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Self-Focusing Streams
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Streams consisting of a mixture of ions and electrons in which the average velocity of the electrons in the
direction of the stream is different from the average stream velocity of the ions can be magnetically self-
focusing. The random velocities of the electrons and ions about their respective average stream velocities
do not need to be Maxwellian. The only condition which must be met is that the total electric current in
stream must exceed a critical value which can be calculated in terms of the stream velocities and the average
kinetic energies of the particles due to components of velocity transverse to the axis of the stream. Streams
containing both slow and fast particles of like kind tend to eject the slow particles and keep the fast ones.
Streams of particles of one kind only, entering an ionized or ionizable region can be self-focusing. Axial
asymmetries grow in arcs but disappear in low-density self-focusing streams.

S INCE the original publication' of the basic theory
applicable to magnetic self-focusing in streams con-

sisting of mixtures of charged particles of opposite
polarities, a number of experiments have been reported
on magnetic self-focusing. ' 4 Theoretical papers have
also appeared' —' which were written apparently in
ignorance of the original work and which failed to
recognize the more important physical properties of
such streams. For this reason it would be desirable at
this time to present the theory of magnetic self-focusing
in a somewhat more general form in order to point out
these properties more clearly and to assist in presenting
some new applications of the theory which have recently
been recognized. ' The theory will be developed in a
relativistically invariant form and it will be shown:

(1) that whether or not mixed low-density ion and
electron streams have Maxwellian velocity distributions,
there is a critical current which must be exceeded if the
stream is to be magnetically self-focusing; (2) that in

the evolution of any such stream, the first things to
happen are the permanent loss from the stream of some

of its components and the rapid attainment of cylin-
drical symmetry by the remainder of the stream; (3)
that such streams are not subject to the "kink" insta-
bility of arcs; (4) that the application of a sustained

emf to the stream, as done in aH reported experiments,
makes published theories wholly inadequate to explain

those experiments; and (5) that this theory explains

magnetic self-focusing in interplanetary proton streams.

The kind of stream considered consists of a stream

of ions most of which move in one direction mixed with

' W. H. Bennett, Phys. Rev. 45, 890 (1934).' S. W. Cousins and A. A. Ware, Proc. Roy. Soc. (London) 64,
159 (1951) and A. A. Ware, Trans. Roy. Soc. (London) 243, 197
(1951).' Bostick, Levine, and Coombes, Gaseous Electronics Conference,
Princeton, New Jersey (September 6, 1952) (unpublished).

'Thoneman, Cowhig, and Davenport, Nature 169, 34 (1952).
' L. Tonks, Phys. Rev. 56, 360 (1939).
' P. C. Thoneman and W. T. Cowhig, Nature 166, 903 (19SO);

Proc. Roy. Soc. (London) 64, 345, 618 (1951).
r M. Blackman, Proc. Roy. Soc. (London) 64, 1039 (1951).
' A. Schliiter, Z. Naturforsch. 6A, 73 (1951).
' For one of these, see W. H. Bennett and E. 0. Hulburt, Phys.

Rev. 95, 315 (1954) and J. Atmos Terrest. Phys. . 5, 211 (1954).

a stream of electrons most of which move in the op-
posite direction. Each kind of particle in the stream
is assumed to have a distribution in velocity and in
radial distance from the axis which is approximately
uniform along the stream at any instant and which is
symmetric about the same axis at all times. No restric-
tions will be imposed on the radial variations of these
distributions with time. It will be supposed that the
ions and electrons may initially each have any dis-
tribution in velocity component parallel with the axis,
and that each such distribution may be divided into a
a large number of subdistributions each of which con-
sists of all the particles of one kind in the stream
having velocity component parallel with axis in a
small interval of such velocity component. The various
subdistributions are mixed with each other in space but
not necessarily in uniform proportions because each
subdistribution may have a distribution in radial
distance from the axis which initially is diGerent from
that of the other subdistributions. Each subdistribution
is supposed to continue to be symmetric about the axis
while its radial distribution may vary with time.

It is essential at the outset to distinguish clearly
between "low-density streams" in which the eGects of
collisions are small during the mean time of travel of
charged particles between their positions farthest from
and nearest to the axis, and "high-density streams"
where the eGects of collisions during such a time are
large making it necessary that a sustained emf be
applied in the direction of the stream to maintain a
current or in other words to have any stream at all. The
first part of this paper will relate to low-density streams
to which no emf is applied in the direction of the stream,
after which high-density streams will be discussed.

