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Variational Principle for Scattering with Tensor Forces*
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A reformulation of the variational principle in differential form for the phase shift B~ of a central-force
scattering problem is presented. This is considered to be the most simple that can be formed in terms of the
inside-wave function representing the difference between the wave function and an appropriately chosen
asymptotic form. It is then generalized by means of matrix notation so as to provide corresponding varia-
tional principles for the three parameters that arise in scattering with tensor forces, the two phase shifts 8, Bp
and the mixture parameter e. These all develop from the differential formulation of Schrodinger's equation
and do not depend on the integral equation formulation as does the one originally presented by Schwinger for
the phases 6 and bp, and the extension of it by Blatt and Biedenharn to the parameter e.

INTRODUCTION

HE variational principle for the phase shift in
scattering problems based upon the integral

equation formulation of Schrodinger's equation was
6rst given by Schwinger. ' This could be applied to
problems with either central forces, ' or tensor forces. '
Recently, Biedenharn and Blatt' have shown how the
principle may be extended so as to be applicable to the
mixture parameter that arises in the latter case.

Both Schwinger' and Hulthen' have also introduced
variational principles for the phase shift which are based
on Schrodinger's equation in differential form with
central forces. These are often more feasible for nu-

merical computation than the integral equation formu-
lation, and have in fact been improved upon in recent
years. ~ " In the present note, we wish to give the
analogous extension to tensor forces of this diGerential
formulation of the variational principle. This requires
three stationary expressions for the three parameters
(two phase shifts plus mixture parameter) that arise in
this case. These will be found in Secs. II and III.

Before proceeding to this, we first provide in Sec. I a
new formulation of the variational principle for the
phase shift which is slightly simpler than ones now in
use. The point of view adopted will also help indicate
why so many formulations have appeared in the litera-
ture. The procedure is then generalized in a natural way
to tensor forces with the aid of matrix notation.
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with the usual notation. The boundary conditions on
N(r) are that

u(0) =0,

tt(~) =cotbt sin(kr —-', hr)+cos(kr ——',Ar)
(2)

It is desirable to formulate the problem in terms of a
wave function which is essentially nonzero only in the
region where the potential U(r) is important. To this
end, introduce the asymptotic function e„defined by
the equation

st„=cot5tF t+Gt,
where F t krj t(kr), Gt —— km t——(kr), with—j t, tst the well-
known spherical Bessel functions. These functions have
the required asymptotic property at in6nity, i.e.,

limF t
——sin(kr —-', hr),

limG t
——cos (kr —-', lsr) —=G t„.

'p~o0

The use of G~„ instead of G~ in the de6nition of I avoids
dealing later on with the objectionable singular behavior
of t"

& in the neighborhood of the origin. It may be noted
that

d' l(l+1)—+k'— P)——0,
dt' r2

and that

183

d2—+k' Gt„——0,
dr'

(6)

I. REFORMULATION OF THE VARIATIONAL
PRINCIPLE FOR k cori

Our work here is an extension in many ways of the
point of view adopted in reference 12, but, for com-
pleteness, we repeat the necessary equations and
definitions.

The radial part I/r of the Schrodinger wave function
for a state of orbital angular momentum / satisfies the
equation,

d' l(l+1)—+k' — +U(r) tt(r) =0,
r2
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while, of course,
liml =liml„.
~00

Now introduce the inside-wave function y defined by

Then the equation for y is

d'y l (l+1)
+k'y — (y —Gp„)+U(y —u„)=0.

dr r2

The boundary conditions in terms of y become

y(0) =G(„(0)= cos(-', 4),

y( )=0.

Also useful is the equation for (y—G&„),

d' l(l+1)—+k' —, +U (y Gi„) c—os(UF—i=0. (9)
dr2 r2

There are two different expressions that may be
formed directly for k cotb&, neither of which is, by itself,
stationary. However, most of the variational principles
given may be looked on as an appropriate combination
of these expressions (an exception is Eq. (10) of Kato's
article" ). Our present point of view is to form them at
the very outset in terms of the inside-wave function y
so that there will be no explicit dependence on k cot8~ of
the expression to be varied. The erst of these may be
obtained from Eq. (9) by multiplying by (y —G&„) and
integrating. There results in a straightforward manner
after some partial integrations, the equation

they were already given for the case of the S-state phase
shift (l= 0) by Hulthen. ' However, the starting point of
most of the variational principles has been to multiply
Eq. (8) by (y —m„) and integrate (or, as originally, to
work with the equation for e). If, rather, Eqs. (10) and
(13) are considered directly, it is observed that they
have the important property that their variations with
respect to variation in the wave function y are pro-
portional to each other. Thus, from Eq. (10),

~C C
8(k cotbg) =——88.

