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Continuing earlier investigations, we discuss in this paper the influence of the process of symmetrization
of the wave functions of the colliding atoms upon various gas-kinetic cross sections. Through the choice of a
suitable interaction potential it thus becomes possible to derive the temperature dependence of the vis-
cosities of the two He isotopes near absolute zero; it is also possible to show that the differences between
these two quantities is largely caused by the fact that the nuclei of He? and He? follow different statistics.
The agreement between theory and experiment is not quite as satisfactory in the case of the viscosity of
mixtures of the two isotopes. Finally, curves are presented showing the effect of symmetrization on various

possible scattering experiments.

I. THEORETICAL DEVELOPMENT

T was first established through observations on the
collisions of charged particles that one needs to

symmetrize the wave function when the interacting
particles are identical. This principle of symmetrization
was applied by Massey and Mohr! to the collision
processes of neutral atoms and molecules in a gas.
They considered in particular the collision cross sec-
tions determining viscosity, heat conductivity, and
diffusion, showing the characteristic differences to be
expected for similar and dissimilar particles. The re-
sults were applied to the interpretation of the observed
temperature dependence of the transport properties of
helium and hydrogen.

To apply these calculations to actual gases it was of
course necessary to assume a law of force governing
the collision processes. Since the effects due to sym-
metrization were rather small, and since furthermore
these laws of force were not known precisely, a com-
parison of the theoretical results with observations did
not give wholly convincing evidence for the need to
symmetrize the wave function.

A subsequent investigation by Halpern and Gwath-
mey? modified the theoretical results just mentioned in
several respects, and suggested an experimental ap-
proach which should make the observer more inde-
pendent of the actual law of force. It was first pointed
out that for Hpy—as in general for all molecules and
almost all atoms, excepting those with no electronic
angular momentum and no nuclear spin—symmetriza-
tion must be carried out with care. In fact, apart from
exceptional conditions, a better approach to reality
would be to omit all symmetrization. This is so because
all states with unequal internal quantum numbers must
be considered as different. Alternatively one may say
that since in a large number of states the wave function
is to be symmetrized, while in a slightly smaller number
of states it has to be antisymmetrized, the total result is

1H. S. W. Massey and C. B. O. Mohr, Proc. Roy. Soc. (London)
Al141, 434 (1933); A144, 188 (1934).
2 0. Halpern and E. Gwathmey, Phys. Rev. 52, 944 (1937).

almost equivalent to the use of Boltzmann statistics.
For hydrogen in particular, except for a case mentioned
below, this reduces the symmetrization effect very much.

It was further shown that the cross section for dif-
fusion must not be calculated with a symmetrized wave
function for any type of gas.

Now the fact that symmetrization should be carried
out so much more carefully and rarely, led to a different
approach which, it was hoped, would be less sensitive
to assumptions concerning the law of force. Thus, con-
sider the viscosity of H, at temperatures so low that
almost all molecules occupy only the zeroth (para) or
first (ortho) rotational levels. In para-H; no internal
degrees of freedom need to be considered, so here the
full principle of symmetrization holds true. In ordinary
H., the ortho states have weight nine, so that in colli-
sions between ortho molecules, as well as between ortho
and para molecules, the symmetrization effect is prac-
tically negligible. We should therefore expect a notice-
able difference in the viscosity of ordinary H, and
para-H, at low temperatures.

In the paper quoted attention was also called to an
isotope effect which according to the present theory
could be expected to appear in the gas kinetic quantities.
Different isotopes have in general different nuclear
spins; the statistics of the electronic shell being the
same, one should therefore expect (apart from any
mass effect) characteristic differences in the expressions
for viscosities, etc., caused by changes in symmetriza-
tion of the wave functions. As an illustration the case
of neon was considered, neon being at that time the
only element of which the isotopes were available and
which had no electronic spin. However, the large mass
and high boiling point of neon made the effect very
small, and accordingly attention was later?® called to
the much more favorable example of He* and He3.
Since He* has no spin and follows Bose statistics, the
orbital part of the wave function must be symmetrized
in all collisions; He? has spin % and follows Fermi sta-
tistics, and hence the orbital function must be anti-

30. Halpern, Phys. Rev. 82, 561 (1951).
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SYMMETRY EFFECTS IN GAS KINETICS. I

symmetrized in £ of all collisions of He? atoms, and

symmetrized in the remaining . Assuming for illustra-
tion that so low a temperature of observation could be
used that most collisions are S-collisions, then the
scattering cross section of He! (apart from the mass
factor) must be expected to be four times that of He?.
This very unrealistic case is mentioned only to make
evident that quite large differences can be expected in
the two He isotopes.

