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A function is defined which expresses quantum mechanically the correlation of the displacements of pairs
of lattice points at different times due to the wave-like nature of crystal excitations. Methods are developed
for summing implicitly the effects of multiple emission and absorption of lattice quanta occurring during
a scattering process. The inelastic scattering cross sections found thereby are expressed entirely in terms of
the time-dependent correlation function defined earlier. The resulting treatment thus emerges as a natural
generalization of the static theory of x-ray scattering. The results are discussed in relation to a number of

approximation methods.

I. INTRODUCTION

F the particles whose scattering by crystal lattices

is of experimental interest, electrons and photons
show the simplest behavior energetically. The energies
of these quanta are in general high enough that their
exchanges of energy with the lattice system may be
ignored and the collisions treated as approximately
elastic. For particles as heavy as neutrons, however,
the inelasticity is no longer negligible. The energies of
neutrons with wavelengths suitable for interference
experiments are quite comparable with those of the
thermally excited vibrational quanta of the crystal.
The absorption or emission of vibrational quanta
therefore causes relatively appreciable changes of the
neutron’s kinetic energy. It is with the generalization
of the theory to the treatment of such inelastic processes
that the present work is chiefly concerned.

The deviations of a crystal lattice from perfect
regularity due to thermal vibrations were first shown
by Debye! to bring about a reduction in the intensities
of the Laue spots formed in x-ray scattering. Later and
more explicitly, quantum-theoretical investigations?
have explained quantitatively the background of diffuse
scattering which also results from thermal agitation.
In particular, it has been shown that it is the correlation
in the displacements of pairs of nearby scattering
centers existing at any instant, which brings about the
observed distributions of diffuse scattering. These
displacement correlations are due to the wave-like
nature of the lattice excitations, and may be expected
to persist over finite intervals of time as well as distance.
The latter fact is especially significant in the treatment
of heavy-particle scattering since at the low energies of
interest the particle’s passage through a crystal cannot
be approximated as instantaneous. It is natural then
to introduce a function expressing the correlation of
displacements of pairs of points in its dependence on
intervals of time, as well as position in the lattice.

* A brief account of this work was presented at the Washington
meeting of the American Physical Society, May 1, 1952 [Phys.
Rev. 87, 189 (1952)]. See also Phys. Rev. 94, 751 (1954).

1P, Debye, Ann. Physik 43, 49 (1914).

2], Waller, Uppsala Dissertation, 1925 (unpublished). For a
review of this work and later contributions see M. Born, Repts.
Progr. Phys. 9, 294 (1942-3).

This function is a direct generalization of the instan-
taneous correlation function associated with the treat-
ment of x-ray scattering. We shall show that it furnishes,
in fact, all of the information necessary for expressing
the solution of the inelastic scattering problem. Re-
cently, Van Hove has demonstrated the usefulness of
defining analogous time-dependent correlation functions
for more general types of scattering systems.?

The emission and absorption of vibrational quanta
by a scattered particle is an intrinsically multiple
process. Arbitrary numbers of quanta may be created,
and arbitrary numbers absorbed in a single collision
with the lattice. Problems of multiple quantum emission
bearing considerable analogy to this have long been of
interest in field theoretical contexts, and certain of the
methods developed to handle them are well suited to
the crystal problem. Use will be made of these without
appealing to an explicit knowledge of field theory.
Using the neutron case as an illustration we shall
thereby derive a closed expression for the inelastic
scattering cross section which is valid for all relevant
initial energies and takes into account all possible
quantum transitions. Previous treatments have mainly
been confined either to one-quantum processes,* and
therefore to low energies, or to the asymptotic limit of
high energies.5:®

Before undertaking the calculation of the scattering
it will be useful to discuss the relevant properties of the
lattice.

