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Equivalent Two-Body Method for the Triton*
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A method for developing equivalent two-body problems for the binding energy of the triton has been
derived from the variational principle. The method has been applied to two central-force problems. In the
6rst, the exponential well of Rarita and Present is discussed and the method is shown to give excellent
results. In the second, the central-force term in the Levy potential including the repulsive core is investigated.
It is estimated that the Levy potential including the tensor term will give the correct order of binding energy
to the triton.

INTRODUCTION

~

'HE problem of solving the quantum-mechanical
three-body problem has received from the very

outset considerable attention from nuclear physicists.
This is natural inasmuch as the binding energy of the
triton provides a first test of any nuclear potential that
has been found to predict the experimentally known
deuteron and nucleon-nucleon scattering data. It is also
now known to be a sensitive test of the particular shape
of the potential that is assumed.

The mathematical difFiculty that is immediately
encountered is the lack of separability of Schrodinger's
equation. Since the classic work of Hylleraas' on the
ground state of the helium atom, the problem has been
almost exclusively attacked by use of the Ritz varia-
tional method. Among the large-scale applications of
this method to the triton problem, we may mention the
work of Rarita and Present, ' and, more recently, in
connection with the use of tensor forces, the work of
Schwinger, Feshbach, and co-workers. ' ' The last-
named work' represents at this time the culmination of
this effort in providing a Vukawa-type tensor interaction
that fits all the known low-energy two-body experi-
mental data and also predicts within the error of the
variational method the experimental values of the
triton- and alpha-particle binding energies. Among other
methods of attack on the problem that have been tried,
the work of Svartholm' is noteworthy: he has made use

of the more powerful variation-iteration method. A
direct numerical procedure for solving the associated
integral equation" has also been attempted.

Because of the tremendous amount of labor that is

involved in these computations, more approximate
methods for obtaining reasonably accurate solutions
have always been desired. Furthermore, the large state
of fIux of the nuclear two-body potential has, unfortu-
nately, rendered obsolete a vast amount of the work
that has been accomplished in the past, and the recent
introduction of a hard-core meson-theoretic potential"
threatens to do the same for much of the recent work,
insofar as the use of a particular well shape is concerned.

This paper is designed to provide a simple means of
providing approximate eigenvalue solutions for any
given potential. We shall work with the S state only.
The extensions required for the inclusion of tensor
forces are not dif6cult to outline, though the required
analysis would be very lengthy. The most notable efFort
in this direction in the past was Feenberg's "equivalent"
two-body method. "This method is based on plausibility
arguments which at best can be shown to hold for a
restricted class of potentials. "It is not known whether
it gives an upper or lower bound to the energy, although
the latter has been surmised from the results of various
examples.

In what follows, an "equivalent" two-body method is
introduced in which the essential approximation em-

ployed is to give the wave function a particular func-
tional form. "This leads to a true two-body equation, of
which the lowest eigenvalue is an upper bound of the
lowest eigenvalue of the original three-body equation.
The equation is given once and for all except that the
"eGective" two-body potential energy that has to be
introduced is an integral of the original three-body
potential energy.
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EFFECTIVE TWO-BODY METHOD

It is assumed that the center-of-mass motion is
removed, and for simplicity only central potentials will

be considered so that, consequently, the triton in its
ground state is in a 'S~ state. The variational principle
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(1933)j in this Geld.
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for Schrodinger's equation may then be written as Thus, let
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Then, since p is a function of E. only, the integration
over the other variables (Rs,R3) may be performed. The
volume element is now
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and Eq. (1) becomes
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where p is an unspecified arbitrary function of the
perimetric length of the triangle formed by the three
particles. It is now desirable to change variables so that
this length becomes one of the independent variables.

