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The plasma has been treated phenomenologically as a homo-
geneous dispersive medium characterized by a ‘‘dielectric con-
stant” which is a function not only of the frequency of the applied
field (as in conventional dispersive media) but also on its wave
number. The representation of plasma as a dispersive medium is
subject to certain validity criteria which are satisfied for such
typical cases as the ionosphere and electrical discharge through
gases but is not satisfied for electrons in the conduction band of a
metal. The passage of charged particles through plasma is inves-
tigated by means of straightforward application of Maxwell’s
equations for a dispersive medium. The Debye screening, which
is applicable to the potential of an incident particle having

velocity V<(v*} (where (v%)? is the root mean square velocity of
plasma electrons), loses its significance when V>3>(#%)%; and in the
latter case, the potential decreases with the distance in accordance
with an inverse cube law. The stopping power has been calculated
for slow incident charged particles having V<(2%)?* and for fast
particles having V>>(#%)% in a plasma comprising electrons dis-
tributed in accordance with Maxwell-Bolzmann and Fermi-Dirac
statistics. For slow particles the results represent an extension of
the formula of Fermi and Teller. An expression has been derived
for the distribution of the polarization density in the space sur-
rounding a moving particle.

I. INTRODUCTION

ITHIN the last several years, considerable
interest has been shown in the study of an
organized assembly of charged particles designated as
‘“plasma,” some of the important properties of which
had been described earlier by Rayleigh,! Langmuir,? and
Langmuir and Tonks.? A large portion of the recent
literature devoted to this subject appeared in the
U.S.S.R., initiated by A. Vlasov and his associates.*~7
In the United States, the properties of plasma were
studied by Bohm, Pines, Gross, and others.>12
Plasma in its normal equilibrium state is charac-
terized by a substantially equal density distribution of
positive and negative charge. Consequently, the volume
distribution of charge is practically zero, and the poten-
tial within the medium is determined by Poisson’s
equation V?¢=0. The positive charges are heavy and
their motion may be neglected. Any disturbance in the
plasma will tend primarily to disturb the distribution
of electrons and produce polarization in the medium.
To facilitate our problem, we assume that the positive
nuclei have their charges spread our uniformly throug
the medium. :
Our purpose is to study the classical interaction
between an incident charged particle and a surrounding
plasma. This subject has been treated extensively in
the literature and several methods have been applied

* This paper is part of the thesis of one of the authors (R.H.R.)
in partial fulfillment of the requirements for the Ph.D. degree at
the University of Tennessee.
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to determine specific aspects of the problem. Kronig
and Korringa® 15 and Vlasov” treated the problem by
means of a hydrodynamical model of an electron gas.
Vlasov? and Akhiezer and Sitenko,!® applying a
method originated by Vlasov, treated the electron col-
lisions by means of a generalization of the Boltzmann
transport equation which has been modified to take
into account the long-range Coulomb forces. Fermi and
Teller,'” and Kwal'®*® applied the method of binary
collisions and took into account the plasma aspects of
the problem by including in their treatment either the
Debye length or the natural frequency of the plasma.
Kramers® used the conventional form of the dielectric
constant of an assembly of free stationary electrons in
a classical electrodynamic calculation of the stopping
power.

Our purpose is to re-examine the stopping power
problem and to use a phenomenological approach in
which the microscopic behavior of individual electrons
in the plasma is ignored, adopting instead a macroscopic
point of view and describing the electron assembly as
a homogeneous, isotropic, dispersive medium. In con-
ventional dispersive media, the dielectric constant
depends on the frequency of the applied field. The die-
lectric constant of a plasma is characterized, however,
by essentially different properties since it depends not
only on the frequency but also on the wave number of
the applied field. The dielectric properties of plasma
have been considered by Gertenshtein?+2 in the study
of longitudinal waves passing through ionized media
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CHARGED PARTICLES THROUGH PLASMA

and in an investigation on the scattering of radio-waves
by inhomogeneities in the ionosphere. Gertsenshtein
used Vlasov’s approach and treated electron collisions
by means of a generalized form of the Boltzmann
transport equation. However, the phenomenological
treatment, which is based on the straightforward appli-
cation of Maxwell’s equations properly modified to take
into account the motion of the medium, clarifies the
physical aspects of plasma behavior and facilitates the
treatment of problems involving the interaction of
charged particles with plasma.

In part II, using the phenomenological approach,
we examine the behavior of the plasma and determine
its response to an external disturbance. In part IIT we
consider a specific case of a disturbance created by a
moving point charge, and in part IV we derive the
potential for a slowly moving point charge. The validity
of the phenomenological approach is discussed in part V.
In parts VI and VII we consider the field and the
polarization charge density in the surrounding medium
produced by an incident particle and the effectiveness
of the plasma in stopping the particle.

II. ELECTRODYNAMICS OF THE PLASMA

We now consider the effect on the plasma of an
impressed electric field E(r,f). We assume that the field
perturbs the equilibrium motion of the electron assembly
only slightly and that during the period of time in
which the electrons may be considered as responding
collectively to the applied field they execute approxi-
mately straight-line motion. This condition will be
discussed in greater detail in a later section.