Following the original contribution by Halpern and
Gwathmey, several theoretical papers by other authors
have given quantitative results for the temperature
dependence of various properties of these isotopes, using
more or less realistic forms for the law of force. Thus
an early investigation by Buckingham and Massey*
showed that symmetry effects in the second virial co-
efficient of He! might be significant below 1-2°K. This
was substantiated later for He? by van Kranendonk,
Compaan, and de Boer,® and in greater detail in the
recent extensive calculations of Kilpatrick et al.® In
connection with the gaseous viscosity of the He isotopes,
measurable effects below 3°K were shown to occur by
Buckingham and Temperley,” de Boer and Cohen,®
and Buckingham and Scriven.® These are discussed in
detail in later sections.

II. EXPERIMENTAL WORK

The theoretical views here summarized have only
recently attracted the attention of experimentalists.
Becker® and his collaborators have published several
investigations of the differential effects in the wvis-
cosities of normal and para-H,, (up to 90°K) normal and
para-D, (at 15° and 20°K), and also of the two He iso-
topes at much lower temperatures. The observations
showed that the collision cross sections in para-H, are
very slightly smaller than those in ortho-H,, when both
are observed in their lowest rotational state. Now the
assumption of a rigid sphere model, with the same colli-
sion radius for all molecules, leads to the result that
the para-H, cross section should always be larger than
that for the ortho-Hs; molecules. For interaction po-
tentials with an attractive part it is true that this
difference is appreciably modified in magnitude, and at
some low temperatures may even be reversed in sign.
Nevertheless, it seems unlikely that this behavior is
reached at the temperatures at which Becker ef al.,
made their observations, and hence there is a clear

¢R. A. Buckingham and H. S. W. Massey, Proc. Roy. Soc.
(London) A168, 378 (1938).

5 van Kranendonk, Compaan, and de Boer, Phys. Rev. 76, 998
and 1728 (1949).

6 Kilpatrick, Keller, Hammel, and Metropolis, Phys. Rev. 94,
1103 (1954).

7R. A. Buckingham and H. N. V. Temperley, Phys. Rev. 78,
482 (1950).

8 J. de Boer and E. G. D. Cohen, Physica 17, 993 (1951).

R. A. Buckingham and R. A. Scriven, Proc. Phys. Soc.
(London) 65, 376 (1952).

10 E. W. Becker and O. Stehl, Z. Physik 133, 615 (1952). Becker,
Misenta, and Stehl, Z. Physik 136, 457 (1953); Becker, Misenta,
and Schmeissner, Z. Physik 137, 126 (1954).
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indication that even for differential observations the
law of force should not be assumed the same for all
collisions. A slight admixture of noncentral forces,
which can be expected to be present for ortho-H, mole-
cules, would possibly lead to the observed effect and
hide the small effect due to symmetrization. It is
doubtful, however, whether theoretical calculations of
the effect of such noncentral forces can be very useful;
the parameters in the intermolecular potential are not
well defined at present, so that any agreement between
the few observations and the theory would likely be of
more algebraic than physical significance.

The difficulties caused by noncentral forces do not
occur in the case of the He isotopes; here the experi-
ments have led to large differences between the. vis-
cosities of the kind expected from the theory. It is also
probable that symmetrization effects in the collision
of hydrogen molecules can be made evident by a dif-
ferential experiment which can hardly be influenced by
the presence of noncentral forces. We are referring to
the scattering of para-H, molecules by para-H, and
normal H,, respectively. Since the symmetrization
effect may be quite considerable for scattering through
small angles, its detection becomes a question of in-
tensity only. We have learned that Dr. Becker has
started an experiment for the purpose of observing such
an effect.

