DISSOCIATION OF O IN UPPER ATMOSPHERE

The presence of O, at F-layer altitudes should have a
profound effect on the rate of electron recombination as
suggested by Bates and Massey.® Since atomic oxygen
ions can be converted to molecular ions in collisions
with neutral oxygen molecules, the molecular ions can
then recombine with electrons by dissociative recom-
bination,

¢+0,—0'4-0". (2

The recombination coefficient for this process may be
as large as 10~7-cm?® sec™®. By contrast, in the absence
of molecular oxygen, electron recombination proceeds
by radiative recombination,

e+0+r—0+hw, 3)

for which the recombination coefficient is of the order
of 1072 cm3sec~!l. Since the conversion of atomic to
molecular ions,

O+t40,—0,t40, (C))

0P, R. Bates and H. S. W. Massey, Proc. Roy. Soc. (London)
A192, 1 (1947).

1597

can take place by either charge exchange or by ion-atom
interchange, a large reaction cross section is expected.
According to Bates,'* the rate coefficient for ion-atom
interchange may be as high as 107%° cm? sec™. The high-
altitude O, concentrations indicated by the rocket
experiment and the theoretical cross section for ex-
change ionization are sufficient to explain the recom-
bination coefficients of 107 to 10~® observed in F,
region.!? The manner in which the recombination coeffi-
cient decreases from E region to F; region depends on
the partial pressure of O.. The expected rate of decrease
is sufficient to account for the production of a major
portion of F, region by the same source of ionization
that is responsible for Fy.12:13

1D, R. Bates, Proc. Phys. Soc. (London) (to be published).

12 Havens, Friedman, and Hulburt, Report of the Conference
on th()a Physics of the Ionosphere, The Physical Society, London
(1954).

( 13 N. Bradbury, Terrestrial Magnetism and Atm. Elec. 43, 55
1938).
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The theory of electron penetration in an infinite medium under the combined influence of scattering and
slowing down is developed to the point of numerical application. Sample calculations of energy dissipation
versus distance from the source are compared with experiments by Frantz, by Clark, Brar, and Marinelli,
and by Loevinger. The agreement is good provided that relativistic scattering cross sections are used.
The energy loss is treated in the continuous slowing down approximation; the resulting error is appreciable

only at extreme penetrations.

1. INTRODUCTION

HIS paper considers the following problem: A
source of electrons with kinetic energy T is
embedded in a material. As the electrons move away
from the source they lose energy and change direction.
We want to determine the energy dissipated by the
electrons at various locations in the material. A knowl-
edge of the distribution of energy dissipation implies a
knowledge of the spectral and directional distributions
also, but this additional information need not be
described explicitly.

Phenomenological work on this problem has been
accomplished mainly by people interested in the bio-
logical effects of radiation. The most extensive effort of
this type, and also the most recent, is that of Loevinger,
whose paper contains a fairly complete summary of
experimental work with beta-ray sources.! From a more

* Work supported by the U. S. Atomic Energy Commission

and the Office of Naval Research.
1R. Loevinger (private communication).

basic standpoint the problem is essentially new, since
few attempts—and those in unrealistic schematization
—have been made to calculate electron spatial distri-
butions taking into account both energy loss and direc-
tion changes, although both effects have a strong
influence.?? Many contributions have been made to-

2 For efforts to apply age diffusion theory to electron penetration
problems see Bethe, Rose, and Smith, Proc. Am. Phil. Soc. 78,
573 (1938) and W. C. Roesch, Hanford Report No. HW-32121,
May 24, 1954 (unpublished). There can be hardly any doubt that
this simple model gives better than an order-of-magnitude
estimate of the distance electrons travel “on the average.”
However, two important features of the penetration are given
wrongly: (a) The initial transient stage of the penetration when
electrons move directly away from the source, which is particularly
important for high-energy sources or for low-Z scattering ma-
terials; and (b) the deep-penetration trend. The results of this
paper indicate that there is hardly any region of penetration in
which age diffusion theory can be expected to provide a reason-
able description.

3 For calculations of electron backscattering see J. W. Wey-
mouth, Phys. Rev. 84, 766 (1951). Weymouth took into account
energy losses as well as deflections, but only in the approximation
of an energy-independent scattering cross section. He did not
attempt to calculate electron spatial distributions.
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wards understanding simpler situations, in which one
or another effect is neglected. For example, many
authors have neglected angular deflections in calcu-
lating spatial distributions as a function of energy loss.*
This is the so-called straggling problem. Other authors
have neglected energy loss effects in calculating angular
distributions produced by penetration.® In addition,
there has been work relating the deflections to energy
losses neglecting the spatial dependence® and some
work on energy losses neglecting botk direction and
spatial location.” A discussion of these partial problems
together with their inter-relationships is given in the
first part of Fano’s paper on straggling and energy
loss of charged particles.?

H. W. Lewis took the first step towards a more
realistic theoretical treatment of the electron penetra-
tion when he wrote down formal expressions for the
spatial moments of the electron distribution.® These
were based on a continuous energy loss approximation.
Both elastic and inelastic deflections were included in
his derivation, the latter being considered as statistically
independent of the energy losses. Lewis made no
attempt to evaluate the moments numerically in a
systematic way or to use them to obtain spatial distri-
butions.

Following the publication of Lewis’ paper, evaluation
of a limited number of moments was accomplished in
nonrelativistic approximation by Blanchard.’® Blan-
chard also found very useful approximate expressions
for the harmonic coefficients of the zeroth spatial
moment, which have special interest.® Attempts were
then made by Blanchard and others to construct spatial
distributions from a knowledge of the first few mo-
ments.”® The results were generally unsatisfactory,
because the information contained in the first few
moments did not seem sufficient for such a construction.

The essential information which was lacking in this

4See L. Landau, J. Phys. (U.S.S.R.) 8, 201 (1944); O. Blunck
and S. Leisegang, Z. Physik 128, 500 (1950); also, for heavy
particles, K. R. Symon, Harvard thesis, 1948 (unpublished)
whose results are extensively quoted by B. Rossi, High Energy
Particles (Prentice-Hall Inc., New York, 1952), pp. 29 ff.

5 E. J. Williams, Proc. Roy. Soc. (London) 169, 531 (1939);
S. Goudsmit and J. L. Saunderson, Phys. Rev. 57, 24 (1940);
G. Molitre, Z. Naturforsch. 32, 78 (1948); H. S. Snyder and
W. T. Scott, Phys. Rev. 76, 220 (1949); H. A. Bethe, Phys. Rev.
89, 1256 (1953); and L. V. Spencer, Phys. Rev. 90, 146 (1953).
Also of this type but emphasizing mainly the backscattering are
papers by W. Bothe, Z. Physik 54, 161 81,929); Bethe, Rose, and
Smith, Proc. Am. Phil. Soc. 78, 573 (1938); M. C. Wang and
E. Guth, Phys. Rev. 84, 1092 (1951); T. Teichman, Atomic
Energy Commission Document NYO-785, 1951 (unpublished);
and E. J. Saletan, Atomic Energy Commission Document NYO-
3990, 1952 (unpublished).

¢ C. H. Blanchard, National Bureau of Standards Circular
527, 1954, p. 9. Note that with the continuous energy loss
approximation, which relates path length to energy loss, most
of the papers of the preceding footnote can be considered in this
category also.

7L. V. Spencer and U. Fano, Phys. Rev. 93, 1172 (1954).

8 U. Fano, Phys. Rev. 92, 328 (1953).

9H. W. Lewis, Phys. Rev. 78, 526 (1950).

0 C, H. Blanchard (private communication).
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earlier work was a knowledge of the asymptotic (deep-
penetration) trend. Although complete knowledge of
the spatial moments theoretically should yield the
distribution, in practice it is not possible to calculate
more than a finite, comparatively small number of
spatial moments and these with imperfect accuracy.
Construction of a spatial distribution is equivalent to
extrapolating this finite set of imperfectly known
moments to infinite order. Unless the trend of the
high-order spatial moments is known from a determi-
nation of the deep-penetration spatial trend, such an
extrapolation cannot be made with confidence.

Several developments have now made it possible to
calculate realistic electron spatial distributions at least
for situations in which bremsstrahlung energy losses
may be neglected. First, methods were developed for
rapid desk-computer calculation of large numbers of
spatial moments. When numerical values for the
moments were graphed, they showed very clearly the
trend predicted by a Wick-type asymptotic calcula-
tion,* so much so that the high moments seemed to
contribute little additional information. This ‘“break”
made spatial distribution constructions feasible. Next,
methods had to be found for combining into an analytic
form (a) the known values of a number of spatial
moments, (b) the asymptotic trend, and (c) additional
odds and ends of information about the distribution.
This was not easy, because traditional methods did not
seem to work. Eventually “function-fitting”” techniques
were developed similar to those which have proved
useful in x-ray penetration problems,’ and satisfactory
constructions were made. Finally, a much better
theoretical derivation of the all-important deep-pene-
tration trend was discovered which removed remaining
questions about its reliability and range of application.

The methods for calculating spatial moments are
described in Secs. 2, 3, and 4. The deep-penetration
trend is then considered (Sec. 5), but only in connection
with a Wick-type argument (Appendix D) since the
newer derivation will be presented in a later paper.
Additional information which must be used in con-
structing distributions is given in Sec. 6. All the presen-
tation up to this point deals explicitly with plane
monodirectional and monoenergetic electron sources
because they are easily visualized, although the princi-
ples apply to other types as well. The remaining sections
contain material about several source types. The actual
construction of distributions is discussed in Secs. 7 and
8. In Sec. 9 there are several examples of calculations
in plane monodirectional geometry. These are compared
with experiments by Frantz [see Sec. 9(B)]. In Sec. 10

1 G. C. Wick, Phys. Rev. 75, 738 (1949). This type of analysis
was first applied to an electron penetration problem by Yang
[C. N. Yang, Phys. Rev. 84, 599 (1951)7]. He derived the path
length distribution for a fixed and small penetration. We seek
the related penetration distribution for a fixed path length. Yang’s
limitation to small energy loss makes the Wick-type analysis
much more straightforward than in the general case.