LOW-DENSITY STREAMS

The force exerted on any particle with charge e&

and velocity v& by any other charge e2 with velocity v2

located at a displacement r from the first particle is

E+ (1/c') vrX [vsX Ej,
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where the 6rst term is the Coulomb electrostatic force
between the two charged particles in the direction of r
and the second term is the magnetic force" not generally
in the direction of r. By resolving the force on any one
charged particle into radial, tangential and axial com-
ponents and integrating over all the other particles in
the assumed radially symmetric and longitudinally
uniform stream, it is found that the force on each
particle in the stream in which the transverse com-
ponents of velocity are a lower order of magnitude than
the axial components of velocity of at least some of the
particles in the stream is approximately the same as
it would be if all particles in the stream had velocities
equal to only their components of velocity parallel with
the axis (axial components of velocity).

If e is the charge on each particle in the 0,th sub-
distribution, p is the numerical density of particles in
that subdistribution and is a function of radial distance
r from the axis, and I is the axial component of
velocity of the particles in that subdistribution, then
the force (radially away from the axis) which the par-
ticles in the ath subdistribution exert on any particle,
say one in the ~th subdistribution, having charge e,
and axial component of velocity I„,is given by

2e„e.( u„u
p.2~rdr,

r ( c'

and the total force acting on any particle is

2' I
ugu~ )

r & c')~, (2)

which is obtained by summing over all the subdis-
tributions in the stream.

In the radially symmetric and longitudinally uniform
streams considered here, the forces acting on each par-
ticle are radial, that is, the forces are cylindrically
central. Except for the eGects of collisions, the angular
momentum of each particle about the axis is conserved.
If the particles have random distribution in angular
momentum and in total energy, they will have corre-
spondingly random distributions in period of motion
between the positions nearest to and farthest from the
axis and they will have random rates of precession about
the axis. In a low-density stream, these spreads in
periods and in rates. of precession produce a mixing in
radial distribution approaching a nearly steady state
early in the evolution of the stream and long before
collisions within each subdistribution have produced
Maxwellian velocity distributions within each of the
various subdistributions.

The stream will be said to be in its 6rst phase from
the time it is 6rst set up with its non-Maxwellina dis-
tributions until each subdistribution has become ap-

'0 M. Mason and W. Weaver, The Etectroraagmetic Field (Dover
Publications, New York, 1952), p. 299.

proximately Maxwellian, and will be in its second phase
while the kinetic energies due to transverse momenta
are slowly increasing due to conversions of axial
momenta into transverse momenta.

In this equation, the moment of inertia per unit length
of stream,

m rsp (r)2srdr,
0, 4p

may be used as a measure of the radial spread of the
stream without implying that there will be any rotation
of the stream about the axis, which of course there can-
not be if the velocity distributions are symmetrical about
the axis; S is the total number of particles per unit
length of stream; P is the mean kinetic energy per par-
ticle due to components of velocity transverse to the
direction of the axis;

i=+ e.u.
a

p (r)2rrrdr

is the total electric current in the stream; and

q=P e ~ p (r)2~rdr

is the total charge per unit length of stream. For the
stream to concentrate towards the axis, dI/dt must be
negative and for this reason, a negative value of d'I/dl'
is used as the criterion for self-focusing. This criterion
can be written in the form

i,= c(21VQ+q') &

for the critical current which the stream must exceed
in order to be self-focusing. In a stream in which there
is zero net charge per unit length of stream (q=0), all
subdistributions of positive charges moving in the
direction opposite to that of the net current, i, and all
negative charges moving with the net current are mag-
netically repelled everywhere and permanently lost
from the stream. Such losses increase the net current,
i, in the stream and increase the value of "transverse"
kinetic energy f which the remainder of the stream may
have and still be self-focusing. As will be shown in the

FIRST PHASE

The virial of Clausius in cylindrical coordinates can
be used for finding the directions of radial acceleration
in a stream prior to the arrival of the stream at the
quasi-steady state produced by the mixing mentioned
above. The virial is derived in Appendix A, and the
second time derivative of the moment of inertia per
unit length of the stream is obtained:

1dI i2
=21'+ q'——

2 dP
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following, the changes in the velocity and density dis-
tributions produced by mixing and more slowly by
collisions do not at any time violate the aforementioned
criterion for self-focusing.

