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Variation Calculation of the Polarizability of the Deuteron

B. W. DowNs
Stanford Ursipersity, Stamford, California

(Received December 9, 1954)

The polarizability of the deuteron in a uniform electric 6eld is calculated by a variation method. The
result obtained by Ramsey, Malenka, and Kruse is rederived and improved in accuracy, and the modi6-
cation of the deuteron wave function produced by the electric 6eld is calculated.

(Hp —Ep)fp ——0. (2)

With the assumed trial function, the lowest energy
level satisfies the variational inequality:

f
(Pp*+ Srts*) (Hp+H') (Pp+ Bg)dr

''N a recent paper, Ramsey, Malenka, and Kruse'
~ ~ presented an approximate calculation of the electric
polarizability of the deuteron. The purpose of the
present paper is to rederive their result from a variation
principle and to improve the accuracy. The modification
of the deuteron wave function produced by the electric
field is also found.

The Schrodinger equation for the relative motion in
the center-of-mass system of a deuteron in a uniform
electric field is

(Hp+H' —E)/=0.
The perturbation is H'= —-', eBs; s is the component of
the relative rt-p separation vector along the electric
field, 8. A trial function f=lfp+ hp is taken; p may
depend on h. Po is the normalized, even-parity ground-
state wave function, which satisfies the equation:

values of the s component of the spin. ' The rhs of Eq.
(4) can be minimized by equating to zero its variation
with respect to one component of P*. This process
yields a differential equation for @:

(Ho —Eo)$= H'Po+—2—Eppes j Po 4dr

+ y*lf pdr +O(h). (5)

The polarizability is determined by that term of E—Eo
which is quadratic in h. From Eq. (4) it is clear that
only that part of @ which is of zero order in h affects
the polarizability. If g is expressed as the sum of an
even parity function and an odd parity function, Eq.
(5) shows that only the odd parity function has a term
of zero order in B.' If only those quantities which
affect the polarizability are considered, Eq. (5) becomes

1 e
(Hp —Ep) P = H'go= zPo.—— —

8 2

) (A*+&4*)(A+8)«
(3) The polarizability is n= —2(E—Ep)/hs; with this and

Eq. (6), Eq. (4) yields'

n= ——
I Pp*H'/dr = e Pp*zQdr.

gg aJIn Eq. (3) and all subsequent expressions, the appro-
priate spin sums are implied. With Eq. (2), Eq. (3)
can be written: The odd parity solution of Kq. 6 is

1
E~Eo+ h' — fo*H'ydr

e t.
g=- ' G(r, r')z'Pp(r')dr',

2

G(r, r') is the deuteron Green's function. ' With Eq.1
+— P*H'pod + I rls*(Ho Eo)/d-

e~ J 2 The singlet spin function need not be considered, because the
perturbation II' does not connect singlet and triplet spin states,

2 3 If the even parity function has a zero-order term, it must be
I ppepdr+ @elf odr +O(p). (4) a multiple of itp, this cannot affect the polarizability.

4 As a result of the variation process, Eq. (7) is an equality.
That Eq. (7) is exact can be seen from an examination of Eq. (1):
If /=lit'0+bye is considered to be an eigenfunction, and qb is

g is taken to be that function which minimizes the expressed as the sum of an even parity function and an odd
right-hand side (rhs) of Eq. (4). Both pp and p can be parity function, then Eq. (1) can be separated into an even parity

considered to be three-component wave functions, each equation and an odd Parity equation. These two equations show
that Eq. (7) is exact and that the zero-order term of p has odd

component being associated with one of the possible parity andsatfsfies Fq (6)' Equation (g) can also be derived from perturbation theory, in
Ramsey, Malenka, and Kruse, Phys. Rev. 91, 1162 (1953). analogy with the derivation by Ramsey et at of their Eq. (5)..
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(8), Eq. (7) becomes With go=ps, Eq. (6) becomes

e2

2J
foe(r) sG(r, r')s'Po(r')dr'dr

52 e
7—2+—Vs(r) Eo —Ps&2& =—@Ps.