21,, V. Spencer, Phys. Rev. 88, 793 (1952).
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there are sample calculations for point and plane
isotropic P32 sources which are compared with experi-
ments by Clark, Brar, and Marinelli and by Loevinger.!
In all comparisons, theory and experiment agree to
perhaps three percent or better except where extraneous
effects are to be expected. These extraneous effects
are range straggling, which has not been included in
the calculations and which becomes important at the
very deepest penetrations, and a boundary at the
source plane which is present in Frantz’s experiment.
The remarks at the end are mainly concerned with
methods for extending the theory to more general situa-
tions and including effects neglected in this treatment.

2. THE TRANSPORT EQUATION

Our presentation relates chiefly to monoenergetic
and monodirectional sources which are distributed
uniformly over an infinite plane and to scattering
media which are homogeneous and without boundaries.!?
The use of monoenergetic sources is not a limitation
since problems involving polychromatic sources can be
solved by simple integration over monoenergetic source
results. The consideration of only plane monodirectional
geometry is likewise not particularly a limitation. Other
simple geometries can be treated in the same way.*
In particular, it is easily possible to convert a solution
for a plane isotropic source into a solution for a point
isotropic source. This conversion is discussed in Sec. 8.

If an electron source located at the plane =0 emits
monoenergetic electrons in the direction §=0 perpen-
dicular to the source plane, Lewis’ equation® describing
the penetration may be written as follows:

a7 a7
——+cosf—= fdQ’N o (r,O0){I(r,0',2)—1(r,0,2)}
ar 9z

+ (2m)18(2)8(r—r0)d(cosf—1). (1)

Here, 27l (r,0,3) sinfdfdr is the flux of electrons, with
obliquities between 6 and 6-df and with residual ranges
between r and r-dr, crossing the surface of a unit
spherical probe located a distance z from the source
plane. Likewise, 2o (r,0) sin®d® is the cross section
per atom for deflecting an electron with residual range
r through an angle of a size between ® and 0440,
while NV is the number of atoms per gram of material.
The term on the right containing the Dirac delta
functions specifies the electron source.!®

13 The calculation of boundary effects, even for the simplest
geometries, is an unsolved problem. As mentioned in references 2
and 3, some attempts have been made assuming that the electrons
do not lose energy or that scattering cross sections are energy
independent; however, no method applicable to more general
situations has yet been developed.

141, V. Spencer and U. Fano, J. Research, Natl. Bur. Standards
46, 446 (1951), where a point-collimated source is also considered.
The relation between point and plane isotropic sources is well
known from neutron penetration literature.

15 A word about dimensions: If I(r,0,z) has dimensions number
per cm? per steradian per (g/cm?) residual range, No(7,0) being
cm?/g per steradian and 7, z being measured in g/cm? the first
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By assuming that the electrons lose their energy
continuously, a relation is established between the
residual true range » and the kinetic energy of the
electrons. The average rate of energy loss is the stopping
power (dT/dr), for which theoretical expressions exist.!6
The connection between r and T is given by the
following integral over the stopping power:

P(T)= f AT (AT /dr), @)

Table I gives electron ranges which have been calcu-
lated numerically by integrating over stopping powers
determined from the Bethe formula. Note that through-
out this paper T expresses kinetic energy in mc? units
while 7 is measured in g/cm?.

At this point it is convenient to rescale the distance
parameters, taking ro=r(T,) as a unit. Defining
t=(r/ro), 2= (2/70), S(t,0)=rNo(r,0), and I(r,0,2)dr
=I(¢,0,x)dt, the transport equation takes the form

74 oI
— L cosp—= f AS (L O (10 2)—T(10,2))
ot ax

+ (20)%8 ()8 (1— 1)8(cosd—1),  (3)

where the dimensionless energy parameter ¢ varies from
0 to 1, while the space parameter x varies from —1
to +1.

The first step in treating this complicated equation is
an expansion in spherical harmonics, which is easily
performed with the aid of the well-known addition
theorem. Defining

L(t5) =2 f d(cost) P(cos) I (10,0),

4)
Si(f)=2r f d(cos®){1—Py(cos®)}S(,0),

Eq. (3) may be transformed to a linked system of
differential equations:

olyr 0l

+7

ax 0x

aI;
~ @ e
ot

+SiO (1) =8(x)s(1—1).  (5)

The second step is a transformation in terms of spatial
moments. The Egs. (5) are multiplied by different
powers of x and integrated over the whole range
—1<x<-1. The resulting system of equations is the

three terms are obviously consistent and the source has the
strength (integrated over 7, z, @) of one electron per cm?.

16 H. A. Bethe, Handbuch der Physik (Verlag Julius Springer,
Berlin, 1933), 24, Part 1, pp. 491 ff.; Ann. Physik 5, 325 (1930).
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TasLE I. Stopping powers and corresponding residual ranges for electrons calculated from the Bethe formula.
he mean ionization potential used is in each case given at the bottom of the column.

Beryllium Polystyrene Air Aluminum
Stopping Residual Stopping Residual Stopping Residual Stopping Residual
power range power range power range power range
Mev me?/ (g/cm?) g/cm? me?/(g/cm?) g/cm? mc?/ (g/cm?) g/cm? me?/ (g/cm?) g/cm?
0.01 36.83 0.000298 44.55 0.000247 38.80 0.000285 33.25 0.000339
0.03 15.64 0.00211 18.92 0.00175 16.67 0.00199 14.625 0.00230
0.05 10.67 0.00521 12.91 0.00431 11.42 0.00490 10.101 0.00559
0.07 8.402 0.00939 10.17 0.00776 9.011 0.00880 8.008 0.00999
0.10 6.631 0.01734 8.026 0.01514 7.127 0.01619 6.362 0.01830
0.20 4.489 0.05457 5.435 0.04590 4.843 0.05074 4.356 0.05684
0.30 3.780 0.1026 4.576 0.08556 4.087 0.09521 3.690 0.1062
0.40 3.444 0.1571 4.171 0.1306 3.729 0.1456 3.377 0.1619
0.50 3.260 0.2156 3.947 0.1789 3.533 0.1996 3.206 0.2215
0.60 3.150 0.2768 3.814 0.2294 3.417 0.2560 3.105 0.2836
0.70 3.081 0.3397 3.731 0.2813 3.345 0.3139 3.044 0.3473
0.80 3.038 0.4037 3.679 0.3342 3.300 0.3729 3.007 0.4120
0.90 3.011 0.4684 3.646 0.3876 3.272 0.4324 2.985 0.4774
1.00 2.994 0.5336 3.626 0.4415 3.25¢ 0.4924 2.973 0.5431
1.20 2.981 0.6646 3.611 0.5497 3.245 0.6129 2.967 0.6750
1.40 2.984 0.7959 3.614 0.6581 3.250 0.7335 2.975 0.8068
1.60 2.995 0.9269 3.627 0.7662 3.263 0.8537 2.991 0.9380
1.80 3.010 1.057 3.645 0.8738 3.281 0.9733 3.010 1.068
2.00 3.027 1.187 3.666 0.9809 3.301 1.092 3.031 1.198
2.20 3.046 1.316 3.689 1.087 3.323 1.210 3.053 1.327
2.40 3.065 1.444 3.712 1.193 3.345 1.328 3.076 1.454
2.60 3.084 1.571 3.736 1.298 3367 . 1444 3.098 1.581
2.80 3.103 1.698 3.759 1.403 3.389 1.560 3.119 1.707
3.00 3.122 1.824 3.781 1.506 3.410 1.675 3.141 1.832
4.00 3.208 2.442 3.886 2.017 3.508 2.241 3.237 2.446
5.00 3.281 3.045 3.975 2.515 3.591 2.792 3.318 3.043
6.00 3.346 3.635 4.054 3.002 3.664 3.332 3.390 3.626
8.00 3.451 4.786 4.181 3.952 3.783 4.382 3.506 4.760
10.00 3.536 5.906 4.283 4.876 3.878 5.403 3.598 5.862
I=60 ev Ig=15.6 ev In= 80.5ev I=150 ev
Io=764¢v Io= 92 ev
14=207 ev
Copper Cadmium Gold
Stopping Residual Stopping Residual Stopping Residual
power range power range power range
Mev mc2/ (g/cm?) g/cm? mc?/ (g/cm?) g/cm? mc?/(g/cm?) g/cm?
0.01
0.03 11.91 0.00288
0.05 8.335 0.00690
0.07 6.656 0.01220 5.735 0.01433
0.10 5.323 0.02217 4.610 0.02586 3.926 0.03083
0.20 3.687 0.06791 3.219 0.07842 2,772 0.09214
0.30 3.142 0.1260 2.754 0.1448 2.386 0.1690
0.40 2.886 0.1913 2.538 0.2191 2.206 0.2546
0.50 2.749. 0.2609 2.422 0.2982 2.111 0.3455
0.60 2.669 0.3332 2.356 0.3802 2.058 0.4395
0.70 2.622 0.4073 2.318 0.4640 2.028 0.5353
0.80 .2.594 0.4823 2.296 0.5489 2.013 0.6322
0.90 2.579 0.5580 2.285 0.6344 2.006 0.7297
1.00 2.572 0.6340 2.281 0.7201 2.004 0.8273
1.20 2.573 0.7862 2.285 0.8916 2.012 1.022
1.40 2.585 0.9381 2.299 1.062 2.027 1.216
1.60 2.602 1.089 2.317 1.232 2.046 1.408
1.80 2.623 1.239 2.337 1.400 2.066 1.599
2.00 2.644 1.387 2.358 1.567 2.087 1.787
2.20 2.666 1.535 2.380 1.732 2.108 1.974
2.40 2.688 1.681 2.401 1.896 2.128 2.158
2.60 2.710 1.826 2421 2.058 2.148 2.341
2.80 2.731 1.970 2.441 2.219 2.168 2.523
3.00 2.751 2.113 2.461 2.379 2.186 2.703
4.00 2.844 2.812 2.549 3.160
5.00 2.921 3.491 2.621 3.917
6.00 2.989 4.153 2.685 4.654
8.00 3.099 5.437
10.00 3.186 6.683

I=310ev I=480 ev I=790 ev
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following:

oI,
__a_t’-+s,(¢)1,n(t) =01 (1) 141, 1(0)
’ Uy, a1 (D)} 08,000 —1), (6)

where

()= f a0, (1)

As discussed in reference 9, formal solutions to
Egs. (6) may be written down. Using these formal
solutions, or using Egs. (6) in much the same manner
as in x-ray penetration calculations,” the moment
coefficients I;,(f) may be determined by numerical
integration. However, the selection of numerical
methods depends on the behavior of the functions S, ().
We therefore discuss these functions in the next section
and in Appendix A. It turns out from a study of the
Si(¢) that other, simpler procedures than straight-
forward numerical integration may be used to obtain
numerically the I;,(¢).