Boltzmann's equation can be used in deriving the
quasi-steady state equation which must be satisfied by
each subdistribution as soon as radial redistributions
have been arrested by the mixing specified earlier. The
quasi-steady state equation is derived in Appendix B,
Eq. (20):

where 0„is the mean kinetic energy at radial distance
r of the ~th kind of particle due to tangential compon-
ents of velocity, and p„is the mean kinetic energy at r
of the same particles due to radial components of
velocity. This equation is useful for deriving relation-

ships, which will not be detailed here, for the first-
phase steady-state stream prior to the attainment of
Maxwellian velocity distributions, and it will also be
needed in deriving the equations for the second phase
with its Maxwellian distributions in the following.

SECOND PHASE

The effects of collisions in systems consisting prin-
cipally or entirely of charged particles can most easily
be found by applying the equations derived by
Thomas. "Where a charged particle is moving among
charged particles there is no definite mean free path
but time rates of change of mean kinetic energy can be
calculated. Thomas' equation (4.33) can be rewritten to
give the rate of change of mean kinetic energy of a
particle with charge e and mass nsi moving with a
velocity e& through a density E2 of particles each with

charge e, mass ns& and root mean square velocity e2.

When v&) vs the rate of change of mean kinetic energy f
due to components of velocity transverse to the direc-
tion of v& (which multiplied by ss equals the rate of
increase of mean thermal energy of the particle) is

given approximately by

where

dP 4v.e41Vs p 2A q
»gl

df tsyvg E logA )
3m' m2 vy

4 e'v(m&+ms)'X

In this Eq. (5), the 1Vs is the density of the particles of
the second kind whose mean &hermal velocity is less
than the velocity of the particle of the first kind relative
to the mean velocity (vectorial) of the particles of the

"L.H. Thomas, Proc. Roy. Soc. (London) 121, 464 (1928).

( 'R„N~)
e. Ze-l & —

I
" p-(k)2~85+(). 4. —

es

r d———(pA.)=o, (4)
p„dr

second kind. As the particle of the 6rst kind approaches
thermal equilibrium with the particles of the second
kind, the portion which N2 is of the density of all the
particles of the second kind diminishes and so the
expression (5) for dP/dh 6nally approaches zero as it
approaches mean random velocity of the particles of
the second kind. The value of (5) is comparatively
insensitive to the logarithmic term and to an adequate
approximation the rate of change of energy of the par-
ticle is inversely proportional to the velocity of the
particle relative to the other particles with which it is
in continuous "remote" collision. For this reason, any
particle in a stream approaches thermal equilibrium
with the other particles in its own subdistribution and
so each subdistribution approaches a Maxwellian dis-
tribution with its own temperature. Next in rate of
progress is the approach of adjacent subdistributions
(that is, subdistributions with adjacent .values of
velocity component parallel with the axis of the stream)
to thermal equilibrium, or more accurately, adjacent
subdistributions tend to acquire adjacent values of
temperature at the same time that each subdistribution
is acquiring a Maxwellian distribution. Least rapid in
rate of progress is the conversion of momenta parallel
with the axis into momenta transverse to the axis due
to collisions between particles having large differences
in velocity parallel with the axis.

As each subdistribution approaches a Maxwellian
distribution, the temperature T„for that distribution
(see Appendix C) is related to the mean kinetic energy
due to components of velocity for each degree of freedom

by

Substituting into Eq. (4) and transposing gives

( NS~)
kT„r logp„=2e„g—e

~
I—

~

'

p 2vrdr. (6)
dr ~ ( c' l~s

Taking the derivative and dividing by r gives

Q„N~)
1'sT„V'logp,=4ve„ge.