II. THE DISPLACEMENT FIELD

The normal modes of crystal lattices bound by
Hooke’s-law forces are plane vibrational waves. The
elastic energy of the crystal is quadratic in the ampli-
tudes of these waves, which are therefore quantized in
the way familiar for harmonic oscillators. The particle
coordinates then become operators defined at each
point of the lattice. We shall designate these collectively
as the displacement field u(r;,f), that is the set of vector
displacements at time ¢ of the mass points whose

3 L. Van Hove, Phys. Rev. 95, 249 (1954); 95, 1374 (1954).

4 This work is reviewed by J. M. Cassels, Progr. Nuc. Phys.
1, 185 (1950) ; see also reference 5.

5 A. Akhiezer and I. Pomeranchuk, J. Exptl. Theoret. Phys.

U.S.S.R. 17, 770 (1947).
6 G. L. Squires, Proc. Roy. Soc. (London) A212, 192 (1952).
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TIME-DEPENDENT DISPLACEMENT CORRELATIONS

equilibrium positions are r;. In discussing this field
more explicitly it will greatly simplify notation to
specialize to the cases of lattices of identical atoms
occupying equivalent positions. The extension to more
general lattices is straightforward. Assuming then that
there are IV atoms in all, each of mass M, the expansion
in plane waves of the o component (a=1, 2, 3) of the
displacement field will be”

3
ua(r t): Z ea(P)
’ icp 2NMw

X(ak pei(kq’—wt)_I__ak’ p’)‘e—i(k-r—wt)). (1)

Here e® (p=1, 2, 3) are the three unit polarization
vectors for waves of propagation vector k and angular
frequency w=w? (k).

The amplitudes ax, , and ay, ,' are the familiar oper-
ators of harmonic oscillator quantization. They destroy
and create single quanta, respectively, in virtue of their
commutation rules:

Ok, plx’, p'T_ Axr, p’Tak, = [ak, 2,0k, p’sz OxxOpp’,

[ax, p,a1,p]=0, [ax ' ,ax, »']=0.

)

We shall later need the expectation values of certain
rather general expressions involving these operators.
It will be shown, however, that the results may be
expressed in terms of those for the two bilinear combi-
nations with nonvanishing expectation values,

(ax, "0k, ) =1k, p, {0k, o1, p ) =11, 1, (3)

where ny, , is the average number of quanta in the mode
specified by k and p.

As we have already noted, the wave-like nature of
crystal excitation causes correlations in the displace-
ments of lattice points many unit cells apart which
may also persist over long intervals of time. A measure
of the correlations of position is furnished by the
expectation values of the products of the displacement
components at different points r and r/, and times ¢
and #. In the absence of correlation the expectation
values vanish. Their evaluation proceeds immediately
by use of (3):

(e (r,)up(r' 1)) = 2

e,,(p)eg(”)
2NMw

X{ (nx, ,+1) expli(k- (r—1") —w(t—1))]
+ny, p exp[ —i(k- (t—1)—w(=1))]}. (4

Similarly constructed expectation values, usually called
propagation functions, also play a central role in
elementary particle theories. There their evaluation is
simplified, however, by the vacuum’s emptiness, for

7 Although the plane wave expansion defines a displacement
field for all r, only the values at the lattice points are needed,
provided the individual scattering centers are translated rigidly.
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all practical purposes, of stray quanta. By contrast
the background of thermally excited quanta of a lattice

forms a Bose-Einstein gas of considerable concentration.

The average quantum populations are given by the
Planck distribution

nx, p=[exp(fiw® (k) /xT)— 1717, (%)

in which « is the Boltzmann constant and 7" the temper-
ature. Expectation values such as (4), averaged over a
thermal distribution of quantum states at temperature
T, will be denoted by { )r. Thus the brackets { )o
which customarily denote the average in a space devoid
of quanta, will retain their usual meaning.

The scattering calculations to be undertaken pres-
ently will be seen to require only the information about
the crystal contained in the expression (4). The sum-
mation over propagation vectors may be replaced by
an integration of the vector k/27 over a unit cell of
the reciprocal lattice. For a given lattice temperature
T, we are thus led to define a tensor correlation function

Cap,r(t—1', i—1) = (sa(x,)us(x' ;")) r, (6)
for which we find
Voh
CaB, T(r,t): Z ea(f’)eg(f’)
16m3M »
2cos(k-r—wt) ) dk
X lei(k-r—wz) } , (7)
exp (fw/kT)— 11 u® (k)

where V) is the volume of the unit cell. The first term
of the integrand, which is temperature independent,
gives the correlation of the zero-point. vibrations
Cag,o(r,t), while the second adds the effect of thermal
excitation.

For vanishing time arguments the correlation func-
tion is real-valued, which is to be expected since
displacement operators evaluated at the same time
commute, and their product is hermitian. Evaluated
at different times, however, these operators do not in
general commute, an expression of the fact that the
corresponding position measurements cannot be carried
out independently.® For finite time differences the
correlation function is therefore complex-valued. It
obeys the relation

Cﬂﬂ,T(r)t)=Caﬂ. T*(_r7 _t)y (8)

the latter expression reducing, for the simple lattices
under consideration to Cag 7*(r, —1).