2p 2

Equation (9) is the expression for n obtained by
Ramsey et al.' by means of the Schrodinger perturbation
theory. They approximated Eq. (9) by replacing the
Green's function for the deuteron with that for a free
particle. From Eqs. (6) and (8), it is clear that this
approximation is equivalent to the assumption that the
22 pinterac-tion vanishes for odd parity states (Serber
interaction). Ramsey et at.z have shown that, with the
free-particle Green's function, Eq. (9) can be separated
conveniently into contributions arising from the ground-
state 8 wave alone (nss), from the D wave alone (nz&z&)

and from cross terms involving both S and D waves
(rrsD) ~

Equation (8) has been used to calculate the modifi-
cation @s of the ground-state 5 wave in two cases:
The 22-p interaction Ve is taken to be (1) a Serber
interaction and (2) a (scalar) square well interaction
for odd-parity states. In calculations which involve
only the ground-state S wave, the spin functions can
be omitted; the S wave fs is taken to be the Hulthen
wave function:

Equation (14) can be solved by setting'

rt&S&2& = f(r) COS8.

With Eq. (15), Eq. (14) yields

d d 2tz
t

etz
t «' ———r'Vq(r) y'—r' 2 —f(r) = —«'Ps(r). (16)
dr dr i22 I &rt2

ep,

f(r) = ——"g(r,r')r"Ps(r')dr'.
A~&

(17)

The Green's function for Eq. (16) isr

g(r,")=— 7
Uz (r() Uzz (r)).

1.48659
(18)

r& is the smaller of r, r'; r~ is the larger.

Equation (16) can be solved for f(r) by means of a
one-dimensional Green's function g(r, r'):

ps= 1&/{e r" e&r+t»')/r— (10) j z(pr) r a,

N is so chosen that the ground state is 96 percent S
state. ps= (2tz/hs) e; e= Eo 2.226 —Mev—,—and tz is the
reduced mass. The Hulthen range parameter P is taken
to be P=6.0y.

ep, |1
4s "=—1lt cos8 —re ""

a

1 2(1+pr)

P2(2++P)2 r2

2(v+~);&&+a;&v+W
r2 r

Case 1. V~ a Serber Interaction

With the free-particle Green's function Gr(r, r') and

fo=Ps, Eq (8) yields

Uz (r) = ~ —1.970706ijz (i&r) +0.0274676n z (iver)

Un(r) = jz (pr) —5.5926622 2 (pr)

r)a,
(19)

r~a,

0 7650—08i.Ljr(iver)+irtz (i&r) 5 r) zz.

& &=s2(e/2) ~Gt(r, r')s'Ps(r')dr'

Gr (rr') V~(r') rl&s&2& (r') dr'. (20)

j, and 22z are spherical Bessel functions; p'=p'$(Vo/e)
—15. Since Ve is not exact, it seems best to express
@s"& in such a way that the influence of the potential
is manifestly small. This can be done by solving Eq.
(14) directly for ps&2&:

With this p & &asnzd Eq. (7), one gets'

~»&»=0.56X10-"cm'.

Case 2. V~ a Square We11

(12)

The fzrst term on the rhs of Eq. (20) is ps&z&, which was
calculated for Case 1; in the second term, the p &&tso2

be used is given by Eqs. (15) and (17). Thus

ep, p
4 s"'=Ps'"+— Gr(r, r') V~(r')

5~

—Vo= —33.73 Mev r~a=2. 100)&10 "cm,
(13)Vs(r) =

0 r&a.

The 22-p interaction in odd parity states is taken to
be that (scalar) square well which is appropriate to
the deuteron ground state:

)&cos8' g (r',r")r"sos(r")dr" I dr' (21).
II' connects the S state only with P states.

