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where n and r are running vectors in Fourier and
crystal space respectively, magnitudes 7 and 7, and v, is
the volume of the primitive cell.

We consider a crystal in which the total charge
density at a typical lattice site, taken as origin, is
R(r)=Z[6(r)— Rs(r)], where Z is the atomic number,
and Rs(r) is a spherically symmetric electron density
of content +1; there is no net charge at any site.
Let P(n)=5(R(r)), Ps(n)=F(Rs(r)), 2(n)=5(V (1)),
where V(r) is the potential due to R(r). Then from
Poisson’s equation,

®(n)=P(n)/dr*n*=Z[v, ' —Ps(n)]/4x™%,  (2)
where?
2r 2 J:(27w
Ps(n) =Z j; —z((;aZL)Rs(r)ﬂdr. 3)

The average crystal potential is lim,¢®(y). Using the
Taylor expansion?® of J3(2mryr) in (1)-(3), we have

‘I’(ﬂ)=Z(47r2van2)_1[1—47r ) "Rty
0

+83i3n2 j; sz(r)r“dr—O(n")]. 4)

The first integral in (4) is (47)~! by the normalization, so

2w

2nZ p*
B(000) = —— f RPdr=—Z(  (5)
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which is the Frenkel-Bethe result. If the crystal has a
basis, (5) must be summed over each species present.

Thus the contribution of one type of particle to the
average crystal potential can be directly determined
from the appropriate atomic scattering factor, f(sind/\)
=ZPs(n). Near n=0,

ZP (1) =[Z/va— 47°®(000)12+0 (%) ]. (6)

Since the largest contribution to Pgs(n) at small n comes
from the outer or valence electrons,* the average crystal
potential is primarily determined by the valence elec-
tron density. Crystal binding will of course greatly
distort the valence electrons from their configuration in
the free atom. Hence in general one cannot use the free
atom scattering factors to determine the average crystal
potential, unless accurate x-ray Fourier synthesis of
the crystal electron density shows that the same scat-
tering factors apply to the atom bound in the crystal.

For an ionic crystal the net charge at each site,
P(000), is not zero so it is not clear that this analysis
should apply. If, however, the excess or deficiency of
charge is treated separately from the neutral complex of
core plus compensating charge,® then (5) can apply to
the neutral complex, while the excess density makes no
contribution. We hope to discuss the average crystal
potential again at a later date.
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ECENT measurements of the specific heat in

«a manganese' at liquid helium temperatures yield
a value for the electronic term that is very large com-
pared to other elements of the first transition series.
This implies a very high density of states at the Fermi
surface of the 3d-4s band which could on the band
picture lead to strong magnetic effects. To investigate
this, measurements of the magnetic susceptibility were
undertaken in the range of temperature between 1.8°K
and room temperature. Previous measurements of the
susceptibility of @ Mn by Serres? and Kriessman and
McGuire® show a maximum in the susceptibility in the
neighborhood of 150°K but these measurements were
only taken down to liquid nitrogen temperatures.
Shull* has studied this material by means of neutron
diffraction and finds evidence for a feeble antiferro-
magnetism at low temperature which disappears at
approximately 100°K. Since the completion of this
work, more recent measurements by Kriessman and
McGuire to lower temperatures® have come to our
attention and in these a marked increase in suscepti-
bility is reported.

The measurements were made by an induction tech-
nique® in which a disk-shaped sample is translated
between two detecting coils connected in series opposi-
tion. The magnetic moment is obtained by measuring
the dc current that must be supplied to a third coil,
that is wound on the sample and which rides with the
sample, in order to balance out the detected signal.
The entire coil and sample assembly is suspended in a
Dewar designed to eliminate the need for liquid nitro-
gen in the field-sensitive region’ and sits between the
pole pieces of an A. D. Little electromagnet. With this
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method, susceptibilities of the magnitude measured in
this experiment may be measured to an accuracy of 1
percent.

Two samples of « Mn were employed in this investiga-
tion. One was from a cast ingot® and was pickled prior
to measurement; the other was a packed capsule of
electrolytic flakes and was from the same sample used
by Shull in his neutron diffraction investigation. The
results are tabulated in Table I. The room temperature

TaBLE 1. Mass susceptibility of « Mn, xX108.

Cast ingot
T°K Electrolytic Cast ingot degassed
300 10.6 8.8 8.9
120-170 10.9 9.6 e
90 10.7 9.4
71 10.5 9.9 e
4.2 11.52 15.02 9.02

a Magnetization in a field of 10 kilogauss on a virgin magnetization
curve ( X10?).

susceptibility for both samples was of the order of
10~% emu/g and in good agreement with previously
measured values. Both samples also show the maximum
below 200°K that is found by the earlier investigators.

The cast sample shows an increasing susceptibility
below 100°K. At helium temperatures the sample is
definitely ferromagnetic with a remanence of some 0.07
emu/g. The magnetization at each field is increased
over the room temperature values by approximately
the remanence. The magnetization at 10 kg is approxi-
mately 70 percent greater at 4.2°K than at 77°K. The
remanence decreases rapidly between helium and
hydrogen temperatures but persists to approximately
60°K. This behavior appears to be consistent with the
susceptibility curve of Kriessman and McGuire. How-
ever, for the electrolytic sample, which is similar to
that of Kriessman and McGuire, the increase in sus-
ceptibility at helium temperatures is nowhere near so
marked, being less than 10 percent. A remanence is
still observed but amounts to but 0.005 emu/g. It is
well known? that many alloys and compounds of
manganese, including the hydride and nitride, are
ferromagnetic. Chemical analysis of the case sample
did indeed show the sample to contain 0.4 percent
(atomic) hydrogen, 0.11 percent oxygen, and 0.09
percent nitrogen. Analysis of the electrolytic sample
from the diffuse background in the neutron diffraction
pattern shows the hydrogen content to be no greater
than 0.02 percent. On the supposition that the observed
ferromagnetism may have been caused by the presence
of interstitial impurities, the “ferromagnetic”’ sample
was given a vacuum anneal treatment of 500°C which
presumably removes most of the common interstitial
impurities. Following the anneal this sample showed a
2 percent increase in susceptibility at room temperature.
At helium temperatures, however, its susceptibility was
within 2 percent of its room temperature value and the
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remanence was down to 0.003 emu/g. One may thus
conclude that the onset of ferromagnetism in man-
ganese is associated with the presence of interstitial
impurities and the increase observed by Kriessman and
McGuire at low temperatures is probably due to the
presence of impurities in their sample and is not an
intrinsic property of the manganese. Further investiga-
tion of the quantitative aspects of this effect and its
interpretation is being undertaken in this Laboratory.
The authors are indebted to Dr. C. J. Kreissman and
Dr. T. R. McGuire for making the results of their
research available in advance of publication and to
Dr. G. Derge for the vacuum fusion analyses.
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E have measured the absorption of a poly-
crystalline specimen of 100 ohm-cm silicon in
the neighborhood of the lattice edge at temperatures
from 20°K to 3330°K. High resolution was obtained by
the use of glass prisms, the method being to measure
the transmitted radiation intensity with and without
the specimen present, to deduce the reflection coeffi-
cient from the constant value of the transmission coeffi-
cient at wavelengths well beyond the absorption edge,
and to calculate the absorption from these data.
The results, shown in Fig. 1, indicate that, as with
germanium,! the absorption constant, K, is well repre-
sented at low levels by a law of the form

[(hv~EG— ke)l (hv—EG+k6)2]

1—e 0T

K=A4

efT—1

The best fit is obtained with §=600°K, for which value
the full lines in Fig. 1 are drawn. Eg, which in the theory