PROTON

where (r, ,rs, rs) represent the three nucleon inter-
distances (see Fig. 1) of the triton and P is a function of
(r„"2,rs) only. The potentials V;(r;) represent the result
of taking the appropriate spin average. Again for
simplicity we have taken the spin dependence of the
wave function as (1/~2n(1)tn(2)p(3) —p(2)a(3) j. In-
troducing the other possible spin dependence,
(1/g6) {n(1)Ln(2)P (3)+P(2)n(3) $—2P (1)a(2)n(3) },and
its associated spatial wave function would lead eventu-
ally to a pair of coupled two-body Schrodinger equa-
tions. For most potentials considered up to now, this
additional complication does not lead to significant
effects and for this reason we have not included it. If
Eq. (1) is considered as a variational principle for
the energy, it is known that the trial function
p= expL —22K(rz+rs+ rs) j yields excellent results for the
binding energy, with X considered as a variational
parameter. Such a trial function bears out the idea that
the triton in its ground state is spherical and essentially
symmetric in the behavior of its constituent particles.
This is generalized by letting
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If the potentials are now assumed to be all the same
shape, so that V;(r;) = Vp(r;), with V; constant, Eq.
(6) becomes
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A particular form of y(R) may, of course, still be
specified. The choice j= e ~~ naturally reduces to the
previously mentioned calculation in a very simple way.
The best choice of the form of y(R) is the solution of the
equation obtained from the variation indicated in

Eq. (5):
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and U,22= —(m/5') V,f2. Letting

y(R) =F(R)/R'", this becomes
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FIG. 1. The triton interdistances r1, rg, and rs.

It may now be noted that this is exactly the form of
the Schrodinger equation for the deu teron in which

P=LF(R)/R]P~ . The reduced mass has the value

(14/15)m instead of .m, and there is a centrifugal
potential energy term L+ (15/4)R 2$ corresponding to
setting the orbital quantum number 1=2. This is a very
important term and is contributed by the kinetic
energy, independent of the choice of potential energy.
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The potential energy that is to be inserted in this
equation is not the actual two-body potential, but the
"averaged" potential given by Eq. (7).It might perhaps
be more apt to call the combination L

—U, rt+ (15/4)R 'j
the true eGective potential of the problem, as can be
readily seen by the form of the equation. This completes
the reduction to an "eGective" two-body equation. It
may perhaps bear repeating that the lowest eigenvalue
associated with Eq. (9) remains an upper bound of the
true eigenvalue of the original triton problem.

For purposes of illustration, assume Eq. (9) is to be
solved for an exponential well nucleon-nucleon inter-
action. Let V, (r;) = —V,e "*'~~', and let Rs be chosen as
the unit of length. For this case U, ~g becomes, after
performing the integration indicated in Eq. (7),

U, rr
——(14/15) (Ut+ Us+ Us)Rs'e(R),

where

8 15
N(R) =——4—6R+2R'+e ~

R' 14

R' R'
X —4+2R+ 2R'+——— . (10)

3 6

The function e(R) decreases monotonically from the
value 1 at the origin to zero value at in6nity. The
attractive potential (—U, ff) is plotted in Fig. 2, as
well as the combination $—Ueff+(15/4)R '], with

(Ur+ Us+ Us)Rs' set equal to 5.128. This corresponds

4R"
5 -Ueff

to a choice of neutron-proton and neutron-neutron
singlet and triplet well depths which 6t the low-energy
scattering data. "Numerical integration of the equation
for this case yields a binding energy value of 11.02 Mev,
compared to the experimental value of 8.50 Mev. This
is, surprisingly, only about 1 percent deeper than the
value that is obtained with the trial function e ~~,

which is probably a reQection of the "goodness" of the
latter trial function.

As a second illustration, it will easily be shown that a
two-body potential of in6nitesimally small range will
produce infinite binding of the triton. "For, suppose the
nucleon-nucleon potential is a delta function,

of such a strength that

1
d&2V2(~2) V2.

4x &

It follows directly from Eq. (7) for the effective po-
tential that U, rr= (Ut+ Us+ Us) 8/R', and such a
singular potential is well known to have an in6nite
binding energy.

APPLICATION TO HARD-CORE POTENTIALS;
THE LEVY POTENTIAL

Recent calculations based. on various approximations
in the meson theory of nuclear forces have indicated
that as the distance between nucleons decreases, the
force between nucleons eventually becomes very strongly
repulsive. A similar result has been suggested by the
success of a hard-core model proposed on a phenomeno-
logical basis by Jastrow. "We shall be interested here in
formulating an equivalent two-body method for 5
potentials of this type and shall apply the method to a
potential proposed by Levy" which has the merit of
giving an adequate description of low-energy two-
nucleon phenomena. The potential under consideration
here is:

r&rp
V(&) =

Vps(r) r) r p,

4

-5
0

I I I I I I I I
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R

where r is the distance between any two nucleons. The
wave function must satisfy the following boundary
conditions:

P(rt, rs, rs) =0 if r, (rs, s= 1, 2, 3.