3. CROSS SECTIONS
A. Screened Rutherford

The simplest approximate form for the nuclear
scattering cross section is the Rutherford formula. For
our purposes this cross section should be modified to
take into account (a) the screening of the nuclear field
by the atomic electrons, (b) deflections caused by
inelastic collisions between electrons, and (c) relativ-
istic effects.

As discussed by Bethe,'” the screening effect may be
accounted for by introducing a single parameter. We
have chosen to introduce this screening constant # in
the Rutherford expression by writing (14 29— cosf)—2
in place of the familiar factor sect(§/2). In our initial
calculations, inelastic deflections were accounted for by
means of a multiplicative factor (Z41)/Z. The expres-
sion resulting from these modifications is the following:

2xNo[r(T1),81= B/4)(Z+1) (N adoZ/A)(T+1)
XT2(T+2)2(1429—cosf)2, (8)

where the functional relationship between 7" and 7 is
that of expression (2). In (8), N 4 is Avogadro’s number,
A is the atomic weight, and ¢o= (8me?/3m??). Note
that this expression includes relativistic effects insofar
as they modify the cross section for very small angles 6.
The screening constant 5 can be determined from the
formula of Moliére'8:

1[-—~~—Zé (1)
"y 0.885(137)] (T+2)
X[1.134-3.76(Z/ 137 (T+ 12 T-1(T+2)~].  (9)

17H. A. Bethe, Phys. Rev. 89, 1256 (1953).
18 G. Moliére, Z. Naturforsch. 24, 133 (1947).
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As is discussed in Appendix B, the cross section (8)
leads to the following expression for the S;’s:

SLH(T)]=(Z+1)[3N a¢oZ/44]
X (T+1)2T_2(T+2)_27’()Cl,

Co=0,
(10)

Ci=In(1+47)— (142)7,

C[+1= (2+l_1) (1+217)Cl
— (A4+HNCra— 4+ (1)

B. Relativistic Forms

Nearly all of our initial calculations were performed
by using the expressions (8) and (9). However, a later
investigation indicated that if the simple angular
dependence of (8) were replaced by the correct relativ-
istic distribution given by the Mott formulas,®® the S;’s
would be modified by as much as 20 percent for large-Z
scattering materials at energies as low as 7'=1. Such a
modification would markedly affect the electron spatial
distributions. It therefore seemed wise to base all
further calculations on correct relativistic angular
distributions. An investigation of the literature indi-
cated that for some regions of Z and T these have been
calculated while for others they apparently have not.
Feshbach has made tabulations for a variety of Z’s
which can be used for 77>8.2° For Z=80 and a variety
of T values, tabulations have been made by Bartlett
and Watson? and by Massey.?? For small Z it is possible
to use the McKinley-Feshbach expressions.?® There
seem to be no tabulations or formulas approximating
the Mott expression for intermediate Z and small 7.2

A much less important improvement which has
nevertheless seemed desirable is that of correcting more
accurately for inelastic deflections. This can be done
by introducing an additional factor which can be calcu-
lated from a formula due to Fano.? Although this
modification tends to be small, it may be appreciable
if Z is low enough.

For calculations in low-Z materials, we use the
following expression for the cross section, which relies
on the McKinley-Feshbach angular distribution:

27 No[7(T),0]=(Z+1) (3N a¢eZ/4A4) (14 €) T
X(T+2)782{ (14 29— cosf) 2
+2~%ra8(1—cosf)—#

—5(8*+mapB) (1—cosf) '},

(11)
a=(Z/137), B=T(T+2)(T+1)=

¥ N. F. Mott and H. S. W. Massey, Theory of Atomic Collisions
(Oxford University Press, London, 1949), second edition, Chap.
v

2 H. Feshbach, Phys. Rev. 88, 295 (1952).

21 J. H. Bartlett and R. E. Watson, Proc. Am. Acad. Arts Sci.
74, 53 (1940).

2 H. S. W. Massey, Proc. Roy. Soc. (London) A181, 14 (1942).
(1291\52\;. A. McKinley, Jr., and H. Feshbach, Phys. Rev. 74, 1759

24 Note that this region is so big that angular distributions
change too much to make interpolation feasible.

26 U. Fano, Phys. Rev. 93, 117 (1954).
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TaBLE II. Scattering parameters o; as a function of energy. Compare the exact values of columns 2 and 6 with the analytic
approximation values in columns 3 and 7. Observe also the constancy of o1/0; ratios.

Aluminum Gold
3.193 33.93
(cm?/g) —_— (cm?/g) —_—
Mev Noi1 7 (r +1.492) o2/o1 o3/01 Noi 7 (r +2.086) as/o1 a3/o1
2.0 0.9905 0.9907 2.838 5.381 4.902 4.902 2.613 - 4.631
1.6 1.406 1.401 2.830 5.353 6.948 6.895 2.598 4.581
1.2 2.193 2.183 2.818 5.311 10.80 10.68 2.576 4.512
0.9 3.404 3.396 2.804 5.264 16.64 16.52 2.552 4.436
0.7 4.997 4.998 2.789 5.216 24.18 24.18 2.527 4.363
0.5 8.385 8.413 2.766 5.142 39.77 40.39 2.489 4.254
0.3 18.78 18.82 2.724 5.013 84.78 89.04 2.417 4.056
0.1 127.9 115.5 2.621 4.692 462.3 519.9 2.195 3.440

where, according to Fano,

e=(Z+1)7(Indn)~

X {#:n—In[0.16Z-¥(143.33¢/6) 1}, (12)

—u;, being a number which differs from one material
to the next but which has a value in the neighborhood
of 5. The expression for the S;’s which derives from
(11) is

SLHT)]=(Z+1) BN 4oZ/44) (14T (T+2)7'87*

l
X1 Crt-2mafl— (B+maf)Y i1 tre.  (13)

=1

For calculations of electron penetration in gold, it
proved convenient to represent the cross section by the
following expression:

2eNo[7(T) 9]1= (Z+1) BN apoZ/44) (14 &) T
X (T42)"1872{ (14 29— cosh) 2
+B(1—cosb) '+ C+D(1—cosf)}, (14)

where B, C, and D are determined so that (14) agrees
with the Bartlett-Watson tabulations at appropriate
angles. Such a form was found capable of representing
the tabulations to 2 percent or better for all angles and
all energies. The corresponding formula for the .S’s is

Si[H(T)]=(Z+1) (3N a¢oZ/44) (14T

l
X (T+ 2)—lﬁ-2{c,+zB ¥ it

=1

+ZC(1—510)+2D(1—510+%511) }1’0. (15)

Both (15) and (13) result from integrals evaluated in
Appendix B.

C. Analytic Representations

The expressions (10), (13), and (15) are not simple.
However, the Si’s may always be represented with
considerable accuracy by the approximate form

Si(t) =ady/[1(t+a) ], (16)

where o and d; are numbers independent of ¢ The
argument which suggested this formula, which was first
made by Blanchard?® and is contained in Appendix A,
is not particularly conclusive. However, the accuracy
of this representation can be easily demonstrated. For
example, it is apparent that (16) holds if the scattering
parameters a,(r) =/ dQ{1— P;(cosf)}a(r,0) are propor-
tional to #~1(r-+b)~!, where b is a constant. This, in
turn, is the case if o1(r) <7 1(r4b)~! and if the ratios
o1(r)/a1(r) are independent of 7. Table II contains
comparisons which demonstrate these proportionalities.

If the source energy is less than about 1 mc? an even
simpler approximate expression agrees fairly well with

the S/’s:
Sz(i)%dz/t. (17)

This is because the constant a becomes large for low
source energies (see Appendix A).

We have used the approximate expressions (16) and
(17) in all of our calculations of electron penetration.
The discussion contained in the next two sections is
based on these representations, which make possible
far less laborious methods for the solution of the
system (6) than direct numerical or analytical inte-
gration.

It should be noted that, as evidenced by Table II,
the approximate expressions (16) and (17) are not
particularly accurate for 1. This departure becomes
somewhat more serious as / becomes larger. This should
not particularly affect the accuracy of calculations
based on (16) and (17) for several reasons: (a) These
discrepancies occur when the electrons have very little
of their range and energy left and may be expected to
be nearly isotropic in direction. (b) In addition, the
scattering cross section for small ¢ becomes large. Thus,
the small portion of the electron range where the
discrepancy occurs is chiefly spent by the electrons in
going around and around rather than in penetrating
deeper into the medium. Finally, (c) the fact that the
directional distribution of the electrons tends to be
isotropic for small ¢ simply means that the higher
harmonics, where the discrepancy is larger, are of little
importance.

26 C. H. Blanchard (private communication).
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4. CALCULATION OF MOMENTS

We can now discuss methods for calculating the
spatial moments 7;,(f). The use of the moments once
they have been obtained is described in the sections
following. For clarity, we relate our discussion mainly
to expression (17) for the Sy’s. The additional effort
involved in using the more general expression (16) is
mentioned only at the end of the section, the details
being presented in Appendix C.

The formal solution of the differential Eqgs. (6) has
already been written down by Lewis’:

1 t’
()= f v exp{-—- f di”Sl(t”)}
t t

X {12+ 1)L+ 1)1, na(t)

FU g, w1 () ]H000(1—=1)}.  (18)
In general, the evaluation of the integrals in (18) must
be done numerically. We may estimate the difficulty of
such integrations by inserting into (18) the simple form
(17) for S;(¢). Use of (17) also makes possible analytic
evaluation of at least some of the integrals, this being
feasible only for #<4 because of a rapid increase, with
increasing #, in the complexity of the expressions for
I.,.().