In the remainder of this paper we consider some
properties of the He isotopes which can be derived from
the usual quantal phases connected with collisions be-
tween He atoms. The viscosity results are presented in
a form such that the quantum effects of symmetrization
are most clearly distinguishable from the other quantum
effects arising from the fact that the de Broglie wave-
length associated with the collision is comparable with
the atomic dimensions. In deriving the viscosity of He3,
appropriate use is made of the Enskog-Chapman theory
for mixtures, the components of the mixture in this case
being the atoms in various spin states. This procedure
is further applied to find the viscosity of mixtures of the
He isotopes. Finally, the effect of symmetry on the
cross section for scattering of He atoms is considered in
more detail than hitherto.

In a subsequent paper we shall return to the problem
of hydrogen and deuterium, and shall present data
which may be useful in relation to scattering and vis-
cosity experiments with these gases.

III. VISCOSITY OF PURE He? AND He*

We must first summarize the essential formulas used
in deriving the viscosity 9. In what follows it is assumed
that the interatomic potential energy has the usual form
corresponding to a steep repulsion at small distances
combined with the usual van der Waals attraction at
larger distances. It can be generally represented by

V(r)=—¢f(o),

where 0=7/7, e and r,, being physical parameters repre-



1628

senting the depth and position of the minimum in
V(r), and f(o) a suitable shape function such that
F)=1, f/(1)=o0.

Using this interaction the viscosity cross section can
be expressed in terms of the familiar phase shifts 6z,
obtained by solving the Schrodinger equation for dif-
ferent values of the collision parameter k(=wMv/h)
and for integral values of the azimuthal quantum
number L. Thus

dr _ (LADEIAH2)
0=—X w W sin?(6z42—6z), (1)

=2
where wy, takes different values according to the type of
statistics used:

Statistics Bose Fermi Classical
L even wr=2 0 1
L odd wr= 0 2 1

For a given shape of interaction f(c), it is convenient
to regard Q, as a function of two variables X and A,,
where K (=M*/4¢) is the relative kinetic energy of
collision in units of ¢, and A.[=%h/(Mer,2)¥] is the
ratio of the de Broglie wavelength for collision energy e
to the atomic diameter 7,,. In place of A,, we sometimes
use A= 27/Asm.
We now define the following reduced quantities:

T*=kT/e, (2)
n*=[ra’/(Me)*]n, (3)

Reduced temperature

Reduced viscosity

Reduced viscosity cross section
Sy(KAm)=Qy/ Grra?),  (4)

Reduced integrated cross section
- 1 p=
Surran=—[ #es s, )
lJg

where x=K/T*. Both S, and S, would be unity in the
classical theory of a gas of rigid spheres of diameter 7.
The integrated cross section S, (sometimes written in
the general theory of transport phenomena as Q*®2) is
effectively the reciprocal of the reduced viscosity, since

5(1+49)
16r43,

(%) H= (6)

g here being a small higher-order correction which at
low temperatures does not exceed 0.005.

.The foregoing formulas, which involve the substitu-
tion of an appropriate quantal cross section in the
Chapman-Enskog expression for 5, are quite unambigu-
ous when the gas consists of identical particles of mass
M. Thus, if these are He* atoms, which have no net
nuclear or electronic spin and should therefore follow
Bose statistics, the viscosity can be obtained by calcu-
lating phases for even L only. The position is less simple
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for a pure He® gas, consisting of atoms with nuclear
spin =% in equal proportions. In several papers”8 it
has been tacitly assumed that the correct quantal
cross section to insert in (5) is

S,(He?)=3{S,(Fermi)+.S,(class.)}
=1{S,(Bose)+3S5,(Fermi)}, (7)

since one-half of all collisions are between unlike atoms
(with opposing spins) and for these no symmetrization
is necessary.