Let nf(v)dv be the number of electrons per unit
volume possessing velocities in dv at v, and /" f(v)dv=1.
As a result of the impressed electric field, the medium
becomes polarized, and we designate by P.(r,f)dv the
polarization vector associated with the electrons having
velocities in a region dv about v. We shall place our-
selves in the reference frame of the moving electrons
and determine the equation of motion of the polarization
vector. Neglecting the small Lorentz force due to the
magnetic field, the equation of motion for the nonrela-
tivistic case can be written as follows®:

ne2f(v)E(ro+ot,f)

m

@ d
(——-—I—g-—) P, (ro+vif)=
dt

where 1o is the position vector in the reference frame
of the observer and » and e are the mass and charge of
the electron, respectively. Damping of the motion of the
polarization vector due to electron-ion and electron-
electron collisions is represented by the damping
constant g. Since the exact nature of this damping is
not important to our discussion, it will be neglected at
a later point.

23 J. C. Slater and N. H. Frank, Electromagnetism (McGraw-Hill
Book Company, Inc., New York, 1947), Chap. 9.
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P, and E are now expressed as Fourier integrals,

{Pv(r,t) l _ fdkdwei(k.r—wt)

P, (k,w)
E(r,) } @

E (k,w)

and we find from Eq. (1) the following relation between
P, (kw), and E(kw),

ne’ f(v) E(k,w)
m (o—k-v)+iglo—k-v)

Pv (k)w) =- (3)

Maxwell’s equations in a medium moving with velocity
v are well known? and may be written, for a nonmag-
netic medium

curl E=—(1/c)H,
divH=0,

(4a)
(4b)

1. 4x . 4y
curlH="E4— f [P, curl (B X v) 1/ (V) dv+—, (4c)
C 4 Cc

divE=47r(p1-— div f P, f(v)dv), (4d)

where j and p; are applied current and charge densities,
respectively, relative to the fixed reference system.

In the following we shall refer to various magnitudes
such as E, H, etc., which are functions of r, ¢ and to
their Fourier transforms which vary with k, w. In the
first case, they will be identified as E(r,?), H(r,s), etc.,
and in the second case as E, H, etc. Expanding H(x,?),
3(r,8), and pi(r,) as was done in Eq. (2), using the
relation (3) to eliminate Py from these equations and
summing over all velocities of the plasma electrons, and
dividing E into components E,, and E, parallel and
perpendicular, respectively, to the wave vector k, we

find
(5a)
(5b)

ikXE=ic/cH,
k-H=0,

) . 4my
tkXH=— —[61. (k,w)E.L""' € (k,w)E,,]+——, (5¢)
Cc 4

ik - Ee, (k,w) =4mp1, (5d)
where \ (V)dv
T A\ A ©)
w (w—k-v+ig)
f(v)av

€= — wo? 7
! f(w—k-v)2+ig(w—k-v) @)

are the dielectric constants of the transverse and longi-
tudinal electric fields, respectively. The expressions (6)
and (7) agree with those obtained by Gertsenshtein®
who, as stated previously, used a rather cumbersome

24 M. Abraham and R. Becker, Theorie d. Electrizitat (B. G.
Teubner, Leipzig, 1933), sixth edition, Vol. 2, p. 242.
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method based on Boltzman transport equations modi-
fied by Vlasov.
In the expressions (6) and (7) the term

wo= (4mne*/m)?

is the “plasma frequency.”

It is clear that the foregoing dielectric constants may
be easily generalized to include both the effect of bound
electrons which may be present in the medium as well
as the effect of the motion of ions in the case of an
ionized gas.

III. RESPONSE OF THE PLASMA TO A
MOVING PART CHARGE

Assume that a particle having charge Ze and velocity
V moves in a plasma. The corresponding charge and
current densities are, therefore, as follows:

q(r,0)=Zed (r— Vi), (8a)
1(1,))=ZeVo(r—Vi). (8b)

We are working in a gauge in which the vector poten-
tial is pure transverse, so that the longitudinal field is
derivable solely from the scalar potential ¢. Therefore

—ike=E,, ©
and we obtain from (5d) and (9)
Ze 8(w—k-V)
o, (10)
27|'2 k2€]]
where
(v)dv
=10t [ d Ja
(w—k-v)>+iglw—k-v)
and v=]v]|.
The expression (11) can be represented as
drwe® ° tdE
a=1-—— [ O, @
R )
where we have set the damping constant g=0.
Substituting (10) in
T (13)
we obtain
Ze © 0 eiw (2/ V—-—t)dw
o) =— [ wicriten) [ ——, (19
xV Jo ’ —w  Fey

where z and p are the cylindrical coordinates of the field
point, and e, is expressed by (12) in which

B=2+w?/ V2 (15)
IV. DEBYE LENGTH

One of the most striking features of plasma behavior
is the screening of an electric charge in the plasma.

NEUFELD AND R. H. RITCHIE

When V(%)% where (+?)} designates the root mean
square of the plasma velocity, we obtain an exponen-
tially screened Coulomb potential, characterized by the
Debye length.?> However, when V>>(1%)% we obtain an
essentially different behavior as will be discussed later.

For V<&(#*)?% and since w=k-V we approximate the
expression (12) as follows:

en=14we?/s22, (16)
where )
) —1
Edl @] . (17)
Substituting (16) and (17) in (14), we obtain
¢(r,)=Ze exp(—7/D)/r, (18)

where r=[p?+ (z—V#)?*] is the distance from the
moving particle to the point at which the potential is
measured and

D=s/wo (19)

is the Debye length representing the screening of the
potential.