For the rougher purposes of orientation, the Debye
model may be used to evaluate the correlation function.

8 A sound cone may of course be defined similar to the light cone
of electrodynamics, but the analogy is a crude one, since the
exact commutation of the displacement operators holds only at
equal times. It does not extend to other intervals outside the
sound cone because of the impossibility of forming sharp wave
packets within the crystal.



1694 R. J.

The integrations in k-space are then carried out over
the volume of a sphere of radius kp= (67%/V ). We
may further assume the existence of a unique sound
velocity s=w/k for all quanta, thereby neglecting
certain effects of anisotropy, polarization, etc. The
constants s and kp define the characteristic Debye
temperature © through the relation x®@=7%skp. With
these simplications the polarization summation of (6)
reduces to a factor of §.s, the unit tensor; orthogonal
displacements are uncorrelated. The correlation func-
tion then assumes the form

Caﬁ, T(r:t) = BHBCT(D) (l’,f), (9)
with
3h?
CrD® (r,g) =__f l pilk-r—skt)
8T MkOkp?

2 cos(k-r—skt) )dk
+ . (10)
exp(Ok/kpT)—1) k

Evaluated for vanishing intervals of both space and
time, the correlation function reduces to the mean-
squared value of a displacement component (a=1, 2,
or 3).

Cr®(0,0) = (u2(xr,f))r

ﬁ2
= i+(T/0)2(0/1)}. (1)
72 6{4 }
Here & is the function introduced by Debye
1, v
q;(x):_f __y_y__, (12)
xJo exp(y)—1

which is discussed and tabulated in many references.’
At temperature zero the Debye correlation function
reduces to elementary form

3n? { 1—explikp(r—st)]

Co® (r,0) =
4MK®kD27’

r—si

1—exp[ —ikp(r+st)]
+ .
r+st

More generally, for 7O the temperature-dependent
term of the integrand of (8) may be expanded in powers
of exp[ — ®k/kpT ] and integrated in elementary terms.
For high temperatures, 7>>0, direct expansion in
powers of Ok/kpT is possible, which leads to results
expressible in terms of sine integrals.

(13)

III. THE POTENTIAL AND ITS TREATMENT

A particle scattered by an ideally rigid crystal would
be subject to an exactly periodic potential.l® We shall

9 See for example R. W. James, Optical Principles of the Diffrac-
tion of X-Rays (G. Bell and Sons, London, 1948).

10 Tn the scattering of x-rays the periodic function of interest is,
of course, the electronic charge density, rather than a potential.
The mathematical analysis is so similar, however, that the
methods of the present work carry over with a few simple substi-
tutions.
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represent this function as a summation over the lattice
points r; of equivalent potentials centered about each

of them.
V(n)=2;0(r—r;).

In an elastically bound lattice the scattering centers
are at any instant shifted from their equilibrium
positions r; by an amount given by the displacement
field u(r;f). In the present work we shall assume that
the individual potentials are shifted rigidly along with
their lattice-points, so that the total potential is
represented by

V() =2, O(—r;—u(r;)).

In the Born approximation the scattering problem
reduces to finding the matrix elements of this operator,
and summing their squares over the various possible
transitions.

Particular mention must be given the case of neutron
scattering where the treatment proceeds by means of
the Fermi pseudopotential approximation.!! The short-
range potentials between neutrons and nuclei are re-
placed by point interactions (delta functions) whose
magnitudes are adjusted so that the scattering by
isolated fixed nuclei is correctly represented by the
Born approximation. That is, the interaction between
a neutron (mass ) and a nucleus at r; is taken to be
(2x#2/m)a;6(r—t;), where @; is the bound scattering
length.'? The use of the Born approximation formalism
is then extended to the case in which the nuclei are no
longer fixed, so that the effective potential becomes

Vneut (1,0) = (207%/m)2 5 a;8(x—1;—u(r;0)).  (16)

Although the problem of finding the matrix elements
of operator functions such as (15) has rather a general
appearance, it may always be reduced by means of the
fourier integral representations of the potentials to the
problem of treating exponential functions of the
quantized field u(r,f). The analysis required for these
is particularly simple, as has been shown in other field-
theoretical contexts.’* By evaluating the matrix ele-
ments of these functions without expanding them in
power series, we avoid the need to consider in detail
the enormous variety of vibrational transitions the
potential operator may induce. In effect the great
number of degrees of freedom, which is responsible for
this multiplicity, makes possible the use of field-
theoretical methods which perform the summations
automatically.