~
1— )p.,

c &" (7)

which are identical in form with Eqs. (7); that is, the
Eqs. (7) are relativistically invariant in form, and

any solution will be transformable to any other frame
of reference.

where V' is the Laplacian in cylindrical coordinates.
The variables in these equations can be transformed

to the frame of reference of an observer moving parallel
with the axis at a velocity e as explained in Appendix C,
and the Eqs. (7) become

( u„'u~'q
kT.'Plogp. '=4ve„ge

i
1— —

ip ',
c' )
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A solution of these equations is

p„=p„o(1+ar') ', T.= ie„u„/2c'k

density distribution given by

p„=p„gexp( —x,/kT„), («)
where

&=+ eaua
"0

p 27';rdr

= total electric current in the stream.

where p„zis the density at some radial distance R, and
x„is the work done on a ~ particle by the fields while it
moves from a radius R to r. For large values of R and r,
the force on the particle is approximately

In this solution, the total charge per unit length of
stream,

q=P e. , p.2vrrdr,
a Jo

2&a,
P.=

r c
and the energy x„is

is zero, which can be true only for an observer with a
particular velocity parallel with the axis. This observer
will be referred to as the "central observer. " The
solution as seen by any other observer whose velocity
parallel with the axis of the stream is v relative to the
central observer has the form

p, '=p„p'(1+ar')-', T„'=— ——e„,
2c'k 2k

(9)

ar i'e„u„'

1+ar' c'
—q'e„=—

1+ar'
kT„'.

This shows that all the particles in any subdistribution
whose axial velocity is such that a negative temperature
would be required, are repelled from the axis and per-
manently lost from the stream. From the view-point
of the central observer, all positive charges must move
one way along the stream and all negative charges must
move the opposite way. This early first-phase depar-
ture. '~of those subdistributions moving the wrong way
from the view-point of the central observer, has the
eGect of increasing the current in the stream and hence
of increasing the temperatures which the remaining
subdistributions may have and still be retained in the
stream.

As each subdistribution is approaching a Maxwellian
distribution, it is also approaching the well-known

'2 This is not a violation of the relativistic invariance of the
charge on any one particle, but it is due to the different ways in
which the numerical densities of the diAerent kinds of particles
vary depending on their diferent velocities as discussed in
reference 22.

where i' is the total current in the stream as seen by that
observer, and q' is the total charge per unit length of
stream as seen by that observer.

In the second phase of the stream described by this
solution, space charge everywhere is neutralized as seen

by the central observer but the same stream, as seen

by any other observer may have either a positive or
negative net space charge, depending upon the velocity
of the observer"

Substituting the solution (9) into Eq. (2) for the
force on any particle in the stream gives

The density for large radial distances obtained by sub-
stituting this into Eq. (10) is given by

(2e„q—2ie„u„/c'5
logp„= I I

logr.

The number of these particles per unit length of stream
lying beyond some large radius Ro,

& ~0= ~~ p„2xrdr,
"&0

is infinite if
ie.u./c' —e„q(k T„.

JPgo 8Pgo
+r.o

Br m. (1+ar')

ie„g„q——e„.(12)
2c'k 2k

From this it is seen that those subdistributions with
temperatures higher than those given by solution (9)
have a mass motion away from the axis and are adia-
batically cooled, while those with temperatures too low
for solution (9) have a mass motion towards the axis
and are adiabatically heated. Such expansions and con-
tractions are not entirely free to proceed however. For
example, if the subdistributions of one polarity of
charge on the whole are too hot and those of the other

From this it follows that any subdistribution whose
temperature is greater than twice that given by solution
(9) loses particles permanently from the stream, and
the redistribution of velocities of the remaining par-
ticles in that subdistribution results in a reduction in
temperature of the remainder of that subdistribution
until the temperature is not more than twice that given
by solution (9).

The behavior of any subdistribution in a stream
having densities like those of solution (9) but not
necessarily temperatures given. by solution (9) can be
found by substituting for the density in the hydro-
dynamical equation of mass motion derived in Ap-
pendix 3, Eq. (19):



1588 WILLARD H. BENNETT

are too cold, the motion of charge produces a space
charge near the axis opposing the separation. If more
of the subdistributions are too hot than too cold, the
effect of the space charge separation is to draw both
distributions along and still further heat them, pos-
sibly driving some of the temperatures above the
criterion of (11) and so driving some of those particles
out of the stream.

where

u2 T1u2+ T2u1
py= pp(1+ar') —',

c (T1+T2)c

u1 T1u2+ T2u1
p pp(1+ar') ',

c (T1+T2)c .
2ac'k(T1+ T2)

pp=
e'(u1 —u2)'

(13)

The velocity of the central observer for this system is
such that N~ has a sign opposite to that of N2 and the
temperatures are related to the two velocities by