To substantiate this procedure it is advisable to
examine the extended form of the Chapman-Cowling
and Enskog theory, developed by Curtiss and Hirsch-
felder! for gaseous mixtures. It is unnecessary to quote
their general result here, as this is lengthy, but we con-
sider first the simple case in which the gas contains two
types of atom, of equal mass, in proportions x; and
%2(=1—2x1). The viscosity of the mixture is then ex-
pressed in terms of the viscosities #; and 7. of pure
gases of the two types, and also of the viscosity 7:s of
a fictitious gas in which all collisions are assumed to
occur between unlike atoms. In calculating #; and 7,
therefore, the proper symmetry must be applied; for
712 DO symmetrization is necessary. In He® gas, in
which atoms are distinguished by the orientation of
their spin, we have the further simplification that n;=17,
and x;=x,=1%. Leaving % unspecified for the moment,
we find from the Curtiss-Hirschfelder formula that

1 x12+x22+cx1x2
—=y+(e—V)——" (8)
Nmix 1+26x1x2
where a=1/91, v=1/m3, = (5/6415*)v, and ¢c= (a—7)/
(B+%v). The quantity A1s* is here the ratio of two
collision integrals closely connected with diffusion of
the two types of atom; in magnitude it is not far
from unity.

Let 7.1, nr, and np refer to the viscosities calculated
using classical, Fermi, and Bose statistics, respectively,
satisfying the relation 1/9a=%(1/9r+1/15). Now for
He?, we must take n1=nr and 712=1n.1, whence it follows
that a—y=3%(1/9r—1/98). It is then clear that the
term in (@—v) is essentially a low temperature correc-
tion, since a—+ tends to zero at high temperatures,
leaving nmix=n12 in this limit. However, when we
insert x;=x,=7% as in the actual gas, we obtain at all
temperatures,

1/mmix=v+3(@—7)=%(3/1r+1/18).

This is exactly what is assumed in (7), but it should be
noticed that the result depends on the two spins being
equally abundant in the mixture. For any other dis-
tribution the value of 7mix depends on ¢, and therefore
on Aqs*.

11 C, F. Curtiss and J. O. Hirschfelder, J. Chem. Phys. 17, 550
(1949). .
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Figure 1 shows the behavior of the viscosity cross
sections defined previously for He* and He?®. These re-
sults have been calculated by using an interatomic
potential of the form

f(0)= fro7(14bo™2) — foe= D, ©)

where
fi=a/{a(1+b)—6—8b{, fo=—1+(1+b)fs,

and the parameters a, b have been assigned the values
13.5, 0.2, respectively. For He?, even-order phases using
this type of potential have been given by Buckingham,
Hamilton, and Massey,”? and for He? they have been
calculated by Scriven and Buckingham,®® in each case
for values of K sufficient to give the viscosity up to
5°K. For the present purpose, it was necessary to esti-
mate odd order phases for He?, and it was found pos-
sible to do this adequately without resorting to nu-
merical integration of the wave equation. The values of
N2 for He* and He® were taken to be 7.27 and 5.48
(A»=12.33, 2.68, respectively). These correspond to a
value of 122X 107% erg cm? for er,?, known from earlier
work!? to give reasonable agreement with the observed
second virial coefficient of He* gas below 5°K.

In both Figs. 1(a) and 1(b) two pairs of curves have
been given. The full-line curves correspond to the
quantal statistics expected to hold [Bose for He?, the
mixture (7) for He?]; the broken curves to the classical
Boltzmann statistics. Since the classical mass factor
(M%) does not enter at this stage, the difference be-

0 02 03 04 05 T -xT/e

Fic. 1. Quantal viscosity cross sections of pure He? and He?.
(a) before averaging, as function of reduced collision energy
(b3 8, after averaging, as function of reduced temperature 7.
Fu]l line curves correspond to actual statistics, dashed curves to
classical Boltzmann statistics.

12 Buckingham, Hamilton, and Massey, Proc.
(London) A179 103 (1941)
BR.A. Scnven and R. A

Roy. Soc.
. Buckingham (to be published).
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F1c. 2. Comparison of theoretical and observed viscosities of
pure He® and He*. Theoretical full-line curves correspond to actual
statistics, dashed curves to classical statistics. Experimental
points, due to Becker ef al., have been reduced by assuming
e/k=10.2°, rn,=2.94 A.

tween the broken curves is a measure of the quantal
mass effect, corresponding to the two values of A? in the
aforementioned. The departure of each full-line curve
from its accompanying broken curve then shows how
the cross section is affected by using the correct statis-
tics, i.e., the symmetrization effect.