We shall now examine in more detail the electron
velocity distributions f(v)dv and consider the “Maxwell-
Boltzmann plasma” and the “Fermi-Dirac plasma”
separately. Various concepts applicable to the Maxwell-
Boltzmann plasma shall be designated by subscripts
“MB” (i.e., sys, Dug) and the corresponding concepts
applicable to the Fermi-Dirac plasma shall be desig-
nated by subscripts “FD” (i.e., spp, Drp).

In the MB plasma, the temperature T and the elec-
tron density # are such that the electrons are distrib-
uted in accordance with Maxwell-Boltzmann statistics.
Thus

m 3
f<v>=(27rkBT) exp(—m/2,T),  (20)

where %p is the Boltzmann constant.

As examples of the MB plasma, we may cite an
ionosphere for which #~10% cm™, 7'~300°K and a
gaseous discharge for which z~10" cm=3, T'= 10 000°K.
Substituting (20) in (17), we obtain

s =5(v"). (21)

Taking into account (20), we can express the Debye
length in its usual form,? i.e.,

DMB= (kBT/41rn62)%, (22)

The FD plasma represents an electron gas obeying
Fermi-Dirac statistics. Thus

o e o
9)=——1exp| —\ ——Er —I—}, 23
! nh? kT \ k

25 P, Debye and E. Hueckel, Physik. Z. 24, 185 (1923).
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where Er designates the “Fermi energy,” vi.e.,

B f3n\* mop?
Ep=——(——) = , (29)
2m \ 8w 2
‘where vr is the maximum velocity for 7=0.
Substituting (23) in (17), we obtain
SFD2=%'I)F2, (25)

and taking into account (19), we can express the Debye
length as follows:
Drp= (3mackr)}, (26)
where
av="*/me*;

Ap= h/m'up (27)

V. VALIDITY OF THE METHOD

We shall now examine in more detail the restrictions
that have to be imposed to justify the present treat-
ment, and we shall consider the following: (4) the
relative importance of close binary collisions and long-
range interactions, (B) the applicability of a macro-
scopical picture to a microscopical electron assembly,
and (C) the applicability of the classical (orbital)
representation.

A. Close Collisions and Long-Range
Interactions

The expressions (6) and (7) are based on an assump-
tion that during the period of time in which the elec-
trons respond collectively to the applied fields, they
execute approximately straight-line motions. In reality,
however, each electron undergoes continual collisions
with positive charges and other electrons, and, as a
result of such collisions, it deviates progressively from
its path and continually loses energy. Any electron in a
plasma will follow its rectilinear path at a constant
velocity as long as the accidental encounters with other
electrons have no appreciable influence. However, as
time passes, the collisions with other electrons will have
a cumulative effect as a result of which the direction of
the electron motion changes and its velocity becomes
appreciably different from its initial velocity. We shall
define as the relaxation time 7p the time interval, during
which as a result of the cumulative effect of binary
collisions the trajectory of the electron has deviated by
an angle of /2 from its original direction. Similarly the
relaxation time 7z will designate the time interval
during which the energy exchanged in electronic col-
lisions becomes of the same order of magnitude as the
initial energy of the electron. The values 7p and 7 do
not differ appreciably from each other and can be
expressed as 26:27

m(v%)}
. (28)
Onet In (D pmiv?)/2e?%)

26 1,, D. Landau, Zhur. Eksptl. i Teoret. Fiz. 7, 203 (1936).
27 S. Chandrasekhar, Principles of Stellar Dynamics (University
of Chicago Press, Chicago, 1942), pp. 48-79.
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The values 7z and 7p can be determined approxi-
mately by means of the following rough arguments
which we are giving since they provide a better physical
insight into the problem than more rigorous calcula-
tions.

The energy loss of an incident electron can be ex-
pressed as?®

AW 4drne*  pmax AW

—_— e —~—

Pmin Az

) (29)

where AW represents the energy loss over a path Az.
Taking as the maximum impact parameter pmax=Dup
and as the minimum impact parameter the collision
diameter pmin=2¢%/m(1?), we obtain

AW mv?)
Ax~— . (30)
drnet In(D yrpm(v?)/2¢?)
Taking AW = —m(2?)/2, we obtain
Ax m¥ %)

" <—'”>—N 8mnet In (D pm(v?)/2e) '

(1)

The relaxation time for a deviation through an angle
of w/2 from the initial direction may be estimated from
the multiple scattering theory of Williams® which gives
for the mean square angle of deviation after traversing
a path length X through a medium containing » scat-
tering centers of charge Ze per cm?,

@ 8rZ%nX ) ( 181)2 32)
~———1In{—).
(a2 71
Setting (6®)~n?/4, rp=X/(x*?}, and Z=1, We obtain
wmXv)}
(33)

Tp= .
322%'n In(181/Z%)?

The expressions (31) and (33) for 7z and 7p give
values of the same order of magnitude as the expression
(28) derived by more rigorous considerations.

We shall now consider a term appearing in the
denominator of (28) which for the specific examples of
the MB plasma previously cited is

A=1In(Dy pm{v*)/2¢*)~10. (34)
" The individual electron collisions can be neglected if
(35)

wi LR,

Taking into account (29) and (34), the above expression
(31) leads to the following inequality :

n<K0.05(k 5T/ e ~107T*, (36)

28 See for instance: E. Fermi, Nuclear Physics (University of
Chicago Press, Chicago, 1950), p. 28.
2 E. J. Williams, Proc. Roy. Soc. (London) 169, 531 (1939).
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The close interactions are, therefore, negligible for an
electron gas of a relatively low density. For a high-
density gas such that the close interaction becomes
dominant, the assembly loses its ‘“plasma’ character
and becomes similar to a gaseous assembly of uncharged
particles.