~We shall require the matrix elements of operators of
the form expU, where U is some linear combination of
the components of the displacement field #.. The only
property of U needed for this purpose is that it is a
sum of creation and destruction operators for all the

(14)

(15)

1L E. Fermi, Ricerca sci. 7, 13 (1936).
12 A review of the necessary information on neutron scattering

is given in reference 4.
B R. J. Glauber, Phys. Rev. 84, 395 (1951).
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modes of the system. As the simplest example we write
the reduced form of expU for the emission or absorp-
tion of a single quantum in any mode, assuming that
all the modes of the crystal are initially in specified
quantum states. This is

d
(expUY® = U<d—5 epr> — Ulexpl),  (17)

in which the expectation values on the right are to be
taken in the initial state of the system. In effect (17)
corresponds to a separation of a single factor of U, the
one which is to perform the real creation or absorption
in all possible ways from the terms of the series expan-
sion of expU, together with the requirement that the
remaining operators leave the state unchanged. It is
easy to show that the neglect of the commutation rules
in thus separating a creation or destruction operator
leads to errors which are only of order 1/N. Since N,
the number of lattice points is usually enormous we
shall consider (17) as exact. To find the reduced forms
for n-quantum transitions an analogous procedure may
be used to separate a factor of U”, which must then be
divided by #! since each of the U’s may be responsible
for any of the transitions

U s dr
{expU)™ =;<5 epr> = (U*/n!){expU). (18)

The occupation numbers of the crystal modes are of
course never known precisely and transition proba-
bilities calculated from (18) must be averaged over an
ensemble of initial states at some temperature 7'. This
procedure may be simplified by first performing the
averaging directly on the expectation value occurring
in (18). The eventual error incurred thereby once again
vanishes with 1/N. We therefore define an average
reduced form of expU for an n-quantum process at
temperature 7.

(expU)r™ = (U"/n'){(expU)r.

To compute the averaged expectation value (expU)r
we consider the expression (expAU)r as a function of
the variable A. Differentiating, we have

(19)

d
5\(exp)\ Uyr={U expAU)r. (20)

Since the expression on the right is a sum of diagonal
matrix elements, only the one-quantum matrix element
of the exponential can contribute to it. Then, replacing
the exponential by (expAU)r® =AU{expAU)r, we obtain
the differential equation

d
5\(exp)\ Uyr=NU?{expAU)r, (21)
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for which the solution sought is*
(exp\U)r=exp (GN(U?)r). (22)

This completes the evaluation of the averaged reduced
form (19):

(expU)r™ = (U"/n!) exp(3(U*r). (23)

IV. SCATTERING CALCULATIONS

The individual potentials V(r) of (14), we assume,
have the Fourier integral representation

O ()= f F (k) exp[ik-r]dk, (24)

where, in particular for neutron scattering, F(k)
=#%a/(2r)?>m. The potential acting on the scattered
particle is then .

V(e,)= f PO ; explik- (r—r;—u(r;0)1dk.  (25)

The particle’s initial state is represented by a plane
wave, exp[i(p-r—Ef)], where p and E are the initial
momentum and energy, divided by #. Its final state
exp[s(p’-r— E’f)] has, in general, a momentum differing
in magnitude as well as direction. Introducing the
differences

AE=E'—E,

Ap=p’'—p, (26)

the time-dependent matrix element for the transition,
insofar as the particle variables are concerned, is

M@= f V' (e,0) exp[ — i (Ap-r— AEf) Jdr

= (2m)’F (Ap)2 ; exp{ —i[Ap- (r;+u(r;?))

—AEf]}. (27)
This expression, however, is still an operator capable of
inducing all possible vibrational transitions.