8 82

It follows from Eq. (12) that, in view of the differential
Eq. (8) for y,

8C=2 cot8& d»UF&8y= (2k cot8&)88.
0

(15)

Consequently,

b(k cot8)) = (k cot8()88/B.

On the other hand, it follows directlyfrom Eq. (13) that

6(k cotta() = (k cot8[g)88.

In both cases the variation in k cotbg is proportional to
88. Therefore, it should not be surprising if we could
discover very many combinations of Eqs. (10) and (13)
such that the contributions from each to 5(k cot8~)
cancel each other, i.e., these combinations form sta-
tionary expressions. This is indeed the case. The ques-
tion of choosing among them appears to be merely a
matter of selecting the one most feasible for numerical
computation. The simplest combination appears to be
the following one:

where
0= (k cotbi)8 —C, (10) k cotb) ——(k cotbgg) (1+8)'—C. (16)

1
d»UF &(y

—G&„),
k p

C= ' d» —
l t

+kPy
E d»)

l (l+1)
+ U(») — (y G~)P I, (12

r2

On the other hand, if we multiply Eq. (9) by F&, Rq. (5)
by (y—G~„), integrate, and subtract, we obtain after
partial integration a second equation for k cotb&.

k cong=k cotbgg(1+8), . (13)

where k cot8~~ is just the Born approximation,

1 1 f
dr UP

k cot8(~ k' "p

It is easy to verify that, in view of Eqs. (13) and (15),
this is a stationary expression for k cotb&. From the
present point of view, previously given variational
principles for k cotb~ represent somewhat more cumber-
some combinations of Eqs. (10) and (13).

II. GENERALIZATION TO TENSOR FORCES

We now wish to extend the foregoing procedure to the
case of tensor forces. A general discussion of the scat-
tering theory with spin-orbit coupling has been given in
reference 4. It sufhces here to restrict ourselves to the
mathematical details. Consider a tensor force interaction,

V= V,+Vg(»)Sgp,

coupling the 'S~ and 'D~ states of a neutron-proton
system, where S» is the usual tensor operator,

3(og. r)(sp r) —0'] ' (F2.

Equations (10) and (13) may be looked on as a
fundamental set of equations for k cotb&, and, in fact,

The extension of the analysis for a spin-orbit interaction
coupling any two orbital angular momentum states is
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t

j Ul U2) dr(u1 u2+wl w2) ~

Jpd Q
+k'u+W, u+242W, w=0,

In addition, let

trivial. Let the 'S& and 'D& state radial wave functions be by the bracket notation
denoted by I and m, respectively.

These are coupled by the following two equations":

d'x 6
+k'w ——w+(W, —2W,)w+292W, u=0.

8t' r2

(17)
(cosetp)

~sineF2)

(coseG

& sineG2„)
'

The boundary conditions at the origin are

u(0) =w(0) =0,
(—sinetp' (—sineGp

I

COSet2 ) 4 CoseG2„& )

(3A)U"= cotSP"+G",

while, atr=~, thereare two linear combinationsof the Then we may define, in analogy with Eq. (3), the
asymptotic forms of u and m that are possible. These are asymptotic vector
denoted by the letters n and p. Thus,

limu= cose[cot8 sin(kr)+cos(kr)],
T~OO

with. either subscript n or p applicable. Further, let

«solution 0';
limw= sine[cot5 sin(kr —~)+cos(kr —vr)], or, explicitly,

(7A)

The quantity e is called the mixture parameter as it
determines the amount of admixture of pure 'S~ and
pure 3D& waves at infinity.

The problem at hand is to derive variational principles
for 8, 8p, and e analogous to Eq. (16). This can be
accomplished most easily with the use of matrix nota-
tion. The equations will be numbered so as to indicate
the corresponding equations of Sec. I. First, introduce
the asymptotic functions,

u~"=cose[cot8~tp+Gp~], up"= —slne[cot5ptp+Gp"],

w =sine[cot8 P2+G2"], wp =cose[coQpt2+Gpgg].