B. Macroscopic Treatment

In our description of plasma, we were concerned with
the macrosopic behavior of an electron assembly and
the Debye length was derived as a macroscopic concept.
In order to have an agreement with a microscopic
picture in which there are # discrete particles per cm?,
we must require that

D>nt,
(1) MB Plasma

Substituting (29) in (37), we obtain

n<(kpT/4mwe?)*~105T%.
(2) FD Plasma
Substituting (26) in (37), we obtain
7)F> 12.18‘00,

(37

(38)

39
where vo=¢*/%.

C. Orbital Representation
(1) Validity Criterion

We have found in a preceding paragraph that any
electron having velocity V<<(v*)* produces in a plasma
a potential ¢=—eexp(—r/D)/r. We may generalize
our argument by stating that each individual electron
in the plasma creates the potential ¢. This argument is
strictly applicable to all electrons having v<&(#%)*. For
other electrons, the distribution of the potential does
not change essentially and qualitatively the potential
is still screened at a distance of the order of magnitude
of D. It will be shown later that a fundamental change
in the screening potential occurs only for electrons
having o3>(»%?, and the number of these electrons is
negligible in a plasma in equilibrium.

We shall now determine whether or not the motion
of an electron in a potential ¢ can be described by
means of the classical (orbital) representation on which
our treatment is based. According to Williams,® the
orbital representation is valid if the following two re-
quirements are fulfilled: (a) The uncertainty in the
momentum of a perturbed electron is much smaller than
the classical value of the momentum transfer caused
by the perturbing field ¢, and (b) the wavelength of the
perturbed electron is much smaller than the radius of
the perturbing field, which is assumed to be equal to D.

The criterion (@) leads to the following inequality:

leler ¢ exp(—r/D)
= >
7w #v
# E. J. Williams, Revs. Modern Phys. 17, 217 (1945).

1. (40)
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The condition (40) can never be satisfied for the
whole region of space and consequently the orbital
picture cannot be generally applied. We may associate
with each value of v a radius

R=D In(e®/#v), (41)

such that only for »<KR the orbital picture is valid. If,
however, the region defined by the radius R is sufficiently
large so as to include most of the space occupied by the
scattering potential, i.e.,

R>D, or In(e¥/Av)>1, (42)

then we may assume that the orbital picture applies
to the whole space. The inequality (42) represents the
Williams requirement ().

The requirement (b) leads to the following inequality :

(/mv)/ DKLA. (43)
(2) MB Plasma

We shall apply now the inequalities (42) and (43).
The first of these inequalities corresponds to 7Ky or to

T<13.5X1.16X10*=15.7X10* °K. (44
Substituting (22) in the inequality (43), we obtain
>>4ntne/m*kT . (45)

We have from (36) and (38) that #<#max Where
Nmax= (bpT/4mwe?)®. Substituting in (45) #max in place
of n, we obtain

D Vmax =1k pT /dwme’. (46)

Since v has a range from zero to infinity, not all the
electrons satisfy the inequality (46). However, if

IMVnex? <Lk T, (47)

the number of electrons that do not satisfy the ine-
quality (46) may be neglected, and it can be assumed
that the inequality (43) holds true.

Substituting (46) in (47), we obtain

TK107 °K. (48)
(3) ED Plasma
The inequality (42) requires that
2p<K0, (49)
and substituting (26) in (43), we obtain
2> (4/7)vovp. (50)

Since » has a range of values from zero to vr, the
inequality (50) is not satisfied for all the electrons and
the necessary requirement is

o> (4/m)v0. (51)
D. Conclusion

Our treatment of the MB plasma is justified if the
following inequalities are satisfied: (36), (38), (44),
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and (48). The inequality (38) is more stringent than
(36), and (44) is more stringent than (48). Conse-
quently, the criterion for the applicability of our
method is expressed by (38) and (44). This criterion is
satisfied for the two representative cases of MB plasma
cited above.

The validity of the treatment of the FD plasma is
contingent on the inequalities (39), (49), and (51). The
inequality (49) is not compatible with (39) and (51)
and, therefore, our validity criterion is not satisfied.

The phenomenological treatment of plasma as a dis-
persive medium can, therefore, be applied rigorously to
such cases as electrical gaseous discharges, or the
ionosphere. The criterion for our treatment is, however,
rigorously not applicable to such cases as electrons in
the conduction band of a metal.

VI. HIGH-VELOCITY INCIDENT PARTICLE
A. General

We shall now determine the response of the medium
for an incident particle having charge Ze and velocity
V>(1*). We are again confronted with the problem
whether the space surrounding the particle track can be
represented as a homogeneous dispersive medium
characterized by the dielectric constant expressed by
(6) and (7). Whether or not such a representation is
acceptable depends upon the relative importance of
close binary collisions and long-range interactions.

It is apparent that in the immediate neighborhood of
the incident particle the electrons undergo very violent
collisions. Consequently, the phenomenological repre-
sentation cannot be used since it applies only to a
plasma under the effect of a small perturbation. We
shall designate the portion of the space close to the
particle track as the region of “binary collisions” since
in this region we take into account only the direct
interactions of the incident particle with individual
electrons. On the other hand, at large distances from
the track, we deal with the “plasma region” since the
perturbation exerted by the incident particle is small
and the collective effect of the electrons is the dominant
factor.