The rules formulated in the preceding section may be
applied directly to find the reduced form of (27) for
an z-quantum process. We identify the quantity
—iAp-u(r;,f) with U, and note that

(U%r=—((ap-wp’)r

= -Zﬁ Apalps(tha (7 )us(r;0))r (28)
=—2 ApaApsCas r(0,0) (29)
=—ApAp: Cr(0,0), (30)

14Tt may be noted that the present result holds true, whatever
are the thermal weightings attached to the various degrees of
excitation, i.e., even in nonequilibrium states. A similar theorem,
due to F. Bloch [Z. Physik 74, 295 (1932)] which holds for
oscillator systems with any number of modes requires explicitly
the weightings of thermal equilibrium.
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where the second line follows from the definition (6) of
the correlation function, and in the third line dyadic
notation is used to abbreviate the tensor product.

With the above identification of U, the relation (23)
applied to (27) yields the effective transition operator
for an n-quantum process:

(M (1))r™ = (2m)*F(Ap)

1
X{ T —(—itp-u(es0) e ios-s

Xexp[—3{(Ap-w)Hrle*®t.  (31)

The features of the elastic scattering which occurs
when no quanta are emitted or absorbed are already
apparent. For =0 the absolute value, squared, of
(31) exhibits Debye’s classic result for the Laue-Bragg

scattering. The pattern is the same as for a rigid
~ lattice, but modulated in intensity!® by a factor
exp[ —((Ap-w)?)r].

To compute the cross sections when quantum transi-
tions do occur, it is convenient once more to develop a
procedure which carries out implicitly the summations
over the many processes possible. The expression for
transition probabilities in the Born approximation
may be written in the form

w= Q2r/") 3> Mif'M6(8;,— 8)), (32)

where the matrix elements, if time-dependent, may be
evaluated at any time, and the summation over final
states is restricted, as shown, by the conservation of
energy. Without this explicit restriction of the sum-
mation, (32) could be expressed as the diagonal element
of a matrix product. This may be effected by noting
that for any conservative system, the time integral of a
matrix element contains the conservation condition.
Thus, for example, we have

f Mt (8)di=M ;/*(0)275(E;— &.),
which permits us to write (32) as the expectation value®

w=—;—2{ f_ :Mf(t)M(o)dt} . (33)

i

The total probability of an #-quantum process, summed
over all the forms it may take is found by substituting
the matrix element (31). Because the initial state of
the system remains unknown the probability must
finally be averaged thermally to represent the effects

15 A simple way of viewing this is that (M)r©® is just the matrix
element of the thermally averaged potential. The latter, according
to (31), may be expressed as S Kr(r—r')V'(¢')dr’, where K (r)
=(8(r—u))r which, in a Debye crystal, is

(2m(ua?yr) 4 exp[—r2/2uat)r].

16 This device was first used in a similar context by W. Lamb,

Phys. Rev. 55, 190 (1939).
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of the real processes. We have then
1 0
wnm [ OOt (30

To find the cross section for scattering accompanied
by n-quantum processes w, must be multiplied by the
usual state-density factor for the outgoing particle and
divided by its incoming flux. We are led thus to define
the n-quantum differential cross section:

an(p))=Lm*p'/ (2x0)*p Juw-,

where the inelasticity leaves the magnitude p’ of the
final momentum unrestricted. The total cross section
for the n-quantum process is obtained by integrating
over energy d(#E’) and solid angle d'.

(35)

O, tot= fan(p')d(ﬁE')dQ’. (36)

The only expectation value in (34) which remains to
be found is that of the product of the quantized oper-
ators in the two factors of (M)r™. It has the form

(n)~X[iAp-u(r,f) I*; [—iAp-u(rn,0) J)r,

in which a semicolon has been placed between the
factors as a reminder that the # real transitions induced
by the operators to the right of it must be reversed by
those to the left.}” The pairing of the operators on the
two sides which effects this takes place in #! ways.
Furthermore in the limit of large N the expectation
value (37) for each pairing scheme reduces to the
product of the expectation values for the corresponding
pairs. Thus (37) reduces to the nth power of the
correlation function

() {(Ap-u(r,) LAp-u(r,,0) Pr}»
=(n 1)*1{21s Apalpa(tta(t1,t)ug(1,,0))r} ™

(37

= (n)){ApAp: Cr(ri—r1,0)}"

The evaluation of the n-quantum differential cross
section now proceeds directly by combining (31), (34),
and (38) in (35). In particular we find that all of the
knowledge required about lattice vibrations is con-
tained in the time-dependent correlation function
Cr(r;—1tm, £). The summations to be performed over
the lattice points r; and r,, may be simplified by noting
that only the difference r;—r,, appears in the summand.
In the limit of large N the double summation therefore
becomes N times the single summation over positions
relative to a particular lattice point, chosen as origin.
The expression for the n-quantum cross section, thus

(38)

17 Tf, in a single one of the factors of (Ap-u)” a pair of u’s were
used to both emit and reabsorb a quantum in a single mode, the
number of real processes carried out would be n—2. Virtual
processes of this type are already correctly accounted for in (31).
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reduced, is

(271') SN'm? Pl

an(p)= |F(Ap) |2 exp[—{(Ap-u)*)r]
nlhdp

X3 eiteers f 8B ApAD: Co(rsd) ) dh. (39)
J.