Furthermore, define inside-wave functions normalized to
unity at the origin, i.e.,

COS6$~ N~~ N~) Sln6gp Npg) Ip)

Then
Sln68~ = 'P~~ —'N~) —COSEVp = 'tOp~ —Kp.

y-, p(0) =~-, p(0) =1,

X-, p( ) =~-, p(~) =0.

Now introduce the vector U by the equation

and define the scalar product of two vectors U~ and U2

limu= —sine[coth p sin(kr)+cos(kr)],

solution p.
limw= cose[cotbp sin(kr —~)+cos(kr —~)],

( coseg ) (—slneyp~
I, Yp=I

(—sinev. ) (—cosevp)

With the following definitions of operators,

'd'/dr'

E. 0

0 ~ (0 0

d'/dr' 6/r') — (0 6/r')—
( W, 2v2W2

w=I
E242We W,—2W')

Eq. (17) may be written as

Also,
TU+k'U+WU=O.

TF"+k'F"=0,

(T—T2)G"+k'G" =0.
(SA)

(6A)

0= (k coth)8 —C, (10A)

These last two equations combined yield

TU" T2G"+k'U"=—0,

and consequently, the equation for I' is

TY—TQ"+k2Y+W(Y —U") =0. (8A)

For convenience, it may be indicated that the equation
for (Y—G") is

T(Y G")+k'(Y G")+—W(Y G")— —
—(cot5)WF"=0. (9A)

All the operations necessary for obtaining Eq. (16)
may now be carried out in completely analogous fashion
so that it is suKcient to write down the corresponding
equations. Thus,

"J.M. Blatt and V. F. Weisskopf, Theoretical XNcleur Physics,
(John Wiley and Sons, Inc., New York, 1952), Chap. II, Sec. 5D. in which we use the same symbols as before but they
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have the following extended meaning:

1
B= [F",—W(Y' —G")].

C=[Y (T—2'p) Y&+[(Y—G") Tp(Y —G")3

(11A)

00

Bp=cos o' — ~~ dr[tan'o W,Fp(yp Gp—)

—tano 2v2WiFo(yp —Go )
+tano 2v2W(Fp(op+Go„)

+k'(Y, Y)+[(Y—G"), W(Y —G")3. (12A)
—(W,—2W, )Fp(op+Go„)7,

In addition,

with
k coth = (k coth~) (1+B),

1
(F",—WF") .

k cotb~ k'

(13A)

(14A)

Cp= cos c
Jo

(dyp)
dr tanp. —

l
l+~oy

&dr)

( (&p)
+W.(yp —Go-)' —

i
I+&"p'

E dr)

Brx= COS 6'— «[W,Fo(y.—Go )

+tano 2%2W,Fo(y~ —Gp„)

—tano 2%2W,Fp(o +Go„)

The term in C involving second derivatives of the wave
function has been symmetrized by means of a partial
integration. The variational principle for the two phase
shifts 8 and bp is given by

k cotb= (k cotbs) (1+B)'—C. (16A)

It is to be understood that where a subscript is omitted,
either n or P may be inserted. The equation (16A) for
k cotb is stationary with respect to simultaneous varia-
tions of the wave functions y, o and similarly with P
replacing e. It is an analog in differential form of the
Schwinger variational principle'~ for the phase shifts
with tensor forces. It may be easily seen that Eq. (16A)
reduces to Eq. (16) if the tensor coupling is zero by
letting W& and e—4. Then b reduces to the ordinary
S-wave phase shift 80 and bp becomes the D-wave phase
shift 82. For the benefit of completeness, we write out the
expressions for 8 and C in long form.