The binary collisions will produce a dominant effect
if the momentum gain p, of each electron by the
passage of the incident particle is large compared to the
average momentum m(v%)? of the electron in the undis-
turbed state, i.e.,

pr=22¢/pV>>m(®)} (52)

from which
2Z¢ YARCN

< .
mV{»H: D#n V

(53)

In the plasma region, the following criteria should be
satisfied: (1) the momentum gain of each electron by
the passage of the incident particle is small compared
to the average momentum of the electron in the undis-
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turbed state, and (2) the momentum gains of two
neighboring electrons should not differ substantially one
from the other.

According to the criterion (1) we should have

2Z¢ 5 Z (¥
S~ (54)
mV{®t 18rDn V
The criterion (2) requires that
(dp.l./ dp) ApKLpy, (35)

where Ap=#"% is the average distance between two
electrons in the plasma. Equation (55) yields

o>ni, (56)

Consequently, the plasma region corresponds to
impact parameters that satisfy both inequalities (54)
and (56).

Our problem is complicated by the fact that the
inequalities (54) and (56) do not limit precisely the
extent of the plasma region. Even if we assume that the
limit defining the plasma region is known, the question
of how to treat the problem would arise. A similar
situation arose in the study of fast charged particles
passing through conventional dispersive media, and in
this connection we shall mention the treatment by
Fermi®® and Huybrechts and Schoénberg.® Fermi,
assuming that the homogeneous dispersive medium
occupies the whole space, calculated the energy loss in
the region p>p; from the flux of the Poynting vector
through a cylindrical surface of radius p; having its
axis on the path of the particle. The energy loss for
p<p1 was calculated on the basis of conventional col-
lision theory. Huybrechts and Schonberg modified the
Fermi treatment by assuming that there are no elec-
trons up to the distance p; and, therefore, the dielectric
constant within the cylinder of radius p; has been taken
to be equal to 1 and has a determined value e(w) outside
of this cylinder. They have dealt, therefore, with an
inhomogeneous dielectric medium having a discon-
tinuity at the surface of the cylinder.

Our treatment will be similar to the one by Fermi
since it is simpler and seems to be more applicable to
our problem as we do not know the value p; definining
the discontinuity of the medium.

B. Potential Distribution in Plasma

We shall now return to the expression (14) and
determine the potential produced by the incident par-
ticle. As stated above, we assume that the homogeneous
dispersive medium surrounds the particle track for all
impact parameters and we attribute a physical meaning
only to the solution for ¢ for values p>p;. We shall

3 E. Fermi, Phys. Rev. 56, 1242 (1939).

32 E. Fermi, Phys. Rev. 57, 485 (1940).

3 M. Huybrechts and M. Schénberg, Nuovo cimento 9, 764
(1952).
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determine ¢ also for small values of p since it is of some
interest.

Since V>3>(#*)%, the expression (11) for ¢, can be
expanded as follows

o’ K k!
€= 1——2[1+<7)2>_2+<v4>—4+ e ]: (57)
) 1% W

where

(@)= f 2 £(0)dy.
Substituting (57) in (14), we obtain

ZeV  p*
oloi = [ wicTo)
™ L}

0 eim (z/V—'l)dew
o |
o (V2 +0) (P — o[ 14+-(@P)R /o - - 1)

When (#*¥V? the term multiplying we* in the de-
nominator will be nearly unity. We observe that the
roots of the denominator in addition to the pair
w=ixV are given by w*=w[ 1+ (1*)k*/w?+ -], and
correspond to the existence of plasma oscillations. The
w contour should be chosen so as to pass above these
singularities. Then for positions ahead of the incident
particle, z> 7%, the » contour may be closed in the
upper half plane and the oscillations will exist only
behind the particle. Since there is only the singularity
w=1kV in the upper half plane, the potential ahead of
the particle is represented as

K2dk
(R2+wo?/ V2).

To examine the behavior of this function, we note that

olo2)=Ze f Tolkp)e—rvo (58)
0

if (3— V)<<V /wo, we may consider the integrand only’

for large «. In this case,
o(r)=7Ze f AT o(kp)eVO=Zefr,  (59)
0

where 7 is the distance from the charged particle in a
coordinate system moving with the charged particle.
When 7>V /wo, we look at the integrand when « is
small. We find, approximately,

) i (60)
o(r =Ze—~——~(—) 60
wd2 \r/’
which is identical with the potential due to an axial
quadrupole. We see that the collective effect of the
plasma is to cause the potential to fall off approxi-
mately as the inverse cube of the distance for large
values of 7. This result raises some question concerning
the procedure of Kwal'®¥® and Van der Ziel** of em-

3 A. Van der Ziel, Phys. Rev. 92, 35 (1953).
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ploying an exponentially screened Coulomb potential
which is valid for a slowly moving (V<(2?)?) particle
when calculating individual energy transfer to electrons
in plasma by fast charged particles. The screening
parameter for a low velocity incident particle is of the
order of the Debye length which in metals may be less
than 1 A. The screening parameter V/wo for a rela-
tivistic incident particle may be much larger, e.g.,
~10% A.

For positions behind the incident particle, Z<V¢, the
contour of integration must be closed in the lower half
of the w plane. There will then be the contributions from
the pair of poles on the real axis and the pole at
w=—1kV. We assume that to a sufficient approximation
the integral may be written

ZeV =
o(z,00) =— [ kJo(kp)dx
7r -

0
® widw
% f ¢i/ V) =Ty .
. (V2424 w?) (wr—wo?)