The chief features of the S, curves are the rapid rise

at small energies, and the considerable oscillations of
the quantal statistical curves about those for classical
statistics. These oscillations soon become very small for
larger values of K, and as one would expect they are
also much less marked in the variation of S,, which
represents the result of averaging .S, with respect to
the Maxwell velocity distribution. It should be noticed
that the K and T scales are chosen so that for equal
lengths, K'=3T%*; this corresponds to the fact that the
weighting function #%¢~® has its maximum when x
=K/T*=3.
F' In Fig. 1(b), it is seen that when T%=0.5 the curves
are all fairly close to unity, which is the classical value
for rigid spheres. However, for large T the value of
S,<1 because the effective collision radius <#,. For
He* and T%>0.1, the Bose curve is above the Boltz-
mann curve; this again is similar to the result for rigid
spheres, but it should be noticed that when T%~0.1, a
reversal occurs which is directly connected with the
attractive part of the potential. For He?, the behavior
is complicated by the mixture of Bose and Fermi
statistics. The other important point is that when
T*>0.1 the symmetrization effects, being in opposition
for the two isotopes, enhance the mass effect, and indeed
over much of the temperature range the difference in
viscosity of the isotopes is due more to the different
statistics than to the different masses.

In plotting S, against K, and S, against 7%, it has
not been necessary to specify the energy parameter e.
This can in fact be chosen to give the best over-all
agreement with observed viscosity values. Such a
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F16. 3. Viscosity of mixtures of He? and He?. Theoretical curves,
calculated from formula (11) using potential with e/k=10.2°K,
rm=2.94 A. Experimental points are due to Becker ef al.; X at
4.15°K, @ at 2.64°K.

comparison is made in Fig. 2, where the theoretical
values of #*(7*)~* for He! and He? are shown against
the experimental values of Becker ef al., the tempera-
tures being reduced by assuming e/x=10.2°K. The
excellent agreement for both isotopes is a clear vindica-
tion of the theory in general, of the method of sym-
metrization, and to some extent, of the choice of
interaction.

IV. VISCOSITY OF HE:—-He* MIXTURES

Having considered the pure isotopes, it is natural to
ask how the viscosity of a mixture of them depends on

O. HALPERN AND R. A.
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their relative concentration. In terms of the Curtiss-
Hirschfelder mixture formula we can examine this by
considering a mixture which contains a molar fraction
x; of He* atoms, and fractions x, of each spin-type of
He? atom, so that x;+2x.=1.

The first approximation to 7mix is given!! by the ratio
of two determinants,

kl kl kl X1
h ki ki
1 ki hy ke x
—=— 1k hg kz -
NMmix ki ke hy %
k1 kz hg
X1 X9 X2 0
hi(hotkg) — 2k:2
= , (10
(hz—l-kz)amz—4k1x1x2+2h1x22
where
hi= a4 (2,81—|~71/s)x1x2,
he=asx?+ (B1+Esv1) @10t (Bet2y2) 22,
k1= — (81— 3v1)w1s,
ka=— (B2—3v2)x,
and
ar=1/m az=1/ns,
B1=5p%/ (6412*n12) B2=5/ (64 25"n23),
Y1= 1%/ Yo=1/123,
P2=4M1M2/(M1+M2)2 S=M1/M2.

M, and M, are the masses of He* and He?® atoms re-
spectively; #: is the viscosity of a (real) Bose gas of
He* atoms, and 7. that of a (fictitious) Fermi gas of
He? atoms; 712 and 793 are also fictitious viscosities
referring to collisions between one He! and one He?
atom, and between two He® atoms respectively, calcu-
lated without any symmetrization.

By algebraic reduction, using the relation between
#; and x,, the formula for 1/9nix becomes

1 (s+u)a1x12+4'ylx1x2{ 1/5— (1 '—011062//712) +%Il (5+2+ 1/3)} + (1/8—{-#)4012'3022

NMmix

where u=281/v1 and a2’ =3 (as+72). It will be observed
that 8., which involves interdiffusion of the two spin
components of He?, has vanished from these expressions
as it did for pure He?.