6p
+l W, —2W, ——l(.p+G,„)or)

+2 tano 2v2W&(yp —Gp )(op+Go )

= cos'o —
~

dr{tan'o W,Fp'
k' ~0

—2 tano 2v2WgFpFp+ (W,—2Wg)Fo').

k cotbgp

III. VARIATIONAL PRINCIPLE FOR THE
MIXTURE PARAMETER a

0= (k cot8 )Bp'+ (k cotbp)B '—2C', (108)

In Eq. (16A), it has been assumed that the correct
value of the mixture parameter ~ was inserted in the
expressions on the right-hand side. But the value of this
parameter is not really known, and we must supplement
the stationary equations for 8 and 8p with a third
stationary expression if we are to render the value of e

correct to second order. The possibility of carrying out
the same operations as for Eq. (16A) in "mixed" form
yields such a stationary expression. Thus, multiply Eq.
(9A) for (Y —G ") by (Yp—Gp") and vice versa,
integrate, and add. We obtain in exactly similar fashion
to (10A) the following equation:

—tan'o (W,—2Wg)Fo(vs+Go„)$, where

1
B.'=-[(Y.—G.-), WFp-$,) o

C =cos'o l~ dr —
l l

+Py '+W, (y G-
~dr J

(l&~)

&dr)

t' 6q
+ l W.—2W, ——l(..yG,„)

rp p

1
Bp'=-[(Yp-Gp-), WF--i,

C'=[Y„, (T To) Ypj+k'(Y, Yp)—
+[(Y-—G-"), (W+To) (Yp —GP)3,

with the term in C involving second derivatives ap-
Go~)("~+G'~) ~ propriately symmetrized. In addition, corresponding to

Eq. (13A), we obtain
1 00

=cos'o —' dr[W, Fp'+2 tano 2v2WiFoFp
k cotb~~ k' ~p

+tan'o (W,—2W,)Fooj,

k cot8 = (k cotbs')B„',

k cotBp= (k cotb~')Bp',
(13B)
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1 1
(F—",WPp")

k cong' k'
(148)

The difference in form of Eqs. (13A) and (138) arises
from the fact that, for Eq. (138),

in which k cotb~' is a kind of "mixed" Born approxi-
mation,

F00

Bp = cos e' «[tane W,Po(yp —Go„)

+tan'e 2&2WgFs(yp —Go„)

+2~2W)Fo(vp+Gs )

+tane (W,—2W,)Fs(vp+Gs„)],
[Fp, T(V —G ")]—[(Y —G,"), TPp]=0,

whereas, for Eq. (13A), C =cos e
p

00

40

(dy-l (dyp'l« —tane —
I
E dr ) ( dr J

[F, T(Y —G ")]—[(Y —G "), TF ]=k.

Substituting Eqs. (138) into (108), we obtain

0= (k cotlp')B 'Bp' C'. — (168)

This expression is stationary with respect to variations
in all four wave functions, y, yp, m, and ep, as may be
readily veri6ed. Also, it contains no explicit dependence
on k cotb or k cotbp and consequently may be used to
solve for tane (as a function of tane, it is a quartic
algebraic equation). Therefore, it is proper to consider
Eq. (168) as an implicit stationary expression for tane.
However, it appears more correct to consider Eqs.
(16A) and (168) as three simultaneous stationary
equations for the three scattering parameters. A pro-
cedure for using them that suggests itself is to guess a
value of tane, use Eq. (16A) for obtaining k cot5 and
k cotlp, and then use Eq. (168) as a corrector equation
for tan&, inserting in it the varied wave functions
already determined by rendering Eq. (16A) stationary.

We append below the explicit expressions for the
primed quantities.

1
B '=cos'e «—[—tane W.Fo(y —Go„)

k&o

+2v2W(Fs(y —Go„)

+tan'c 2%2W &Pe(vs+Go„)

—tane (W,—2W ))Fs(v +Gs„)],

+k'y-y p+ W (y- —Go-) (yp
—Go-)

(
+tane —

I I I
I+k'v vp

E dr 3 E dr &

F 6)
+I W, 2W, —I(v.+—G—,„)(vp+G,„)

rs

—2%2W, (y.—Go„)(vp+Gs„)

+tan'e 2V2W, (yp
—Go„)(v +G,„)

k cot8~'

1
2=cos e — dt'

&' "o

X[—tane W,Fo'+ (1—tan'e) 2v2W~FoFs

+tane (W,—2W,)Fs']

"Note added in proof.—The author is indebted to L. Sartori
for pointing out to him that T. Regge and M. Verde, Nuovo
cimento 10, 997 (1953) have extended Hulthen's second formula-
tion (see reference 8) to the three independent elements of the K
matrix.

Note that in applying the above expressions to Kq.
(168), the common factor of cos'e may be dropped from
all of them. "