With the use of (17), the exponential factor in the
integrand of (18) becomes simply (¢//f)%. As may be
seen from Table II, the d; become large as / increases.
Thus the integrand of (18) has a factor which varies
rapidly with ¢. It turns out that the 7,,(f) also vary
rapidly with ¢, especially near ¢=1, but in a more
complicated manner. The whole integrand therefore
varies rapidly with ¢ while not being easily specified
analytically. This makes numerical integration a far
from trivial problem, especially if values for I;,(¢), n>4,
are desired.

In order to circumvent this difficulty, we investigated
the possibility of writing the transport equation in terms
of integrals of the I,,(¢) which would be more tractable
for numerical analysis. By dealing directly with the
integrals we might also hope to reach more directly the
energy dissipation distribution, since this involves
integrals rather than the functions 7;,(¢) directly. The
formulation in terms of residual range momenis may be
accomplished very easily, if (17) is used, by simply
multiplying Eqgs. (6) by a factor (1 and inte-
grating each term over the whole range 0<¢< 1. The
result of this operation is the following system of
equations:

T 141, n1Pt?

o l(l+1)
" @D L@
.
_I_
(2141)

11, n1Pt? } +8n0(di+p+1)71, (19)
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Fic. 1. Diagonal planes and linkages in the lattice of parameters
relating to the recursive system (19). The shaded elements can
be calculated chainwise as indicated by the arrows.

where

1
Lin?= f oI5, (7). (20)
0

The linkage between the numbers I,,» has a very
interesting structure. It obviously can be unraveled,
for with #=0 the linkage term vanishes and I?
= (di+p+1)"'. From these numbers the I;;? may be
obtained, which in turn yield the 7;5?, and so on. If we
consider the three dimensional array with sides /, #,
and p, all terms in (19) lie in the diagonal plane (#+p)
=constant. Further, within this plane the linkage has
exactly the triangular structure noted in Fig. 2 of
reference 14. Thus, if the elements I;,? are known for
fixed #, p and for I< lyax, the elements I3, 177! in the
next line of the plane may be calculated for I < /max—1.
Since the first line in each diagonal plane, i.e., the line
with #=0, may be calculated directly, triangular
sections of the diagonal planes may be evaluated
independently of all I;,? not in the section. A few such
triangular sections are indicated in Fig. 1.

Now the energy dissipation distribution J(x) is given
by the integral

J(x)=fdt(dT/dt)Io(t,x). (21)
0

This implies the following expression for the space
moments of the energy dissipation distribution:

Jo= f dt(dT/dt)Ion(h). (22)

If, then, we approximate (d7/df) by an analytic

expression,
(dT/df) ~ Aot~ A3+ A ot (23)

we obtain an expression for the J, in terms of the [¢,?:
Jo=Aol o+ AT oat+ A5l 04k (24)

The half-integer exponents appear because at low
energies (d7/di) < T-'« . We have found (23) to be
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capable of representing stopping-power data quite
satisfactorily.

Thus, to compute the space moments of the energy
dissipation distribution it is necessary to compute
elements with half-integer p values within a pyramidal
volume in the /, , p array. Such a calculation is easily
accomplished with a desk computer by means of the
recursive relations (19), the first ten moments J,
requiring hardly an afternoon’s work.

For many problems, and particularly for source
energies greater than 1 mc?, the simple form (17) is not
sufficiently accurate and it is necessary to make use of
(16). A more involved argument, which is contained in
Appendix C, can then be made which yields the follow-
ing more complicated set of recursive relations:

(+1)
o (ditpt+it+1)

. ® (i+1)
F1p g, P G0 3
=0 (di+p+i+1)

an

8

4

) §

{ I+ 1)P 1, prPHitt

(1),
(25)
where

<I>;n1’=fdt[z‘/(t—{—a)]f’ll"(f). (26)

The terms in the sums indicated in (25) decrease in
size approximately as (14«)~% while the basic type of
linkage remains the same as in the simpler expression
(19). In order to calculate moments with the recursive
system (25) it is necessary to include enough terms in
the calculation to obtain adequate convergence for the
more important (smaller) values of p. In a calculation
described in Sec. 10 with source energy 1.71 Mev, as
many as 25 terms were included to calculate four
spatial moments accurately to six significant figures.

A useful device which facilitates the evaluation of
the sums in (25) is that of writing, e.g.,

B (+1)
—“"““‘“‘I)Hl, n—1
i=0 (di+-p+it+1)

ptitl

- {i(dz+p+i'+1)ﬂ¢>m, el @)

=0 { i/=1

This makes it possible to evaluate simultaneously sums
for all values of p for a given I/, #» combination. Using
this device, the illustration just mentioned involving
sums with 25 terms required little more than a day’s
work on a desk computer.

Both (25) and (19) are of a form ideally suited for
automatic digital computers. As is mentioned in the
next section, some results have been obtained by coding
(19) for the SEAC. It is our intention to code (25) as
well, in order to perform a wider variety of calculations
for energies below 10 Mev. Note that (25) becomes
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ineffective for source energies above a few Mev because
of slow convergence of the sums. For higher energies
it may be feasible to use devices for speeding conver-
gence or it may be necessary to derive a different
expansion.

Note that in using (25) to obtain the energy dissi-
pation distribution, we write (d7°/df) as a power series
similar to (23) but with [#/(¢+a)] as independent
variable.

5. ASYMPTOTIC CONSIDERATIONS

The process of constructing a distribution from a
limited number of moments implies an extrapolation
of the moment sequence from the finite number actually
calculated to an infinite number of moments. Such an
extrapolation can only be done with confidence if the
trend of the higher order moments has been established
from a knowledge of the distribution near its limits,
the so-called asymptotic behavior of the distribution.
The determination of this asymptotic behavior requires
an independent investigation which is quite different
from that leading to the calculation of the spatial
moments. Such an investigation has been performed
and is to be reported in detail in a manuscript which
will be submitted for publication at a later date. In
order to make this paper self-contained, a simplified
discussion using the method of Wick! is contained in
Appendix D. Both the simplified and the more detailed
arguments indicate that near the =1 limit an analytic
behavior similar to the function

f@)=(1—x)"texp{—4/(1—x)}

should be anticipated, where 4 is a constant which
depends upon the source energy and the scattering
material.

It is conceivable that the spatial distribution attains
its asymptotic behavior only very near the limit. In
this case knowledge of it could hardly be very useful.
Indeed, if a form such as (28) is to prove helpful in
constructing a distribution, it should provide a de-
scription of the distribution over such a large region of
x that those spatial moments which we may be able
to calculate reflect this asymptotic behavior. Otherwise
our attempts at extrapolating the moment system
must contain a large amount of guesswork. It follows
that a method for determining the usefulness of a
functional form such as (28) is simply to compare the
moment trend of (28) with the moment trend of the
unknown distribution.

An easily visualized way of making such a comparison
is to consider another function with the same asym-
ptotic behavior as (28), namely

g(x)= (—Inx)~% exp{4/Inx}.

The equivalence of (29) and (28) for our purpose is
easily demonstrated by writing x=1—(1—x) in (29)
and expanding around x=1. The moments g,=

(28)

(29)
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Jo'dxxrg(x) are as follows:
gn= (m/A)* exp{—[44 (n+1)]}}. (30)

The form of (30) suggests that we plot logarithms of
the electron spatial moments versus (n+1)%. A moment
trend similar to (30) would be demonstrated by a
tendency for the points to lie on a straight line for
large 7.

A series of such plots is shown in Fig. 2, which
utilizes the even spatial moments up to the 20th.”
The solid lines in this figure were drawn with a straight-
edge. The circles represent the quantities —Info,? with
p=—1%. The fact that the straight line trend holds for
moments as low as #=4 strongly supports the use of
(28) or (29) in representing the unknown distribution.?

Having considered the behavior of the electron
spatial distribution for x¥—-1, a reasonable next step
is a discussion of the asymptotic behavior in the other
direction, namely for x¥——1. Unfortunately, it is not
so easy to establish an analytic law for this back-
scattered part of the electron distribution. By taking
linear combinations of the spatial moments and con-
structing thereby the sequence ([ (1—x)/27"), which
emphasizes the region x——1, it is possible to estimate
that the behavior resembles the function exp{—A4’/
(14x)}. This is about the best that can be done at the
present time. Fortunately, there is much less interest
in the negative x portion of the electron distribution,
and moment fitting methods can be used which do not
require detailed information about this reverse asym-
ptotic behavior.

6. FURTHER DISCUSSION OF THE DISTRIBUTION

In addition to moments and asymptotic trends, there
are a number of other known characteristics which
must be taken into account in constructing spatial
distributions. The simplest of these are the observations
that the distributions should be unimodal and every-
where positive, and that the mode should be located at
some positive value of x.

Less obvious characteristics relate to questions of
smoothness. It is clear that the distributions should
vary smoothly from point to point, without oscillatory
or discontinuous behavior, except at the electron source,
whose distribution is §-shaped at x=0. The type of
discontinuous behavior to be expected at the source can
perhaps best be understood by considering the limiting
situation of no elastic scattering. In this case, which is
closely approximated by heavy particles, electrons
generated at x=0 would move together through the
material to the end of their range. At each point x, all
the electrons would have the residual range ¢= (1—x)
and would be dissipating energy at therate (d7"/dF) 1= (1—a).

27 The moment calculations on which Fig. 2 is based were
performed with the aid of the SEAC using the screened Rutherford
cross section (8) and the simple recursive system (19).

28 A comparison of moment trends involving (28) rather than
(29) can be made, but it is more complicated and less visual.
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F16. 2. A graph to demonstrate the asymptotic trend of the
moments of electron spatial distributions. The circles represent

- moments calculated from the recursive system (19). The straight

lines represent the trend of Eq. (30).

