24)

For the first step the function f is to be merely v„. The
integral (24) (with n=1) then yields a new function
which is to be multiplied by v„and again averaged by
the integration of (24) )with n now (4/3) ~j and so on.
After (e—1) such steps have been performed, we

multiply for the last time by n„(r;;) to get q.
For a given interaction and temperature, therefore,

q can be obtained by performing e numerical integra-
tions for each value of the argument r,; (The ang.le
integrations of (24) are done analytically. ) We note
that, in computing q for a certain low temperature
T/n, the various steps involved also give it for the
temperatures T, T/2, T/3 T/N.

A convenient way of obtaining an estimate of the
accuracy involved by using a certain number of steps
rs is the following: instead of (12) we could equally well

"Indeed, for all actual calculations which have been performed,
the results for q obtained by taking only the first 8 variable in
each v differs very little from the results obtained from Eq. (23).
For example, curves which are given in the next section for the
case of He4, obtained from Eq. (23) have the heights of their
maxima above unity increased by less than 20 percent, when
computed by the above much cruder approximation. The actual
curve will lie between the two results, and should be much closer
to the results of (23).

write:

(
exp( —P(IID+II'))=»m exp~ ——&0

~e )

Xexp( ——a'
) exp( H'

)
. (25)——

i

Equation (25) gives precisely the same results as (12)
except that in obtaining q one more smearing process
LEq. (22)] is performed after multiplying by the last
~l„. Thus e should be sufficiently large that the differ-
ence between the two results obtained by carrying out
the eth smearing and not doing so can be tolerated.
Computations which we have performed indicate that
the two curves thus obtained for g actually bracket the
true curve, and of course tend closer to each other the
larger e.

In the case of the general function Q, precisely the
same considerations apply in expressing it in the form

Q=g qi (r...r;, ), (26)

where
q&(r;;,0) = q(r, ;)

Also, even when r;; Mr;;~, qp(r,;,r,,~) may be evaluated
by going through the same steps described above for
obtaining q(r, ;) from Eq. (23). Much more numerical
work is now required, of course, since (e—1) integra-
tions have to be performed not only for various values
of r;;, but also for various values of both r,,~, and the
angle between r;; and r;,~."Once this has been carried

's This work is not necessary ii X/gs- is considerably less than
the range ro of 'U; in this event the added arguments A (r;;—r;; )
will produce only a small smearing effect to q(r;;) and may be
ignored,
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INTFRPARTICLE SEPARATION (BohrRad'ii)

Fio. 1. Curves of q(r;;) for T=4', computed by taking @=5.
Curve (t)) is that obtained when the last smearing is not per-
formed, and curve (o) is that obtained from (b) by performing the
last smearing process. The dotted curve is a compromise between
(a) and (b), estimating the actual behavior of q.

out for a given interaction 'U however, the Q of (15) is
completely known.

A more detailed discussion of the many-body quan-
tum-mechanical effects which are ignored in the above
will be made in a subsequent publication. It will be
shown that they are associated with the long range
density fluctuations, which are important only for
temperatures such that X/2/s. &r„where r, is the
average interparticle spacing.

of each of the steps used was such that P/e correspond d
o a temperature of 20'. Thus, for example, 5 steps

were taken for T=4', IO for T=2', and 20 for T= 1'.

T=4'.
In Fig. 1 we see the behavior thus found for ( ") tqr;; a

. Curve (b) is that obtained when the last smear-
ing is not performed, and this passes into curve (a) by
means of the last smearing process. The differences be-
tween the two curves show that, for a really precise
determination of q(r;;) at all points, we should have
taken smaller intervals P/N. These curves are adequate
for our present discussion, however, and we consider
t e actual behavior of q(r;, ) to be not far from a com-
promise between (a) and (b), such as the dotted curve.

Similar compromise curves for a number of other
temperatures are given in Fig. 2.

It is interesting to see what a vast improvement is
obtained by using the above rather small number of

7 4

a

III. APPLICATION TO He'

In this section we give a preliminary discussion of the
application of our results to the case of He4 at low

temperatures. We have made numerical calculations of
the function q(r;;) for this case, the interaction 'U used
being that of Slater and Kirkwood. '4" The magnitude

2.00

l.75

1.50

I,R5

I.OO

0.75

0.50

0.25

I I I I

I 2 3 4 5 6 7 8 9 IO

INTERPARTICLE SEPARATION BOhv' Radii

FIG. 2. Curves of q(r;;) for a number of temperatures.