'7 This one-dimensional Green's function was calculated for a
square well with pa = 1.830600 and pa =0.4865936. The Wronskian
of the functions Uz and Uzz which are given in Eq. (19),calculated
for r &u, agrees with that calculated for r&a to six figures.
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Since Vs(r') =0 for r')u, the r" integral in Eq. (21)
need only be evaluated for r'&a. In the r" integral,
which was evaluated exactly, the term which arises
from the e &&+s'"" term of Ps is small compared to that
which arises from the e &"" term of fs for r'~a. This
small contribution was neglected in the subsequent v'

integration. For the v integration, the integrand was

The ratio of the term which arises from e (~+t)"" to that
which arises from e 'y"" is —0.112 at r'=0.10a, —0.061 at r'
=0.50u, and —0.032 at r'=a. The contribution of this term to
Beaa would be about —0.001)&10 ' cm. With this estimate,
Eq. (22) would read ba8g=0. 019)&10 "cm3.

expanded in a power series, whose values differed from
those of the original expression by less than 1 percent
for r'5a. With the resulting ps&", Eq. (7) yielded'

&rss&@=rrss&"+b&rss, 8&rss=0.020X10 "cm'. (22)

The author is indebted to Professor L. I. Schiff for
suggesting this problem and for his guidance throughout
its solution.

e Note added eN Proof J. Sa.—wicki, Acta phys. Polon. 13, 225
(1954), has used a diferent variation technique to obtain

O.z&=0.32X10 "cm'. His method yields a lower limit for o.zz.
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The Feynman-Dyson rules for computing the scattering matrix are derived starting with the time-

independent Schrodinger equation. Although no essentially new results are obtained, it is interesting to
trace the connection between the time-dependent and time-independent methods starting from the time-

independent end rather than, as is usually done, starting from the time-dependent interaction representation.
In particular, a theorem due to R. I. Eden plays an important role in our discussion.

I. INTRODUCTION

HE Feynman-Dyson rules' for the calculation of
scattering matrix elements differ from the rules

of the older formulations of perturbation theory in two
essential ways: (A) One can immediately write down
the net contribution of all virtual processes which can
be represented by the same "Feynman diagram"
whereas in the older theory each virtual process was

treated separately. (8) Not only is momentum con-

served at each "vertex" (as in the older theory), but
also energy is conserved at each "vertex. "

These rules were originally derived by Dyson' from

the time-dependent Schrodinger equation in the inter-

action representation, and by Feynman' from his

Lagrangian formulation of quantum mechanics. In this

note we will derive the Feynman-Dyson rules starting
from the time-independent Schrodinger equation. We

feel that this derivation may be of interest for two

reasons: (i) It is hoped that the derivation of the

Feynman-Dyson rules from the time-independent

Schrodinger equation for problems in the continuum

may suggest ways of further clarifying the connection

between the "relativistic two-body equation" and the

time-independent Schrodinger equation for bound

states. (ii) Our work may also be considered as a

' R. P. Feynman, Phys. Rev. 76, 749 and 769 (1949); F. J.
Dyson, Phys. Rev. 75, 486 and 1736 (1949).

s E. E Salpeter and .H. A. Bethe, Phys. Rev. 84, 1232 (1951);
J. Schwinger, Proc. Nat. Acad. Sci. U. S. 37, 452 and 455 (1951).

contribution to the discussion of the connection be-
tween the Feynman-Dyson and the time-independent
definitions of the scattering matrix. Our approach is
different from that of most authors in that we start
from the time-independent theory rather than from
the time-dependent theory, and although no essentially
new results are obtained in this way it does seem of
interest to look at the connection from the "other end. "
In particular, we will 6nd that a theorem due to Eden'
will play an important role in our discussion.

In the next section we will carry through a derivation
of the Feynman-Dyson rules and in the 6nal section
we will make a connection with the "adiabatic switch-

on, switch-oG method. '"

II. DERIVATION OF THE FEYNMAN-DYSON RULES

The state vector for the time-independent scattering
problem with":interaction V satis6es the well-known

equation
2rri b+ (E Hs) Vf, — —

where Hog=~, and where

(2)

3 See F. J. Belinfante and C. Mgller, Kgl. Danske Videnskab.
Selskab, Mat. -fys. Medd. 28, No. 6 (1954) for a detailed discussion
of the problem and references to the literature.

e R. J. Eden, Proc. Roy. Soc. (London) A198, 540 (1949).
' B.A. Lippmann and J. Schwinger, Phys. Rev. 79, 469 (1950).
e P. A. M. Dirac, QmaaStsm IrIeehaedes (Clarendon Press,

Oxford, '1947), third editio~, pp. 197—199.