The energy dissipation distribution starts at x=0 with
the value (dT/df)¢~1; since it vanishes for x<0, the
source induces a discontinuity of value and slope.®
Elastic scattering does not alter the existence or the
size of these discontinuities. The distribution of energy
dissipation reflects this discontinuous behavior of
source energy electrons superposed on the continuous
distribution of lower energy electrons, which may be
scattered back to the source plane and behind it.

7. CONSTRUCTION OF THE DISTRIBUTION
A. General Discussion

All things considered, the spatial distributions are
sufficiently complicated so as to require a fairly large
number of constants in their description, i.e., five to
ten rather than two or three. For the description must
include the backscattering, the discontinuous behavior
at x=0, the peak, and the asymptotic trend.

By far the best known moment fitting technique
which can utilize an arbitrary number of moments is
the polynomial method, and in our first attempts to
construct spatial distributions we explored its possi-
bilities. After trying it in various forms, e.g., Legendre
expansions, expansions based on a weight function
specifying the known asymptotic trend, and expansions
in non-self-adjoint systems involving only even or odd
moments, we finally turned to other methods because
the convergence of these expansions was usually poor.
The basic reason for this failure seems to be the follow-
ing: The polynomial method requires the choice of a
comparatively simple weight function which so closely
estimates the distribution that only minor corrections
of a slowly varying nature need to be made in the
original estimate. The available quantitative infor-

2 Note that there are discontinuities in the higher derivatives
also, but they need not be considered.
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mation about electron spatial distributions is not in a
form which allows the selection of such a closely
determined, yet simple (i.e., one or two parameter),
initial estimate.

Instead of the polynomial method, our chief reliance
has been on a “function fitting method.””'? This method
has been very successful in problems of x-ray pene-
tration in which information about the distribution is
likewise inadequate for a good polynomial weight
function.® Since it has proven useful, the next few
paragraphs are devoted to a general description of it.
For point isotropic and plane isotropic geometry prob-
lems, of which there has been little mention thus far in
the paper, a different and probably less accurate
moment fitting scheme has been used. A description of
this latter procedure is contained in the next section.

In the function fitting method the distribution is
represented by a sum of terms as follows:

J(#) =25 aif (Bx). )

Each term in the sum involves two parameters instead
of one as in the polynomial method, and all terms have
exactly the same form. The parameters «;, 8; are deter-
mined so that a number of moments of the function on
the right agree with moments of the unknown function
on the left. This requires the solution of moment

equations:
Jn=Zz aiFn<ﬁi)-

The choice of F(B,x) is made according to the follow-
ing criteria: (a) F(B,x) must be capable of describing
the asymptotic trend, (b) F(B,x) must be simple enough
and flexible enough so that a superposition of several
terms with different 8 is capable of describing other
known characteristics of the distribution, and (c)
F(8,x) must have such a form that the Egs. (32) are
easily soluble. This last requirement can always be met
if F,(8;) has the form (8;)"w., where w, is a number
independent of 8.

The particular selection of F(8,x) which has turned
out to be most useful is the following:

F™(B2)=3"(1—x/B)" exp{—Ax/ (6—x)},
=0, x>6,

(32)

0< <8
(33)

where v is a parameter which may be given different
values in different problems. Note that with this se-
lection, wp=w,"= fo'dax*(1—x)" exp{—Ax/(1—x)}.
There is some physical basis for this choice of approxi-
mating function beyond the selection criteria mentioned
in the preceding paragraph. The energy dissipation
distribution is obtained by summing the contributions
of electrons with different residual ranges. Electrons
with residual range ¢ have an asymptotic behavior like
that of (33) with 8= (1—1%), as is evidenced, e.g., by
expression (67) in Appendix D. Thus the energy

30 M. Berger (to be published).
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dissipation distribution can be written in a form very
suggestive of (31), (33).

It may appear surprising that a constant v is inserted
in (33) rather than —$%, which yields precisely the ex-
pected asymptotic trend. The reason for this is that the
factor (1—x)~*has the effect of creating a peak in the ap-
proximating function for 4 not too large. A superposition
of several such functions with appreciably different 8’s
must inevitably yield a “bumpy” distribution, which
is not acceptable. For the aluminum and gold calcu-
lations discussed in Sec. 9, ¥ was chosen to be zero;
while in the beryllium calculation v was chosen to be
+1. In each case the selection was made to obtain an
approximating function capable of yielding smooth
superpositions.

This raises the question as to whether the sum of
several such smooth and monotonic functions is capable
of producing a distribution which may indeed have a
pronounced peak. This is possible, for if two terms in
the sum have B’s nearly equal and a’s which are large
and opposite in sign, the behavior of the two combined
is similar to that of the function

B (1—x/B)7* exp{—Ax/ (B—x)}.

The choice (33) for F(B,x) makes it possible to use
the convenient device of fitting separately the even and
odd moments. These two sets of moments can be
considered as describing two different component distri-
butions which are defined over the range 0<x< 1 and
which become asymptotically equal to each other.
Each of the two component distributions can be repre-
sented by a sum of the form (31). This separate fitting
of the even and odd component distributions has several
advantages: It considerably simplifies the moment
fitting problem, for the component distributions are
ordinarily simpler and easier to fit. Further, instead of,
say, eight simultaneous equations in the system (32),
two systems of four equations each must be solved.
The discontinuities at the source plane appear in a
harmless and natural form in the component distri-
butions. For example, a discontinuity in the distribution
implies that the odd component distribution has a value
at =0 equal to the discontinuity size. Likewise, the
even component distribution has a finite slope at x=0
equal to the (known) slope discontinuity.

Fitting even and odd component distributions sepa-
rately has one additional advantage, namely it auto-
matically yields an estimate of the accuracy of the
approximation. Since the two component distributions
become asymptotically the same, differences which
appear in the separate constructions must reflect the
error. This is important because function fitting tech-
niques have no accompanying test of accuracy com-
parable with convergence criteria for polynomial
approximations. In some cases the use of more and
more moments in function fitting construction serves
the same purpose, but more frequently the accuracy of
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construction must be gauged by constructing distri-
butions otherwise known or by comparing constructions
based on different functions F(8,x).*

B. Sample Outline

To illustrate the preceding discussion and to give
further details we present here the outline of a typical
construction which follows closely the method used
for the gold and aluminum calculations of Sec. 9, and
which relies on the simple expression (17) for .S;.

(a) First the moments J, are determined numeri-
cally. This requires tabulating stopping powers, evalu-
ating the integral (2) to determine electron residual
ranges, calculating the numbers d;=.S5;({=1) using the
appropriate formula for the cross section, computing
the quantities Io, %, Io,t% and Io.? from the system
(19), and finally combining these quantities as indi-
cated in (24).

(b) Next, the asymptotic constant 4 in the approxi-
mating function (33) must be determined. If moments
up to, say n=10 have been calculated this is accom-
plished by solving the equation

In(Js/T10) = (44)¥{ (10.254+4/12)*

—(8.25+4/12)8, (34)

which corresponds to (70) in Appendix E. A simple
iteration is used for this purpose.

(¢) We choose y=0, noting that the F© (8,x) super-
pose smoothly, and calculate the corresponding numbers
w,® with the aid of the formulas developed in Ap-
pendix E.

(d) The equations to be solved simultaneously can
now be written down. Even and odd component
distributions are to be determined separately, requiring
the solution of the two systems:

Z’i aiﬁinzjn/wn(m’
Zi aiﬁinzjn/wn(o),

To the first of these systems we add one more equation
which guarantees the known slope change at x=0,
while to the second (odd) system we add an equation
which guarantees the known discontinuity. These two
equations are the following:

Y iaBit=A"(d/dt) (dT/dt)| =1,
YiaBit=(dT/d)| 1.

(e) To insure the appropriate asymptotic trend, we
specify Bo=1 in both systems.

(f) To solve each of the two systems, ao is first
eliminated by subtracting each equation from the
succeeding one, i.e., the nth from the #+42nd. The
resulting system can obviously be put in the form
described in Appendix B of reference 12 and the
solution proceeds as outlined there.

(g) The resulting even and odd component distri-

n=0,2,4, -,

n=1,35, ---. (39)

(36)
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butions are combined in the usual manner to obtain
J(x). ,

There is, of course, nothing unique about such a
construction. Obvious variations from it are, e.g., use
of a different approximating function F(B,x), fitting
moment combinations instead of the moments directly,
solving a single system of equations instead of even
and odd components separately, and modifying - the
moments to make the fitting easier. Such modifications
may be desirable at any time and become a necessity
in many problems such as, e.g., those in which it is
difficult to calculate more than a small number of
moments. The unifying feature about such a variety of
construction methods is simply that they can all be
expected to give similar answers if they express the
same quantitative and qualitative information about
the unknown distribution.®®

8. PLANE AND POINT ISOTROPIC SOURCES
A. General Discussion

Most of this paper centers around the plane mono-
directional source, the geometry of which is easily
visualized. Of equal interest and perhaps greater
practical importance are the plane and point isotropic
sources concerning which an extensive literature exists.!
The interest in these source types arises because the
elementary radioactive source is isotropic.

The distribution resulting from a plane isotropic
source may arise in two equivalent situations: (a) Point
isotropic sources may be distributed uniformly on a
plane. Measurements of the energy dissipated at various
distances from the plane may then be made with a
point detector. (b) Alternately, the source may actually
be point isotropic while the measurement includes all
the energy dissipated in a plane layer. If, then,
J?(|x|)dx is the energy dissipated in a plane layer
located a perpendicular distance |x| from a point
isotropic source, and if J?°(p)dp is the energy dissipated
in a spherical shell of radius p concentric with the same
source, the following relation must hold between the

two distributions:
1

1 d
()= f ;’—’Jw(p» (37)
2]

Note that x and p both measure distance in 7, units.
Multiplying (37) by |x|” and integrating over the
whole range of x yields a corresponding relation between
spatial moments

]nplz (”+1)_1]np0’ 1’L=0, 2? 47 . (38)

Because of symmetry all odd moments of the plane
distribution vanish. Although odd moments of the
point distribution do not vanish they cannot be easily
calculated.’* Thus, it is necessary to rely on even
moments in the construction of spatial distributions for
both geometries.
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The simple relations (37) and (38) make it possible
to change from one to the other situation readily. This
is very useful, for the plane geometry is much the
simpler for the purpose of calculating spatial moments.
On the other hand, the point geometry yields spatial
distributions which are both easier to discuss and
easier to construct. We have therefore always calculated
plane moments and then with the aid of (38) con-
structed distributions for the point geometry which
could be transformed to plane distributions by means
of (37). This last step has the additional advantage of
providing the extra accuracy which accrues to numbers
determined by integration.

