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sections cr, implies equality of the total cross sections.
Thus for the purposes of this paper it is sufficient that at
low energies 0., in H& be very nearly independent of the
molecular rotational state. That this is indeed the case
stems from the fact that, apart from the small contribu-
tion of long-range forces Lcomparable to the inelastic
cross sections in Eq. (20) of Ij, the zero energy elastic
cross section involves only incoming and outgoing
s-waves, coupling through the spherical part of the
interaction. At zero energy, consequently, the inter-
action, Eq. (12) of I, can be replaced by its spherical
part, which part is readily seen to yield a scattering
amplitude independent of J. A more detailed analysis"
shows that 0-, remains very nearly independent of
rotational state at energies less than a few tenths of an
electron volt.

In conclusion, we stress: (1) We have not found any
experimental comparisons of the total cross sections,
and therefore are forced to rely on a theoretical argu-
ment. (2) Since our argument is wholly theoretical, and
in many respects qualitative, we feel it would be worth
while to measure these total cross sections using some
suitable and identical procedure, e.g. , Varnerin's. ' (3)
The swarm mobility and diGusion measurements' which
yield X' also yield a measurement of r&, so that the
proposed swarm experiments can check, albeit some-
what equivocally" our assumption about 0-&.

"S. Stein, thesis, University of Pittsburgh, 1955 (unpublished).
'4 Since the swarm experiments determine an effective 0-b from

complicated averages over the electron distribution, and since the

We are happy to thank Dr. Arthur V. Phelps for his
very helpful comments.

APPENDIX

The examination of the validity of the theory in H2
parallels I, Sec. IV. Because both Q and the molecular
radius ro are smaller in H2 than in X~, and because we
are here interested in even slower electrons than in the
previous paper, the only question requiring detailed
examination is the ratio Ar/As of "near-" and "far-"
field amplitudes. Using, much as in I, the Wang
potential" with the nuclei at their equilibrium separa-
tion to compute for Hs the quantity f, (8), we obtain for
small k,

A t= 1.8(k,ap)'A s.

Estimating f, (9) from the measured elastic cross section
gives nearly the same result, the factor being 2.3 instead
of 1.8. At the vibrational threshold, Eq. (1) makes
A t/As ——0.07; at 0.075 ev, A r/As ——0.01. These numbers
indicate that the cross sections of I are valid for H2 at
electron energies below the vibrational threshold, and
are surely valid at the very low energies of interest in the
proposed low-temperature experiments.

electron energy distribution is affected by inelastic losses, it is
possible for the swarm experiments to indicate unequal 0.

& even
though the total cross sections in these gases actually are the
same. Thus, for dennitive experiments detailed knowledge of the
distribution functions is required, but we may expect that there
should be at least qualitative signi6cance to comparing the
magnitudes of 0$ ff in different gases."S.C. Wang, Phys. Rev. 51, 579 (1928).
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A discussion of the computation of Coulomb wave functions from their recurrence relations is given.
SpecifIcally, it is demonstrated that the regular solution FL, and the irregular solution GL, may be obtained
recursively based on the knowledge of the functions for L=O.

~HE present paper is concerned with the computa-
tion of the regular and irregular Coulomb wave

functions FI, and Gl„ for I- a positive integer, with the
aid of the recurrence relations satisfied by these functions.
Thus if yr, stands for either Fr, (rt, p) or GL, (tf,p) we have'

( '
= (L'+~')'y ——

I

—+~ ly, (1)
Ep )

dyr, (L+1)'
(I.+1) = +st y& —k(L+ 1)'+st']'yl. +,, (2)

dp p
L(L+1)

L[(L+1)'+rt'$~y, = (2J.+1) st+ y
P

—(L+1)LL'+g']:yi r. (3)
' J. L. Powell, Phys. Rev. 72, 626-627 (1947).

In addition, we have the Wronskian relations

FJ.'GI.—FI.GI.'——1,

Fr. tGI.—FIGI, t ——L(L'+s)') & (5)

The method is entirely similar to that employed for
the generation of Bessel functions of integral order. '
This is to be expected in view of the fact that the func-
tions FJ„and Gl, bear the same relation to each other as
the Bessel functions J„and I'„or the modified Bessel
functions I and E„;namely, for I.—+~, that Fl, is a
decreasing function of I.while Gl, is an increasing func-
tion of L. The recurrence relation (3) will be stable
when applied in decreasing order to FJ.and in increasing

~ Bessel Functions, Part II (British Association for the Advance-
ment of Science, Cambridge, 1952). The method is credited to
J. C. P. Miller.
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order to Gl.. By this we mean no error will be propagated
if we generate Fr(GI, ) in decreasing (increasing) order.
The technique described may be applied for other sets of
functions such as the spherical Bessel functions.