—0

The summation over » from zero to infinity to
include all possible quantum processes is now immedi-
ate, and results in the introduction of the function
exp[ApAp: Cr(r;,f)] within the time integration. For
purposes of illustration we specialize to the case of
neutron scattering, for which we have noted F(Ap)
=7%a/(2m)?m. Then, defining the differential cross
section for all quantum processes o(p’)=32"(n (D),
we have

a?p’

a(p)=27rﬁp

exp[ —((Ap-u))r 3 eite-ri

x f exp[ —iABI+ApAp: Cr(r;0)]dt.  (40)

Although we have thus far assumed the lattice to
consist of identical scatterers, the presence of spin- or
isotope-dependent interactions will cause a fluctuation
of the scattering length from one nucleus to another.
In such cases, with the replacement of a? by (a)a?
(40) represents the coherent scattering by the lattice.
To this must be added the scattering, proportional to
(a®)n— (@)a?, which results from the disorder of the
system. The treatment of this incoherent scattering is
the same, in relation to the lattice quanta, as the
coherent scattering. The result is similar to (40) but,
of course, lacks the interference effects represented by
the sum over lattice points r;.

Np'
L(@)n— (@)n?] exp[—((Ap-u)?)r]
2nhp

cinc(p) =

Xf exp[ —7AEi+ApAp: Cr(0,6)]dt.  (41)

The incoherent cross section, which is in general also
inelastic, is seen to depend only on the difference

C2(0,1) — (uu)r= C7(0,)— C(00).

V. COMPARISON WITH APPROXIMATE METHODS

We have derived expressions for the inelastic scat-
tering cross sections which are essentially exact in their
treatment of lattice vibrations. In particular, the infor-
mation required about the lattice is seen to be entirely
contained in its characteristic tensor correlation func-
tion Cag r(r,t). Unfortunately our knowledge of the
vibrational frequency distributions w® (k) in crystals
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is still too fragmentary in nearly all cases to permit
explicit construction of these functions. It seems
reasonable to hope, however, that some of the required
data on frequency distributions can be found directly
from measurements of the inelastic scattering of slow
neutrons.’® For the present we shall limit ourselves to
the discussion of various approximation methods, which
correspond to the use of incomplete knowledge of the
correct correlation function. Equations (40) and (41)
furnish a unified starting point for all such procedures.

One means of evaluating the expressions (40) and
(41) proceeds by re-expressing them as the sums of
n-quantum partial cross sections. The expansion will
converge quite rapidly for small momentum transfers
and low temperatures, that is for (Ap)Xu.2)r<1. In
this case not many terms need be retained and the
integrals required are only those of the corresponding
powers of the correlation function. The one-quantum
terms have been extensively investigated in this way,*®
and certain estimates made of higher-order effects,®$
all on the basis of the Debye model. As an illustration
of this method applied to inelastic scattering, without
restriction on the number of quanta, we write the cross
section for incoherent neutron scattering by a Debye
lattice at zero temperature, with energy loss —AE
=«0/%. Direct computation with (41), expanded, yields

Tine(D") = (NVp'/Bp)[ (a*)n— (@)n?]
Xexp[ — (Ap)Xu.?)rH (Ap,AE),
1 " 1
AE| Z mizn D)
3t (Ap)(AE)\ ™
X( 2M (x®)? ) - @

(42)
where

H(Ap,AE)=5(AE)+

The delta function §(AE) evidently represents elastic
scattering in the zero-quantum case, and the terms
following add the inelastic effects of all other quantum
processes.