The recursive systems for obtaining plane isotropic
moments can be obtained from (19) and (25) by
multiplying the source term by a Kronecker delta
factor 6;, which selects only the isotropic angular
component.

The characteristic features of a distribution J?°(p)
resulting from a point source are very similar to those
already discussed for the distribution produced by a
plane monodirectional source. The asymptotic trend is
the same. The discontinuities discussed in Sec. 6
relate to the ordinate and slope of J?°(p) at p=0. There
is, of course, no backscattered distribution.

The construction of J?°(p) from its moments and
known characteristics can be accomplished by one or
another form of the method described in the preceding
section. However, we used a simpler (and probably
less accurate) method which is described in Part B of
this section. Our reasons for choosing this simpler
scheme relate to our intention to compare with experi-
ments performed using P% beta rays. The P* spectrum
is continuous with an end point at about 1.71 Mev.
We therefore decided to construct distributions for a
series of monoenergetic sources within the energy region
below 1.71 Mev and to integrate over the interpolated
results to obtain a distribution relative to the P% source

J(x), ARBITRARY UNITS

F16. 3. The energy dissipation distribution resulting from a
plane monodirectional source of 500-kev electrons in Be. The
circles represent measurements by Frantz which correspond to
source electrons with kinetic energy 570 kev. The abscissa is in
units of the true range of the source electrons.
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Fic. 4. The energy dissipation distribution resulting from a
plane monodirectional source of 500-kev electrons in Al. The
circles represent measurements by Frantz corresponding to 515-
kev source electrons. The abscissa is in units of the source electron
true range.

spectrum. Because of the energies involved, most of
these monoenergetic source calculations required the
more complicated recursive system (25). Since (25)
involves more desk computer work than (19), we did
not want to calculate so many spatial moments—no
more than four, to be precise. On the other hand, the
final integration over monoenergetic source results
“washes out” the detailed features of each component
distribution and is therefore less demanding regarding
their accuracy. It therefore seemed appropriate to rely
on constructions involving few moments and only fair
accuracy.

B. Construction of Distributions

To construct J7°(p) we decided to use the following
function, because of the simple expression for its
moments [ compare with (29)7:

K (p)=cpt(—Inp)~* exp{4/Inp}, (39)

where ¢, £ A are constants. For £>1 this function not
only vanishes at p=0 but also has zero slope. We
therefore introduce these same characteristics into the
distribution to be described by (39) by subtracting
from J?°(p) a function which has the same value and
slope at p=0. This function, which we label J (o), is so
chosen that the combination J?°—J has the same
asymptotic behavior as J?°alone. In particular, we used

J (p)= (a+0bp) exp{—B/(1—p)}, (40)

where B is chosen slightly larger than the anticipated
value for 4, and a,b are adjusted to bring about
agreement in slope and value with J?°(p) at p=0. The
final step in the construction is the determination of
the constants ¢, £ A from the solution of equations
which guarantee that three moments of K(p) have
values identical with the corresponding moments of
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Jro—J. We used for this purpose the zeroth, second,
and sixth moments. The fourth moment served as a
check on the accuracy of the representation, which has,
of course, the form

J7o(p) =K () +J (p).

9. EXAMPLES: PLANE MONODIRECTIONAL 500-kev
SOURCES IN BE, AL, AND AU

A. Theoretical

These three calculations were performed with the
intention of comparing with experiments by Frantz in
which the ionization in an air gap is taken as a measure
of the energy dissipated.®® The space-residual range
moments [o,?, which were in each case calculated using
the recursive system (19), were therefore combined as
in (24) to obtain the J, but with the constants 4o, 44,
A, relative to the stopping power in air in accordance
with the Bragg-Gray principle.®

The construction of Al and Au spatial distributions
followed closely the outline given in Sec. 7, the alumi-
num moments having been calculated using the S;()
given by (13) while the gold moments were obtained
using (15) Both constructions involved fitting the mo-
ments Jo through J7.

The calculation of spatial moments for the distri-
bution in Be made use of (13) and proceeded without
difficulty. The. construction of the distribution, how-
ever, offered special problems. Beryllium has such a low
Z that electrons are very little deflected until they
have expended an appreciable fraction of their total
range. As a result, (a) the asymptotic portion of the
distribution is confined to a relatively narrow region
of x; (b) the backscattered distribution is very small
and tends to fall off rapidly because it is composed
largely of very low energy electrons; and (c) the region
between source and maximum is large enough to
exhibit some structure such as, for example, an inflec-
tion. This situation, in which the electron distribution
tends to become similar to the Bragg curve for heavy
particles, is a fairly general one since it occurs in any
scattering material if 7' is large enough. (Of course,
in situations where bremsstrahlung is important, our
whole schematization breaks down anyway.)

To construct such a distribution it was not possible
to use the same approximating function as for Al and
Au, i.e., (33) with y=0, because this family of functions
does not yield a smooth superposition for small 4.
Instead, y was set equal to 41 in (33). A corresponding

(41)

3L F. Frantz (private communication).

# See L. H. Gray, Proc. Roy. Soc. (London) A122, 647 (1929).
A more recent theory of cavity ionization takes into account
effects neglected in Bragg-Gray theory, namely, those due to the
travel of secondary electrons [L. V. Spencer and F. H. Attix
(to be submitted for publication)]. We use Bragg-Gray here
partly for consistency, since we have nowhere in this paper
included secondary electron effects, and partly because changing
to a more exact theory of cavity ionization would modify the
normalization rather than the distribution shape.
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change was made in the unknown distribution, namely
J (x) was replaced by (1—x)J(x), so that our approxi-
mating function became, in effect, {exp[ — Ax/(B—x) ]}
X (8—x)/(1—x), instead of the exponential alone. This
change is equivalent to replacing J, with (J,—Jny1)
in (35).

In treating separately even and odd components as
in the sample outline of Sec. 7, it was implicitly assumed
that the backscattered part of the distribution blended
smoothly with the forward penetrating part. For Be
this is not so because the backscattered distribution
decreases very rapidly to the left of the source plane.
This brings about an additional structure in the compo-
nent distributions near x=0. We made allowance for
this by introducing one more term in the sums (35).
The contribution of this term is restricted to the region
close to x=0 by assigning 8 a small value. To make
certain that this additional term described the back-
scattering, the precise value for 8 was selected by trial
and error so that the corresponding a’s determined by
the solution of the systems (35) were equal in magnitude
and opposite in sign, the even system yielding a
positive value.

With these modifications, construction of the Be
distribution proceeded satisfactorily. The spatial mo-
ments Jo through J, were used, more being required
than for Al and Au because of the use of moment
differences and the need to account for additional
structure. Had fewer moments been available, our
construction would not have depended on the separate
construction of even and odd component distributions.

The results of these three calculations are represented
in Figs. 3, 4, and 5 by the solid lines. Note the discon-
tinuities, the tremendous increase in the backscattering
and the shift of the peak as Z increases, and the simi-
larities between the Be distribution and a Bragg curve
for heavy particles.

70— Au —
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F1c. 5. The energy dissipation distribution resulting from a
plane monodirectional source of 500-kev electrons in Au. The
circles represent measurements by Frantz corresponding to 495-
kev source electrons. The abscissa is in units of the source electron
true range. The dashed curve relates to a calculation using the
screened Rutherford differential cross section (8) instead of that
given by the Mott formula, namely (14).
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B. Comparison with Experiment

As mentioned at the beginning of this section, F.
Frantz has performed experiments which can be com-
pared with the calculated distributions just discussed.?
Unfortunately, the experimental geometry contained a
boundary at x=0, so that some features of the com-
parison are not very meaningful. Still, the influence of
the boundary has qualitative significance even at
penetrations where it destroys the meaning of a quanti-
tative comparison.

In the Frantz experiments, an accelerator beam of
electrons impinged normally on plane foils of the scat-
tering material. Immediately behind these foils was an
aluminum-walled ionization chamber. Backing the ion-
ization chamber was a thick slab of the scattering
material. The lateral extension of all pieces of the
apparatus was effectively infinite, so that the ionization
chamber collected all ionization produced in the lateral
plane of the air gap. Extrapolation-type measurements
were made to verify this point.

Before the electron beam entered the initial foils
and the ionization chamber, it passed through an
aluminum exit foil on the accelerator tube and several
centimeters of air at room pressure. This material,
combined with half the ionization chamber thickness,
amounted to a total of 15.5 milligrams per cm? An
allowance for this initial penetration has to be made
before comparing measurements with the theory. For
measurements of electron penetration in aluminum
this could be easily done by considering this initial
material to be equivalent to an additional aluminum
foil of thickness 15.5 milligrams per cm?. For measure-
ments in, say, gold a similar but slightly more compli-
cated renormalization was carried out: First the mean
cosine of the obliquity distribution resulting from the

' I I I T T T T T

T=20,196 mc?

3.0

o
o

91,00 /5%1,0)
by

F16. 6. Energy dissipation distributions resulting from point
isotropic sources of monoenergetic electrons in polystyrene. The
abscissa gives the penetration in fractions of the source electron
true range.
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initial 15.5 mg/cm? was calculated. Next we determined
the thickness of an equivalent gold foil which would
produce the same mean cosine and added this equiva-
lent foil thickness to all penetrations. Finally, the
source energy was renormalized so that the mean energy
of electrons penetrating the equivalent gold foil corre-
sponded with the mean energy of electrons penetrating
the actual initial aluminum-equivalent material.

Unfortunately, the initial penetration made it difficult
to perform absolute measurements because of uncer-
tainties in the strength of the initial electron beam. In
comparing measurements with theory, the two were
matched at a penetration sufficiently great that bound-
ary effects should be negligible but not so great that
statistical fluctuations or range straggling effects should
be appreciable.