To generate the functions GL, we need only be able to
calculate Go and Go'. The application of (2) will produce
G& and then (3) may be used to obtain as many values of
Gl, as may be desired.

To determine the values of FI. recursively for given p
and p it would appear that FI. and FI,' (say) would be
required as starting values for some L)0. Actually, this
is not the case as we shall show. We can start with
arbitrary values FI. and F~& which we consider as the
values of the solution of the respective differential
equations at the given g and p. Then, given F~~, there
is a one-parameter family of n and P such that

~F~i+PG~i=Fr, +i (6)

In order to fix a and P uniquely we require that

~FI+%I,=Fr: (7)

Then, by virtue of (5) we can solve this system for n
and P. For example, with Fl. 1, Fr,+~=——0 we get

( (L+1)'+n') 'n=G~g, P= —a . (8)
(L+1)

If we now generate a sequence F =nF +PG —for
m= L 1, L 2, 1, —0 by th—e use of (3) we have

~L+1
F —n F-

G~g

Since EI.~O and GL,~Do as L~ we may choose L so
large that the second factor in the brackets can be made
as small as we please and thus

F„cxF (10)

where n=n(L, g,p) and n is defined in (8).
It is now clear that if 0. is known we can determine P

from F . However, the knowledge of o. implies the
knowledge of GL+~. On the other hand, if for some
integer m where 0&m&L'&&L we know F, then by
virtue of (10) we can determine n F /F and use this
value of a to calculate FI, for 0&k&L'«L from the
corresponding FI,. In particular we can therefore take
n =Fo/Fo provided FoAO. In practice, this means that if

q and p are near a zero of Fp we should choose some other
value for m, say m= 1.

In those situations where the GL, are also desired the
procedure may be modified in the following manner.
From Gp and Gp' we generate the sequence G in in-

creasing order, the sequence F being generated from
If I,, F~~ in decreasing order as above. However, instead
of computing e from Fp nFp we can now use

FoR F&Go=a '(Fo& FxGo) = (1+/ )

which follows from (5) for L= 1.

As an illustration of the method let us take g= 5, p= 5
starting with F3I=0, F3p=0.1. Generating the values of
F carrying ten figures, we get

Foo ——13854 08764, Foo ——0.0"1883 426o)
Fgg ——35942 29977.X10') Fy)=0.0'4886 261(,
FIp= 17217 50614.X10 Fyp=0. 0 23406 7468,

~ ~ ~ ~ ~ ~

Fj = 16379 10103.X10" Fg ——0.02226 6957,
Fp= 20355 68006.X10, Pp= 0.02767 3012.

To eight significant figures the value of j p
——0.02767 3012&

from which we find o. '=1.3594737X10 ". An inde-
pendent calculation shows that the values of Fl, indi-
cated above are correct to approximately eight signifi-
cant figures. Starting now with Gp ——18.1933 and G~
= 21.7261 and generating the successive values of
Gl., we get ultimately Gyg = 79310 46945 X10', G2p
=62908 14544X 10'. Checking the results with the
Wronskian relation (5) shows the values of G~o and Goo
to be correct to approximately six significant figures.
Similar calculations were made for g= 10, p= 1 and q=1,
p= 10 with comparable success.

A suggested procedure for carrying out the afore-
mentioned technique is as follows. Suppose the values of
F and G are desired for 0&m& L'. Then choose two
values of L, (say, L and L+5) with L)&p and L»L'.
Generate the sequences F and G for both values of L and
compare. If the results do not agree for 0&m&L' then
start with L+10 and compare the results with those
for L+5.

The derivatives Ill,' and Gl.' can be generated from
(1) and (2) to provide a check once the desired Fl, and
GI have been obtained. An additional check is obtained
from (4).

The values of P„may also be derived in the following
manner. Once the values of F have been generated, it
remains only to determine the normalizing factor n.
This may be done with the aid of the relations':

(e2wo

p cosp=
~ ~ p (2L+1) cos81, (g) Fr, (n,p), (11)

(e' o—1p '*

p sinp=
I I Q (2I+1) sinbl, (q) FI.(rl,p), (12)i 2~g ) i=o

where

L7f
8r, (g) = +P arctan(q/L—).

k=1

Since this procedure will yield the values of Fp and F&,
only Gp need be computed independently. G& will be
found from (5) with L=1, and (3) may then be em-
ployed to generate as many additional values of Gl. as
may be desired.

3 The authors are indebted to their colleague, Dr. P. Henrici, for
having provided them with these relations.