(61)

and

¢(Z,p,t) =¢1 (Zyp7t)+ P11 (Zypyt) . (62)

Corrections to the position of the poles on the real w
axis will be considered in the next section. Evaluation
of the residue at the pole at w= —ixV gives an expres-
sion ¢r which is the analytical continuation of Eq. (58)
into the region z< V4, i.e., ¢r1 is again Coulombian for
points close to the incident charge and falls off
roughly as the inverse cube of the distance for
large distances. That part of ¢ arising from the residue
at the poles at w= z=wy is purely oscillatory in (z/V—1),
ie.,

@11 (Z,p,i) =2 (Zewo/V) Sinwo (Z/V— t)Ko (pwo/V) . (63)

This represents the potential due to the polarization
charge which is set into oscillation by the passage of the
charged particle. In our neglect of damping, the
polarization charge continues to oscillate with the
plasma eigen-frequency wo. The logarithmic singularity
of or1 at the track of the particle is due to the erroneous
use of an infinite upper limit in the integration. This
will be examined in the next section.

C. Polarization Charge Density

The polarization charge density p may be expressed
as

p=—1ik-P, (64)
where P is the polarization vector. Further, since
ik (E4+47P) = (Ze/27%)8(0—k-V), (65)
and —ik-E=Fp,
Ze Ro
=k V) +—, (66)
(2m)? 4w
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or, in configuration space

fw kdiJ o(xp)

Xf giw I V—1t) dw(1+<v2>k2/w2+ .. )
—o {wz—-wo2(1+<v2>k2/w2+ o )}.

2

@m?v

p(p; ))

(67)

We have postulated (#?)}<V so we find the roots of
the denominator by successive approximation. The w
contour is chosen to pass above the poles on the real
axis, to correspond to zero polarization charge ahead of
the particle. Then, the roots of the denominator are
approximately

w= %[ w4+ %) (w/ V2+2) ]h
Evaluating the residues, we find for (z/V—1f) <0

p(ps2,t) =Z;C;) j; ) kdJ o (ko) [w(f(l—-}—(;—?) +<v2),<2]

G|

The integral as written does not exist. However, we
note that the upper limit may not be infinite since the
dielectric is not capable of supporting oscillations whose
wavelength is shorter than the average spacing between
electrons in the medium.

To obtain an approximate solution we assume that
the integral may be cut off at some finite upper limit
designated by k.. Then

(68)

2 Kkm

€
P(piz)i) e —
2xV dr? Yy

sinT[wo?(14-(22)/ V%) + (22 ]t
we?(14(2%)/ V) +(*)

where 7= (z/V)—t. Now if p and 7 are both large, the
bulk of the integral will originate from reion of small «,
and we tentatively let x,—o and using an identity
proven by Lamb,® write
Ze @ [coswol 72— p?/(v%) ]}
Plosf)=——-— )
[r—p () ] (71)

2T dr?
0 (v <p.

kdrJ o(kp)

, (70)

The singularity on the surface of the cone
z=Vi=(V/{#Np

is fictitious; the polarization charge density actually
has a finite maximum on this surface.

3 H, Lamb, Proc. London Math. Soc. Sec. 2, 7, 122 (1909).
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D. Stopping Power
(1) General

The space surrounding the particle track is subdivided
into three regions: (a) The region of binary collisions
within a cylinder having as axis the track of the particle
and a radius p; satisfying the inequality (53), (b) the
plasma outside of a similar cylinder having radius ps,
and satisfying the inequality (54), and (c) the inter-
mediate region between cylinders having radii p; and
p2. The intermediate region includes the portion of
space for which no adequate theory exists at present.

(2) Plasma Region

We wish to determine the energy lost by the incident
particle to the portion of the plasma in the region p> p,
to which the dielectric concept rigorously applies. To
accomplish this, we will consider the force with which
the polarization in the “far” region (o> p,) reacts upon
the incident particle. We imagine that the cylinder
p<p2 is removed from the infinite medium leaving the
polarization in the far region unchanged. The stopping
power is then given by the force exerted on the incident
particle by the surface charge density (which is equal
to the normal component of the polarization vector)
on the inside of this cylinder and by that portion of the
wake of volume polarization charge which lies in the
far region.

Now

k
—. (72)
B2

The surface charge density is

o= _ﬁ'P(pfz)t): (73)

where 7 is a unit vector in the direction of the outward
normal to the cylinder. The expression for the polariza-
tion charge is given in Eq. (64). Then

aw *®
LN -
dZ —0 (22+P22)%

+f””f (@+

where the variable z is understood to have its origin at
the position of the incident particle. Inserting the
Fourier integral representations for ¢ and p, and using
the approximate form for the dielectric constant for
(¥*)!<V one finds after carrying out the integrations

2dz

0(927Z)

P(p’ )7 (74)

(75)

aw 2% fw kdxJ o(kp) K s/ V)
—_— 1(paw )

iz V(8D Jo (@it tevy
where 81=()¥/V and o'=[w@(1+8:)+B2VA]E
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This may be shown to reduce to

aw 2% wo 26, a
I {Ko(a)Kl(a)—}———Kl( )
iz (1462) V° 8

___f Kl(x)dx/x3] (76)

a/B1

where Ko(a) and K1(a) are modified Bessel functions of
the second kind of the order 0 and 1, respectively,?® and
a=wops/ V. Now if a/B>>1,