TaBrLe III. Energy dissipation distributions [J?o(To,p0)/
J?o(T,0)] resulting from point isotropic sources in air emitting
electrons of energy 7'. The symbol p represents the distance from
the source in units of the initial true range.

To=0.1 0.3 0.5 0.7 1.0 1.4 1.71

p Mev Mev Mev Mev Mev Mev Mev
0.00 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.05 1.037 1.025 1019 1012 1.010 1.005 1.003
0.10 1.102 1.071 1.055 1.039 1.032 1.021 1.018
0.15 1.196 1.140 1.109 1.083 1.069 1.048 1.037
020 1322 1235 1.186 1.147 1122 1.089 1.072
0.25 1483 1357 1.287 1.233 1.195 1.147 1.121
030 1.670 1.509 1.415 1.343 1.288 1.222 1.186
035 1910 1.690 1.565 1.474 1.400 1314 1.266
040 2.172 1898 1.739 1.627 1.532 1424 1.362
045 2454 2125 1930 1.798 1.679 1.549 1473
0.50 2.738 2357 2.118 1968 1.827 1.677 1.586
0.55 2993 2.571 2288 2124 1963 1.798 1.695
0.60 3.174 2.727 2395 2.227 2054 1.881 1.771
0.65 3.204 2764 2403 2.243 2077 1905 1.795
070 2999 2.607 2230 2.096 1940 1.802 1.703
0.75 2362 2.149 1801 1.714 1.599 1.509 1.438
080 1.609 1.447 1169 1.133 1.070 1.036 1.000
0.85 0.635 0.592 0452 0458 0438 0.443 0.438
090 0.066 0.066 0.045 0.056 0.049 0.054 0.057
092 0.009 0.013 6.007 0.008 0.009 0011 0.011

The experimental values, as normalized and corrected
for initial penetration, are represented by circles in
Figs. 3, 4, and 5. In reducing the experimental pene-
trations to a scale of x=2z/7,, theoretical range-energy
curves were used based on data from Table I. The
source energies mentioned in the captions are the
effective source energies obtained as already described,
and the first experimental value gives a measure of the
equivalent foil thickness. The question may be raised
as to whether it makes sense to compare experimental
values with a theoretical curve for a slightly different
source energy ; however, distribution shapes are known
experimentally and expected theoretically to be rather
independent of source energy particularly for non-
relativistic source energies.®

There is good agreement between calculated and

3 See reference 6 and Fig. 6. Experimental verification of this
is due to F. Frantz (private communication).
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experimental values in Figs. 3, 4, and 5 except near
the source plane x=0 and in the extreme tail to the
right. Near the source plane, however, boundary effects
should produce just such a decrease in experiment
relative to theory as is observed, since the absence of
the material behind the source plane allows the back-
scattered electrons to escape behind the source instead
of remaining in its proximity. Likewise, in the tail to
the right, range straggling effects not included in the
present theory should increase the experimental ion-
ization over that predicted by theory. It is gratifying
to note that the range straggling effect seenis most
serious for beryllium, while the boundary effect is
biggest for gold, in agreement with qualitative expec-
tation.

10. FURTHER APPLICATIONS: ISOTROPIC P32
SOURCES IN AIR AND POLYSTYRENE
Using methods described in Sec. 8, calculations were
performed for isotropic monoenergetic sources in air
and in polystyrene, the source energies Ty being 0.1,
0.3, 0.5, 0.7, 1.0, 1.4, and 1.71 Mev. The 0.1 and 0.3
Mev calculations were accomplished using (19) while
all the others used (25). Resulting spatial distributions
for point isotropic sources in air are reproduced in
Table III. Figure 6 compares similar distributions for
several source energies in polystyrene, to illustrate
shape changes with changing source energy.
To obtain spatial distributions for the continuous
beta ray spectrum of P32, we evaluated the integrals

T(s)= f drP()T(r,5/7),

where P(7)dr is the P32 source spectrum, i.e., the
number of electrons generated with ranges between =
and 7+dr, v being the range relative to that for the
1.71-Mev component, i.e., the spectrum end-point. The
parameter s is the radial penetration distance measured
in the same units. Our arrangement for evaluating
(42) may be of some interest: We changed to the
variable p=s/7, i.e., we wrote (42) in the form

T(s)=s" f do{(5/pYP(s/0)T7(s/n,0))
) X {JT?(s/p,p)/T(5/p,0)}

Graphs were then prepared of the slowly varying (with
7) function {J?°(r,0)/J7°(7,0)}, which was plotted vs 7
for fixed values of p. Likewise, a graph was prepared of
the function {72P(7)J7°(r,0)} plotted against . Num-
bers were read from these graphs for fixed s and evenly
spaced p values (usually with 0.05 spacing).

To obtain P(7), we took a theoretical allowed beta-
ray spectrum P (n),3 where 7 is the electron momentum

43)

3 The allowed spectrum agrees well with the measurements of
beta-ray spectroscopists for this isotope. See, e.g., H. Agnew,
Phys. Rev. 77, 655 (1950), and Sheline, Holtzman, and Fan,
Phys. Rev. 83, 919 (1951).

42)
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Fic. 7. The energy dissipated in spherical shells around a point
isotropic P# beta-ray source in air. The circles represent measure-
ments by Clark, Brar, and Marinelli. Both theory and experiment
are given in absolute units.

in mc units, and made the transformation

d (T+1
AN
dr n

P(r)=P(n) (dT/dx). (44)

Note that J7°(7,0) is simply the stopping power, so
that the first bracketed quantity in (43) contains the
square of the stopping power in the factor multiplying
P(n).

The P energy dissipation distributions for point
geometry in air and plane geometry in polystyrene are
the solid curves in Figs. 7 and 8. The circles in Fig. 7
represent measurements by Clark, Brar, and Marinelli,3®
while the circles in Fig. 8 represent measurements by
Loevinger.! The theoretical distribution in both cases is
given in absolute units. The results of Clark, Brar, and
Marinelli given in Fig. 7 are also absolute; however
the Loevinger results of Fig. 8 are only relative and
were matched with the curve at 0.106 g/cm?.

The general agreement is seen to be fairly good
except in the tail of the distributions. The plane
geometry comparison was put on semilog paper to
illustrate the discrepancy which exists for large pene-
trations. The behavior of this discrepancy is just what
would be expected if it were caused by range straggling,
which introduces a smear that should increase measure-
ments over theory more and more as the distribution
falls more and more rapidly. Correspondingly, since
the space integral is not affected by range straggling,
the experimental values should fall slightly below
theory for small penetrations.

11. REMARKS

The generally good agreement between experiments
and the calculations herein described indicates that

35 Clark, Brar, and Marinelli, Radiology 64, 94 (1955).
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F1c. 8. The energy dissipated in plane layers near a point
isotropic P® source in polystyrene. The circles represent measure-
ments by Loevinger. The theoretical curve is given in absolute
units; however the experimental values were not absolute and
were normalized to agree with theory at 0.106 g/cm?

dependable calculations are possible for all materials
and for energies up to a few Mev.

One outstanding defect in the theory is the complete
neglect of range straggling. A systematic development
of the program outlined in reference 8 would include
this effect. The simple degradation problem has already
been so treated in reference 7. We intend to complete
the theory in this respect.

A desirable extension of this theory would be towards
higher energies than a few Mev including, if possible,
energy losses due to bremsstrahlung with their inherent
magnification of straggling effects.

Finally, it must be emphasized that the whole
program undertaken so far is limited to infinite, homo-
geneous media. The extension of the theory to the
treatment of boundary effects, for electrons as well as
for x-rays, still represents a major obstacle.

I should like to thank Dr. U. Fano, Dr. C. H.
Blanchard, and Dr. M. Berger for many discussions of
this material, Dr. Fano again for editorial suggestions,
and Miss Ida Hornstein for most of the numerical work
involved in preparing tables and graphs.

APPENDIX A

As a first step in constructing an analytic form which
may represent with reasonable accuracy the S:(?)
regardless of the source energy, the stopping power
must be written in as simple a form as possible. The

L. V. SPENCER

most obvious simplification to make is that of con-
sidering the stopping number B, which is essentially a

Jlogarithmic function of the energy, to be a constant.

Since the stopping power may be written
(@T/dr)=%(N apoZ/A) B{1— (T+1)~2},

expression (2) may in the constant stopping number
approximation be integrated to yield

(T)={3N 4o ZB/AAY T (T+ 1)

(45)

(46)

On the other hand, the simplest form to consider for
the S)’s is expression (10), which may be written in the
form

Sz=%(Z+1) (NAqboZ/A)roCz

X{U;l)}{[rz/(rjd)]ﬂ - @n

If, therefore, we define a={3N$oZB/44}4/r,, we
may rewrite (46) in the form 72/ (7+1)=4¢/a. Defining
di=%3(Z+1)Cy/B, it is easily seen that (47) takes the
form (16). Further, o increases roughly as Ty2 as the
source energy 7' decreases. Below about 0.5 Mev « is
so large that (16) and (17) become equivalent.

This argument hinges on the constancy of a and d,
as the electron energy changes. The energy variation
of a is obviously logarithmic. On the other hand C; and
B are both logarithmic functions of the energy, as can
be seen from Eq. (10). Thus the energy variation of d;,
which derives from the ratio of these quantities, is
slower than logarithmic.

The relativistic modification of the angular distri-
bution of the elastic scattering cross section, which is
not included in (47), would seem to disturb the approxi-
mate constancy of a and d;. Fortunately, most of this
additional energy dependence is accounted for by
simply shifting the values of these constants slightly.
Actually, the striking comparisons of Table II were
achieved not by the use of theoretical values for these
constants but rather by selecting the constants to
achieve a good empirical fit to the cross-section tabu-
lation.

APPENDIX B

In order to obtain the .S; expressions (10), (13),
and (15) it is necessary to evaluate the integrals

[ sa-royatam—y-

[ wu-rona-s

where ¢g=3%, 1, 0, and —1. The integrals involving the
last two values of ¢ are obvious from the orthogonality
properties of the P; and will not be mentioned further.
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The integrals G;= S 1'dy{(1—Pi(y)}(1—y)~! may
be evaluated by writing

Gupr—Gi= f (Pi(y)— Pusa(3)) (1—y)~dy.