The scattering of x-rays and electrons by crystals,
as we have noted earlier, is usually studied at energies
high enough that the gain or loss of lattice quantum
energies is relatively insignificant. In cases such as
these, the final energies will be in a band so narrow
that for any given direction of scattering they may be
integrated over without appreciably disturbing the
value of Ap. Such integrations may be carried out on
the cross sections (40) and (41). Letting p'=p, and
holding Ap fixed, we may extend the limits of the AE
integration to « and —oo, since it is assumed that
only the central region contributes. The integrations
over AE performed in this way place the delta function
6(f) within the time integrations which may then be
performed directly. The results are seen to contain

18 G, Placzek and L. Van Hove, Phys. Rev. 93, 1207 (1954).
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only the correlation function evaluated at time ¢=0.
founnamn)

=N (a)n? exp[—((Ap-w)*)r]
X2 exp[iAp-r;+ApAp: Cr(r;,0)], (44)

f T @)AEE) = N[(@n— @] (45)

These, of course, are just the results of the static
treatment usually employed in the study of x-ray
diffraction. They may be arrived at somewhat more
directly by assuming the lattice vibration frequencies
relatively so low that the passage of the particle through
the system is effectively instantaneous. This makes it
possible to replace the correlation function by its value
for vanishing time intervals Cgg, 7(r,0), the scattering
being thereby represented as elastic [o(p’)~86(AE)]. A
procedure for correcting the angular distributions re-
sulting from the static approximation has been intro-
duced by Placzek.!® In the present context it corresponds
directly to expanding the function exp[ApAp: Cr(x,t)]
in successive powers of 2.

Another limit whose discussion is instructive is that
of large momentum transfer and/or high crystal temper-
ature, i.e., large values of ((Ap-u)®r. In such cases a
detailed discussion of the coherent cross section shows
that the interference effects represented by the lattice
points r;0 become relatively small. For these points
the correlation function is too small to compensate the
negative exponent of the Debye-Waller factor. The
coherent scattering in this limit comes entirely from
the point r;=0, and is proportional to the incoherent
scattering.?

The energy dependence of the incoherent scattering
may also be found in the same limit, ((Ap-u)?)r>>1,
and we include it as a further illustration of the time-
dependent method. The definition (7) of the correlation

19 G. Placzek, Phys. Rev. 86, 377 (1952).

20 A, Akhiezer and I. Pomeranchuk, reference 5, have discussed
many quantum processes in the high energy limit, and have
stated a form of (40), for the Debye model, retaining, in effect,
only the central lattice point ro=0. The derivation given appears
to omit certain terms leading to the Debye-Waller factors when
the number of quanta is greater than zero, although these appear
in the result stated. The same argument is repeated in their text,

A. Akhiezer and I. Pomeranchuk, Certain Topics in Nuclear
Theory (Moscow, 1950), revised second edition.
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function shows that the real part of Cag7(0,) is
stationary at (=0, and as we shall see this corresponds
to a maximum. Since asymptotically the principal
contribution to the time integration will come from
near t=0, we expand the correlation function:

Caﬁ’ T (O,t) = Caﬂ‘ T (070) +tcaﬂ(1) + lzcaﬁy T(Z) .

The coefficient Cos™ may be obtained from (7):

(46)

Cas® = —i(Vohi/ 16T M) S f euPesP k.
»

Since the vibrational modes for each propagation vector
are mutually orthogonal, this reduces to

Cap®=—1(h/2M)das, (47)
an expression independent of the lattice structure. If
the £ term were negligible, substitution of (46) in (41)
at this point would yield ¢in.(p)~S(AE+ (2(Ap)*/ M)).
The scattering would in effect be by free particles of
mass M.

The Debye approximation may be used to estimate
the quadratic term of (46). This is

Cop7®=—(Voh/167°M)d0p

Xf{%—}-[exp(hw/KT)—1]‘1}wdk

= —[h8(T)/2M s, (48)
where &(T) is defined as 7! times the average thermal
energy per lattice particle (including zero-point energy).
The time integral required, of the exponential of a
form quadratic in ¢ may be performed immediately to
yield a Gaussian distribution® of final energies centered
about AE=—§,=—#%(Ap)?/2M, with a dispersion
proportional to [&,8(7)]%. In the limit we have been
discussing, the residual effects of interference in the
coherent cross section may be estimated by similarly
using the maxima of the real part of Cp®(r;,£) which
occur near = =7;/s, where s is the sound velocity. For
this purpose, however, it would be desirable to employ
a correlation function representing dispersive effects
more realistically.

Applications of the time-dependent method to neu-
tron scattering by molecular systems will be discussed
in a forthcoming paper.