AW Z%% w
Ty ——{ (@)K (0)+(2m)! «al/a)mw/al}
(77)
Taking into account that
(2m)¥(8:/a) e 11K Ko (a) K1 (a), (78)
we obtain
aw Z262p2w02 .
i Ko(pawo/V)K1(pawo/V). (79)

dz  V*(1+482)

If pawo/ V<1, one may replace K, and K; by the
first terms in their series expansions, obtaining:

AW 22w’ 1 123V
dZ V2(1+,312) wopP2
which in the limit 8;—0 reduces to
aw 2% 1123V
—_= n (81)
dz V? wop2

It may be of interest to compare the above formula
with the corresponding expression derived by Pines.!!
Using the present notation, the stopping power obtained
by Pines can be expressed as follows:

W _ 2 ll RV (1=62)} ()38 (1—B17)ko’
- n )
dZ V2 wo I 4wo2
(82)
where % is a cut-off wave number.
Assuming (1—@8:2)¥~1, we obtain from (82)
dW  Z2e¢%w¢? Vo B2k
et {ln } ] (83)
dz | %& wop2 4o’

For the limiting case of 3;=0 the expression (83) is
identical to (81) except for the factor 1.123 in the
logarithm. However, for §:%0 the expression (80)
gives a decreased value for the stopping power, whereas
according to the Pines formula (83) the stopping power
increases by a much smaller amount.

36 For tables of Ko and K; functions, see for instance: British
Association for the Advancement of Science, Mathematical Tables
(Cambridge University Press, Cambridge, 1937), Vol. 6, pp. 264—
271,

NEUFELD AND R. H. RITCHIE

(3) Binary Collisions

The contribution of binary collisions to the stopping

power is
AW  Z%¢w¢? p1
—_— ln(—) , (84)
dZ4 V2 bmin
where
d bmin=2e/mV? if Ze&/hV>>1, (85)
an
bmin=h/2mV it Ze&/aV<K1. (86)

(4) Total Stopping Power

The contribution to the stopping power in the inter-
mediate region for p; <p<ps remains undetermined. In
this intermediate region, both individual and collective
interactions take place. By interpolating, it is seen that
the contribution to the stopping power of any portion
of the intermediate region comprising distances dp about
p is the same if calculated on the basis of collective
interaction or individual interaction. We shall assume,
therefore, that p;=p, and is located somewhere in the
intermediate region. By adding the contributions (81)
and (84), we obtain for the total stopping power

dz  mV?

aw  4AnZ% 1.123V
= H( )7 (87)

Q’Obmin
where bumin is given by (86).

VII. LOW-VELOCITY INCIDENT PARTICLE
A, Polarization Charge Density

In Sec. IV we found that to a first approximation a
slowly moving incident particle in plasma gives rise to
an exponentially screened Coulomb potential. We shall
now determine the form of the polarization charge
density to second order, taking into account in this
treatment the damping of a disturbance in plasma due
to the random motion of the medium.

To determine p we shall need an approximate ex-
pression for the dielectric constant for the case (22)¥>V.
It may be written

[ f o duts f_ ] (1’: (_l/k)] (38)
o)

where the constant B depends upon the kind of statis-
tics assumed for the plasma, ie., Byp= (7/2)}
Bpp= V3w/6. The imaginary term arises because the
path of integration in the #-plane must be deformed so
as to pass below the singular point #=w/k as the damp-
ing constant g approaches zero. As in Sec. VI we write
the Fourier integral expression for p, using the approxi-
mation given above for ¢,. We then express the result
as a power series in 3=V /s, retaining only the first two

(89)
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terms. We find then

Zew? € '?  ZeBBwo Z
= L _

4rs? 7 4% 73

X{(1—a)[e Ei(a)—e* Ei(—a)]

+a[e* Ei(—a)+e* Fi(@)+1T}, (90)

where

Ei(a)= f " )

—0

and e=7/D=uwy/s. The origin of coordinates (r=0) is
taken at the position of the incident particle and moves
with the particle. The z coordinate is measured along
the path of the particle and is taken positive in the
direction of motion of the particle.

B. Stopping Power
(1) General Considerations

We shall now determine the stopping power of an
incident particle gaving charge Ze and velocity V<<(s?)%.

The energy loss per unit path length may be expressed
in a way similar to that used for the high-velocity
particle. We shall calculate the energy delivered to the
plasma in the ‘“far” region, i.e., to the region outside
of a sphere of radius R whose center coincides with the
position of the incident particle. Thus

aw ™
——=Ze l 27 f sinf cosfo (6,R)d9
dZ 0

+27 f sinf cosfdf f drp(@,r)}, 91)
0 R

where the coordinate system is chosen to move with the
incident particle and to have its origin at the particle
position. In this expression cos§=z/7, o= —7-P where
# is a unit vector normal to the sphere of radius R in
the outward direction, and p is the polarization charge
density.

Using the above approximation for ¢, in the Fourier
integral expressions for P and p and expanding the
resulting formulas in a power series in 8 we find even-
tually, to the first power in 3,

1
1+ )e‘“ Ei(a) -

a a

aw Zﬁe%o?{iB{ ( 1
iz 3V
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where a=7/D. If a1,

aW  Z%’BBwq? i ( s )
—_= n .
dz 3ms? 3.17R%w¢?

In this phenomenological treatment we have excluded
the region inside a sphere of radius R centered at the
particle. This is the region of close collisions and the
value of R depends upon whether we deal with MB
or FD plasma.