14 J. C. Slater and J. G. Kirkwood, Phys. Rev. 37, 682 (1931).
5 The precise behavior of 'U for small interparticle distances

((2 Bohr radii) was found to be completely irrelevant to our
results as long as it remained strongly repulsive,

0 I I I I I I I

0 I 2 3 4 5 6 7 8 9 fo

INTERPARTIQLE SEPARATION (Bohr Radii)

Fio. 3.The curves obtained for q at T=4' when a = 1, (o) being
the unsmeared and (b) the smeared curve. The differences between
these curves and those of Pig. 1 are to be noted.

steps over the crudest approximation of using only one
step (ted=1). At 4' the two curves for n= 1 are shown in
Fig. 3, (a) being the unsmeared and (b) the smeared
curve. It is seen that the two are completely different
from each other, and allow of no reasonable estimate of
the actual behavior of q(r;;). With increase of e from
1 to 5, however, these two curves pass into those of
Fig. T.

In this connection it is worthwhile to note how in-
correct it is at these low temperatures to neglect all
quantum-mechanical effects other than the statistics-
i.e., to use only the first term of (11).This would give
the result

q(t'J) = exp[ —O'U (r'J) }. (27)

At 4' this is just the curve (u) of Fig. 3 which differs
rg, dically from the actual curve of Fig. l. The di8|:r-
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ence is even more pronounced for lower temperatures.
At 2 for example (i.e., the vicinity of the li transition)
Eq. (25) would give a peak due to the attractive por-
tion'4 of U of order of magnitude 100, instead of about
1.8 (Fig. 2).

The curves of Figs. 1 and 2 show clearly the char-
acteristics of the function q(r, ,). Its most important
property is that, at the low temperatures being con-
sidered, it is always very small for small interparticle
separation. Thus the contribution to (15) from con-
figurations in which two or more particles (whose co-
ordinates are unaffected by the permutation P) are
close together will be quite small.

It can easily be seen that the general function

qi (r...r;,~) for r,,~Mr;; also behaves in the above
manner as a function of r;, . The fact that for all the
final steps of (16) the coe&cients A LEq. (17)) are
very small ensures that q&(r,;,r;,~) has the same quali-
tative behavior as a function of r,; as q(r;;). We now
have merely that the precise seal/ value of q& for small

r;, is dependent on r;;~, and also that the precise height
of the subsequent rise above unity is dependent on r;;~.

A very simple model which approximates the above
features is to ignore the difference between qi (r,;,r,,~)
and q(r;, ), and to replace q(r, ;) by a step function which
is zero for all r;; up to some distance ro, and unity
thereafter. "The results of this model are evaluated in
II, rs being taken to be 3.3as (where as is the Bohr
radius). It will be seen in II that (15) then yields a
Bose-Einstein condensation point in quite good agree-
ment with the X-point of liquid helium. Moreover, the
thermodynamic properties in the vicinity of the transi-
tion point are similar to those observed experimentally
for liquid helium.

Of course in ignoring as it does the effect of the
attractive part of 'U, exhibited in q(r;;) as a rise above
unity in the vicinity of 7@0, the above model does not
yield the normal gas-liquid transition, and speaks of a
gas rather than a liquid at the low temperatures. We
consider it very probable that the remaining differences
between the results of II and experiment are due to
this neglect.

"Equation (15l is then very similar to the form for Z recently
proposed by Feynrnan (see reference 5).

Since it is possible to numerically evaluate qi (r;;,r@ )
very accurately by the methods of Sec. III, however,
it should be possible for the finer details to be calcu-
lated. What is required for this is that a function be
found which simulates the behavior of q~(r;, , r,,p) in
some detail but which is still suKciently tractable for
the integral of (15) to be evaluated. This question is
being investigated.

The authors are indebted to Professor Bethe, Pro-
fessor Dyson, Professor Placzek, and Professor Salpeter
for discussions on the subject of this paper.

APPENDIX

We wish to prove Eq. (13), vis. ,
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Then

f(r) = dkg(k) exp(ik r).
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On changing the variable of integration from R to
8= r R, we imme—diately obtain Eq. (13).

On introduction of the new variables q and R this
may be written
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