A few qualitative remarks are in order at this point.
In the absence of a hard core it is well known that an
attractive two-body potential will lead to a triton
structure which is considerably more compact than the
deuteron, with a corresponding increase in the binding
energy per particle. This is illustrated by the calculation

FIG. 2. The eilective potential (—U, «) and the net eA'ective
potential L(15/4)R~ —U,«j with (Ur+ Us+US)Ass ——5.128. The
unit of length is 20=0.678)&10 "cm, and unit well depth corre-
sponds to 90.3 Mev.
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in the preceding section where the two-body exponential
potential required to yield the correct deuteron binding
energy gave a triton binding energy far in excess of the
experimental value. A simple explanation of this effect
will now be given so that the modihcation introduced by
hard-core potentials may be understood.

Let N, (r) be the solution of the deuteron problem
with potential V(r). Insert then the trial function
P=N(rq)m(ro) into the variational principle [Eq. (1)]
for the binding energy of the triton, letting V;(r;)
= V(r;). We Gnd immediately that the resultant vari-
ational energy equals twice the binding energy of the
deuteron plus an average over potential V(ro) which will

always increase the calculated binding energy if the
usual monotonic potentials are employed for V. This
potential energy term is not balanced by a corresponding
kinetic energy term, so that for the narrow deep
potentials customarily used this term will be large. For
hard-core potentials the physical situation is changed
drastically. Since the wave function P must go to zero
whenever r;&rp and in particular r3(rp, the function
e(ri)e(ro) is no longer an admissible trial function for
the three. -body problem. New kinetic energy terms are
introduced because the wave function must be so
distorted as to be zero not only whenever r& and r2 equal
rp but also when r3=r p. It is no longer possible to make
even the mild statement that the binding energy of the
triton is at least twice the binding energy of the deuteron.
As we shall see below this kinetic energy eGect is large.
Of course similar remarks apply to any potential which

is not essentially monotonic, the hard-core potential
being an extreme case where this eGect is probably a
maximum.

Let the potential in variational principle (1) be

where the brackets signify "the greater of the two
quantities. " However, the integration over (Ro,Ro) is
straightforward and is carried through once and for all
for the kinetic energy. It is convenient to introduce the
nondimensional variable P=Riro. The equation analo-
gous to (5) is then
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A trial function which obeys the boundary conditions
and which is still simple in form is

1
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As we did in the previous section, we introduce ap-
propriate new coordinates:
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11
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and integrate over (Ro,Ro). A complication arises from
the limits of integration, for the volume element is now —306p —747.6p +1142.4po+ 180p4—915po
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equation becomes

dp 2

N(p)—k'rp' F c(—p)F+ U.nre'F =0,
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where c(p) =as/as —«(ai/a ) Th t'
remar a ly constant for the entire range of values of p

a p= ~.Hence the eGective mass is smaller b a f
of about 4.5 than that of a corresponding deuteron
equation. The binding energy will therefore be magni6ed
by the factor 4.5 (as contrasted with the factor 15/14 in
the previous case). Of greater importance is the term
V,gq an the centrifugal repulsive term c . F
va ues o p, c(p)~22/3p' so that F goes to zero at =0zero a p=

p, where the exponent is approximate. Note that

since
the wave function y and therefore i/ is singular at p= 0is singu ar at p —0,

~=F(p)/as'*~p '"
p—+p

Of course ~ is nevertheless quadratically integrable be-
cause of the high dimensionality of the configuration
space for the three particles.

We haveave obtained U, tt and integrated E . (18)
numerically for the central-force term in the Levy
potential. Since the Levy potential t '

n ia contains noncentral
tensor terms as well the calculat') cu a ion gives at est an
upper bound to the energy. A lower bound may be
obtained by increasing the strength of the central Levy
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The associated differential equation is
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