All the quantities required to calculate 7mix are avail-
able, including 4:s* which is related to the diffusion
coefficient of He® and He?, and which has been evaluated
for the above potential by Buckingham and Scriven.?

Figure 3 shows how the viscosity of the mixture de-
pends on the molar fraction of He? present, for tempera-
tures up to 5°K. The same values of the potential
parameters, A,, and ¢/, have been used as before. Also
shown in the figure are the experimental values of

; (11)

(s4m) 2 +4dac1xa{ (a1+a2')/')/1~— 14u}+ (1/s+u)4ws?

Becker et @l for 2.64° and 4.15°K. It will be seen that
the theoretical curves show departures from linearity
which, up to 3.5°K at least, are of the order of 5 percent
when x1=2x,=0.5. The experimental results on the
other hand do not indicate any very significant de-
parture from linearity. One would expect that a devia-
tion of 5 percent should be observable, since in general
the experimental results of pure He® and pure He!
appear to be consistent to within 2-3 percent and more-
over Becker et al. claim to measure the fraction of He?
present in mixtures to 2 percent. The point seems to
deserve further investigation.
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V. SCATTERING OF He* ATOMS

A further test of symmetrization effects would appear
to be possible in the direct scattering of He atoms. The
most sensitive comparison, and one not likely to de-
pend critically on the chosen law of force, would be
that of the differential cross section for scattering
through 90° in the center-of-mass system, at fairly low
thermal energies. Thus, since collisions involving anti-
symmetrization make no contribution to scattering
through 90°, the cross sections corresponding to Bose
statistics, classical statistics, and a 3:1 mixture of
Fermi and Bose statistics, would be in the ratios 4:1:1,
regardless of the collision energy. Differential cross
sections which have been calculated for He*—He?,
He®—He* and He?*— He? collisions, assuming the appro-
priate statistics, although modified to some extent by
mass effects, do show ratios which are substantially the
same as the above and are not very sensitive to collision
energy, at least when the energy parameter K exceeds
about 0.2 (corresponding to 2°K).

For an observational test of the symmetrization
effect therefore, the scattering near 90° is valuable
because the effect is not obscured if the collision energies
cover a fairly wide range. This is not necessarily so for
scattering through small angles; although the effects
of symmetry are still substantial, they are much more
sensitive to the collision energy, and tend to average
out over a range of energies. That this is likely can
easily be seen by considering the variation with energy
of the total scattering cross section, and its dependence
on the statistics assumed, for say He*—He! collisions.
The analysis is essentially the same as for the viscosity
cross section, though in place of (1) we have

4
QSC(K,Am)-_—*k—z' XL: wL(2L+1) Sil’l25L, (12)
and as a suitable reduced cross section, Sse=Qsc/T7n?-
In addition to .Ss. we have evaluated an average cross
section S,,, by integrating Ss. with respect to energy
and assuming a Maxwell distribution. Thus

Seo(T* Ap) = f xe %S scdx, (13)
0

where x=K/T* as before.
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F1c. 4. Total scattermg cross sections for Het-He? collisions,
(a) Sse, before averaging, as a function of the reduced collision
energy K; (b) s, after averaging, as a function of the reduced
temperature T*. Full-line curve corresponds to Bose statistics,
dashed curve to classical statistics.

The presentation of these cross sections in Figs. 4(a)
and 4(b) is exactly similar to that of the viscosity cross
sections, except that the scales of K and 7% are now
taken to be the same, since the weighting function xe=*
has its peak when x=1. The significant points are first,
the oscillatory behavior of the S;, curves for Bose and
classical statistics with respect to each other, and
secondly, the very marked diminution of these oscilla-
tions after the averaging carried out in S,.. This makes
the detection of any symmetry effect from the total
scattering cross section very difficult if the distribution
of relative velocities is anything like Maxwellian ; hence
it is desirable that the collisions should be as nearly
monoenergetic as possible. The same applies to measure-
ments of the differential cross section at small angles, as
indicated above. On the other hand it must be re-
membered, in connection with angular scattering near
90°, that, although the energy dependence is much less
critical, the differential cross section at 90° is relatively
small, about 5-10 percent of that near 0°.