(93)

(2) MB Plasma

In this case we choose R to be the average spacing
between electrons in the medium,

R~y 3,
or

@=4nend/kpT. (94)

Thus the nonuniformity of the medium is taken into
account in an approximate way. The stopping power is
found by substituting (94) in either (92) or (93).

(3) FD Plasma

We have previously found that the classical phe-
nomenological representation is not strictly applicable
to an FD plasma. However, we shall apply the ex-
pression (92) to an FD plasma, keeping in mind that
in the past a classical treatment has been not infre-
quently used with satisfactory results in quantum-
mechanical problems. We may cite the Thomas-Fermi
statistical model of electron gas in an atom as well as
various hydrodynamical models of perturbed electron
gas, for instance, the one used by Bloch.3” It is of
interest to mention the calculation made by Bloch?®®of
the stopping power of a particle having charge Ze and
velocity V, such that Ze?/AV<1. Although the inter-
action of the particle with the surrounding electrons is
not subject to an orbital representation, the stopping
power has been calculated by using an impact parameter
method and the quantum mechanical aspects of the
problem have been taken into account by assuming
that the minimum impact parameter is equal to %/mV.
We shall follow the general procedure used by Bloch.

Returning now to our problem we consider the close
collision of a particle having velocity V with an electron
gas having isotropically distributed velocities in the
range from zero to vp. The wavelength of most of the
electrons as seen from the moving particle will be
somewhat smaller, but of the same order of magnitude
as 2zwx. We shall subdivide the space surrounding the
incident particle into two regions: region I within a
sphere having its center at the position of the particle
and radius wAr; and region II comprising the space

B

37 F. Bloch, Z. Physik. 81, 363 (1933).

38 F. Bloch, “Lecture Series in Nuclear Physics,” U. S. Atomic
Energy Commission Report MDDC-1175 (U. S. Government
Printing Office, Washington, D. C., 1947), p. 26.
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outside of the sphere. The contribution to the stopping
power from the region I is negligible, since in this region
the incident particle traverses a wave packet that exerts
on it electrical forces from various directions, thus giving
partial cancellation. Therefore, we shall assume that
the total contribution to the stopping power is due to
the presence of plasma in the region II.

The expression for the stopping power can, therefore,
be obtained by substituting R=wkr in (94). Of par-
ticular interest is the case of arp<<1 which has been
treated by Fermi and Teller® in a different manner. To
determine the stopping power for this case, we sub-
stitute R=mAr in (93), obtaining

aw 2 Zze“rn?Vl U
—= n .
3.17X 47,

dz 3w W ©3)

3 E, Fermi and E. Teller, Phys. Rev. 72, 399 (1947); see also
N. Mott, Proc. Phys. Soc. (London) 137, 1462 (1949).
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Assuming that vp/v>>3.17 X 41, the formula (95) can
be expressed as

dz 37 W

This formula is identical to the corresponding formula
by Fermi and Teller.

The Fermi-Teller formula does not apply to the con-
duction band of metals since it is derived under the
assumption that v#>>v,. In order to determine the
stopping power for the conduction band of metals, the
formula (92) would seem to be applicable.
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aw 2 Z2mV Up
= ——~————ln( ) (96)
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The theory of the positive ion saturation region of probes at low pressure is modified to take into account
the directed current at the sheath edge. This drift current explains the discrepancy between the theoretical
and experimental ratio of the electron saturation probe current to the positive ion saturation probe current.
The theory is checked by using microwave methods to obtain an independent measurement of the ion
density. Probe and microwave measurements are compared in the pressure region of 0.05-6 mm Hg in

hydrogen, argon, and helium.

I. INTRODUCTION

INCE the original work of Langmuir and Mott-
Smith,! probes have been used extensively for the
study of plasma properties in low-pressure gas dis-
charges. The electron and positive ion densities, the
electron temperature, and the plasma potential are de-
termined from the volt-ampere characteristics of the
probe, called the “probe curve.” It is customary to
divide the probe curve into three parts: the positive ion
saturation, the region of partial collection of electrons,
and the electron saturation.

When the probe potential is sufficiently negative
with respect to the plasma in which the probe is in-
serted, the probe will attract positive ions and repel all
electrons and thus the probe current consists only of

* This work was supported in part by the Signal Corps, the
Office of Scientific Research, Air Research and Development
Command; and the Office of Naval Research.

t Now at Westinghouse Research Laboratories, East Pitts-
burgh, Pennsylvania.

11, Langmuir and H. M. Mott-Smith, Gen. Elec. Rev. 27,
449, 538, 762, 810 (1924).

positive ions. This is called the positive ion saturation.
In the vicinity of the probe, only positive ions con-
tribute to the space charge and the potential is a steep
function of position; this region is called the sheath.
At larger distances from the probe, both electrons and
positive ions contribute to the space charge and the
electric fields are small. The plasma in this region is
disturbed by the withdrawal of positive ions to the
probe.

As the magnitude of the voltage on the probe with
respect to plasma potential is decreased, the probe
starts collecting electrons. When the probe is near
plasma potential, the probe curve exhibits a bend. At
plasma potential, the probe is not covered by a sheath
and electrons and ions reach the probe by diffusion.
Electron densities may be determined from Langmuir’s
theory! when the bend in the probe curve is sharp.

When the gas pressure is high or when the probes
draw a large current, the probe curve does not exhibit
a sharp bend at plasma potential and no electron