Inserting the familiar Legendre recurrence formula,
1—y
(+1)

the integration gives the result
Gia—G=2(+1)"

By induction from the known values Go=1 and G1=2,
the final result may be constructed:

Pi(y)—Pra(y)= {Purt (»)+P/ (M)},

!
G=23 i

=1

(48)

In order to evaluate the integral J/Z,'dy{1—P:(y)}
X (1—v)~% we may start from a generating function
for spherical harmonics:

(1 - 62) 0
=2 (U+1)Pi(y).
(1—2ye+e)t 1=0
By integration, we obtain the equation
2(1—¢€)

1—e

1
[ s1-Pispy a-2yer-eyi=

-1
The limit of this as e—1 yields the final result:

[ ot-ropa—y=za. @)

Finally, the integral
1
c= [ ay1-P) 2=y
-1

may be immediately evaluated in terms of Legendre
functions of the second kind:

{Qo(1+20)—Qu(1+2m)}.  (50)

Cr=——
—29(29)

For computation purposes a recursion system may be
preferable. This can be easily obtained from the
recursion relations between the associated functions Q.
The result is given in (10).

APPENDIX C

In this appendix, the derivation of (25) from (18)
and (16) will be sketched. As a first step in this deriva-
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tion, the terms in (18) are each multiplied by [#/ (¢-+4«)]?

and integrated over the range 0<¢<1. Referring to
the definition (26), we may write

wur= [ aty/ @+ e [ ldt”Sz(t")}

1 1.
Xf ar’ explf di”Sz(t”)]
t 14

n
X l (2+1)
+lI,_1,n_l(t’)]—i—a,,os(l—t’)l. (51)

LD, ()

Next, this expression is integrated by parts. Defining

Lz,,(t)=exp[ f ldt”Sl(t”)] fo tdt'[t'/(t’—Fa)]”
Xexp[—flldt"sz(l”)}, (52)

the expression (51) takes the form
n
(214-1) »
Fi 1, na () JH+-000Lip(1).  (53)

Byr= f AL () ——L (1)1, (0

The evaluation of the integrals in the exponents of
(52) may be accomplished by inserting the analytic
form (16):

L, ()=Lt/(tHe)]? f d'TY (t+a) /i +a) J3F2. (54)

The transformation y=[#(#+a)/{({/+a)] then leads
to the forms

1 yt —2
L=l @) [ dyydm’[l————]
0 i+

0 7:+1
oy (i+1)

—_—f l‘+0£ 17+’l+1_
X, rpritn T

(55)

Inserting (55) into (53), we arrive at the recursion
system (25).
APPENDIX D

The starting point for an investigation of the asym-
ptotic trend of the electron spatial distribution is a
Laplace transformation of Eq. (5). If the terms in
Eq. (5) are multiplied by exp{p[x—(1—#]} and
integrated over the range — o <x < (1—1¢), the resulting
equation is

—8F,/3t—3pAF S (D) F 1 (p,t) =6(1—~1), (56)
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where

F,=f_°: dx exp{p[x— (1=} 1 (x,0) 57)

AF 1= (43 (1) (Frp— Fi) = I(Fi— Fra)}.

The system of Eqs. (56) would be easy to solve were
it not for the interlinkage term (57), which requires
that all equations be solved simultaneously. Indeed,
the different approaches to the problem of obtaining
solutions all correspond to methods for ‘“breaking
through” this interlinkage term. For example, the
calculation of moments involves a Taylor series expan-
sion of the F around the point p=0. The interlinkage
term is then of higher degree in p than the other terms
and the equation is solved by iteration starting from
zero order in p. Likewise, the familiar diffusion approxi-
mation breaks the interlinkage by setting F, equal to
zero. Unfortunately, as mentioned in reference 2, this
predetermines an incorrect asymptotic trend. It also
makes no allowance for the tendency of electrons to
maintain their original direction during the initial stage
of the penetration. As can be seen from Figs. 2—4 there
hardly exists a region where distribution of energy
dissipation is not dominated either by the asymptotic
trend or the initial straight-forward penetration, and
thus the diffusion approximation is not applicable to
this type of problem.

In the Wick method, the F;(p,f) are expanded in
eigenfunctions of the difference equation

- (P/Z)Al'p(lyP)t)+Sl(1")\1’(l7?)0 :A(pxt)‘p(lyp;t)’ (58)

i.e., we write
Fl([’,t) = Zm am(?;i)‘pm(l;P;t)-

With this ansatz, (56) becomes

(59)

i]
- 5 Z am (Pat)‘l/m (lyli’:l)
+Z am(i’:t)AM(P:t)‘Pm(l;?;i) =B(1-—t), (60)

in which the interlinkage term has disappeared.
Equations for the a.(p,f) may be obtained by multi-

plying (60) by (+3¥.(,p,¢) and summing over /.

Because of the orthogonality of the ¥.,,’s, the result is

0a,
- _87"‘21 M o (p,1)am(p)t) FAa(p,0)an(p)t)

where
O

M= i (l+%)¢n

and 'Ynzz (l-,_%)’l&" (Z>P’l)
1=0 at =0

L. V. SPENCER

The sum in (61) provides a linkage between the a.,’s.
Due to special scaling properties, this new linkage term
in some cases either does not appear or can be shown to
vanish in the asymptotic limit of large p. For our
purpose the most obvious procedure is an iteration in
terms of this linkage. In other words this term is
neglected altogether in zeroth approximation. Its effect
is then estimated by means of a new calculation in
which the linkage term is calculated with the zeroth
approximation solutions. Such a calculation has actually
been carried out, but its results have been superseded
by calculations of a somewhat different type which
will be given in a separate paper. We shall carry the
calculation here only as far as the zeroth approximation
which neglects the interlinkage term altogether. The
solutions to (61) are then

o (p)= () exp| ~ f W) L @

where the superscript indicates zeroth approximation

This formal expression doesn’t mean much until the
eigenvalues A, have been estimated. Such an estimation
is easily performed in the asymptotic limit of large .
(Note that according to (57), if ¢ is fixed and p is large
the important values of the quantity [x— (1—¢)] tend
to be those near zero.) In this case the eigenvalues of
the difference equation (58) approach those of the
differential equation

p1aa

21010l

ad
(t+a)z2¢(l,p,t)=>\(p,t)¢(l,p,t), (63)

where / is now considered a continuous variable.
Physically, this means that electrons which have pene-
trated nearly as far from the source plane as their path
length allows must have a directional distribution
peaked at §=0. It is then possible to describe them
with an approximation which is accurate for small
angles only and which leads to the differential equation
(63).1* Further, form (16) has been used for the .5;(2),
with the d; approximated by di?. This approximation
describes the directional distribution as a result of a
diffusion process, and has been used already by Yang.!*

Equation (63) is the Schroedinger equation per-
taining to a plane oscillator, and its eigenvalues are
easily calculated. The following expression for A,
results:

¥ (Lo, ;

A= (n+1) Qapd) [t(t+a) T

From this the ¢,© can be obtained:

(64)

a, O =7,(p) eXpl —9*2(n+4-1) (2ed)}

Xln[%_%i_%” (65)
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For large p, the a¢® is much larger than the other
terms, and the Fo(p,f) is consequently represented by
the single term

1+(1+a)%]}_ (66)

Fo~yo(p)¥o(p,0) eXPl — p*(8ad)? ln[
4 (t+a)t
In (66) the p variation of vo(p)¥o(,t) is so slow that
this factor can be considered constant with p. By
Laplace inversion of the Fo(3,f), the following form for
the electron spectrum is then obtained:

Io(t ( “0 1 -4
o(,%) ~vao f)m[( —f)—«]

Xexpl—uf)[(l—t)—x]“l}, (67)
where
14+ (14a)?
%u(f) = (8ad)? ln[m}

The energy dissipation distribution requires an inte-
gration over ¢{. For x=1, the only contributions to the
integral are from the region ¢~0, and the expected
asymptotic trend is therefore

—#0) I (68)

J(x) = (1—x)% exp{4(1_x)

which has the form (28).

It should be re-emphasized that this derivation is
neither complete nor airtight and merely serves here to
indicate that the analytic form (28) seems natural to
the problem.

APPENDIX E

A useful recursion relation for the moments

Fn(—%):fdxx”(l—;x)_% exp{—Ax/(1—x)}
0

1615

can be obtained from a simple integration by parts:

Fbe—4 f d{exp[— Ax/ (1—2) Pan (1—x) 1)

=A"YnF D — 2n4+-1)F, D
+ (43 Fa P},
= (r/4)%4 Erfc((24)Y), »n=0. (69)
Unfortunately, higher moments can be calculated in
this way only at the expense of accuracy. It is therefore
necessary to develop an expression which is asymptoti-

cally accurate for the high order moments. This can
be done by means of the transformation x=exp(—y):

7n>0

Fn('*)=f dye~Dvexp{—A (e¥—1)1—3In(1—e)}.
0

Since large # implies that the important contributions
to the integral come from small y, the bracketed term
is now expanded in powers of y. The result of retaining
powers up to the first is as follows:

Pub ettt [ dyytexp(— (n-+1+4/12)y- A4/3)
0

(70)
=~ (r/A)le*” exp{—[44 (n+1+4/12) }}}.
This is the desired asymptotic expression.
In the same way, a similar recursion expression can
be written for the moments F,©:

Fo®=A"{nF o 1© —2(n+1)F O+ (1+2)F 2 ©)
=1—Ae4{—Ei(—4)}, (71)

and also an asymptotically correct expression for large
n:

F,Ox (n4+144/12)"1ARL,[44 (n+1+4/12) 3,
Li(y)=yK1(3). (72)

In calculating moments, particularly for large 4, we
have found it convenient to use the asymptotic expres-
sion to obtain two successive large moments, say
n=20, 21. Lower moments are obtained by working the
recursion expression (69) or (71) backwards. All mo-
ments are then slightly readjusted so that F,©® agrees
with the value calculated from expression (69) or (71).