T1/u1 ——T2/( —u2) =K, (14)

where E is the proportionality constant. The total
current in this stream is

i = (2c'k/e) K, (15)

which is independent of the velocities N~ and N2 and of
the constant a which determines the radial spread of
the stream. The expression for the temperatures in
Eqs. (8) of course can be written in the same form as
Eq. (14); iis:

i = (2c'k/e„)(T./u. ) = (2c'k/e) K,

TWO-COMPONENT STREAM

The system discussed in the original paper' consisted
of only two distributions. The solution obtained could
be written

Consider now a stream which initially had radial dis-
tributions like those of Eqs. (13)

p1= p2 ppp(1+apr')

and Maxwellian velocity distributions with tempera-
tures like Eq. (14),

T1/u1 ——T2/( —u2) =Kp,

but which contained a current different from that given
by Eq. (15),

i W (2c'k/e) Kp.

The total energy per unit length of stream, which is
constant, equals

k =h.+Nk T1+Nk T2 (i'/2c') log—ap,

where h is the kinetic energy per unit length of stream
due to axial components of momenta (which is de-
creasing only very slowly due to collisions between the
two different distributions whose relative velocity is
large); and N is the number of each kind of particle per
unit length of stream so that SkT~ and Sk'12 are the
kinetic energies of the two distributions due to trans-
verse momenta. The total energy per unit length of
stream in its initial form may be written as

k= h.+ (ki/e)Kp (22/2—c2) logap,

and is to be compared with the equation for the stream
after it has reached the quasi-steady state of the
second phase:

k =k.+ (ki%)K—(i'/2c') loga.

Subtracting, transposing, and substituting for E from
(15),

1 2c2k ao
Ep—z = log—.

i e a

The quantities ap and a are related to the initial and
anal mean radial distances of particles rp and r respec-
tively by

and this is also consistent with Eq. (3).
The total potential energy per unit length of a stream

is derived in Appendix D and is

gap = ir/2rp and ga = ir/2r,

r= rp exp[(i, i)/2ig, — (16)

X log (r/R) p (r) 22rrdr,

where E is the radius at which the kinetic energy of a
particle is zero. Because this is a matter of definition,
R may be taken to equal ge.

In a two-component stream in its second phase as
seen by the central observer, the potential energy per
unit length of stream is

' V= —(22/2c2) loga.

showing that in this case the mean radial distance of
particles r decreases exponentially with the excess of the
stream current i over the value i, given by Eq. (15).

HIGH-DENSITY STREAMS

When the densities are such that collisions cannot
be taken to be infrequent during the travel of a charged
particle between positions of maximum and minimum
radial distance from the axis, the situation is much
different and the methods used in the preceding are
inadequate. Firstly, a current cannot be sustained for
any appreciable time without applying an emf in the
direction of the stream either by applying an electric
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field in that direction or by electromagnetic induction.
The application of such an emf in combination with the
self-magnetic field of the stream produces orbits of the
charged particles —principally the electrons, because
they are the more readily accelerated —which tend to
move the particles towards the axis but not in a simple
manner. In addition to this, the application of an emf
drives the electrons away from a Maxwellian velocity
distribution and towards an Allis-Brown distribution '
in which the mean thermal energy of the electrons is
much greater than the mean thermal energy of the ions.
The kinetic energy of random motion of the electrons
continues to rise until the rate at which energy is fed
into the stream by the applied emf equals the rate at
which energy is dissipated, principally as bremsstrah-
lung or characteristic spectra of the gas or in producing
ionizations. Even if these large electron thermal energies
are related to a corresponding electron "temperature, "
equations like Eq. (3) or Eq. (12) cannot be invoked
to calculate the minimum current for self-focusing
because the cooperative action of the emf and the self-
magnetic field of the stream in driving electrons
towards the axis can in part overcome the tendency of
the high electron temperature to disperse the stream as
long as the emf is maintained.

In addition to the above, there is another reason that
that any discussion of magnetic self-focusing in electric
arcs'4 is somewhat academic. It is that arcs are essen-
tially unstable for a quite different reason as has been
demonstrated by Kruskal and Schwarzschild. " If the
stream is initially not perfectly straight, but a short
section in it is slightly displaced, the self-magnetic
field of the stream current is greater on the concave side
of the bend in the middle of the displaced section than
on its convex side. The stream is pushed towards the
convex side, exaggerating the rniddle bend while the
reverse bends at each end of the middle bend begin to
grow towards the other side. Thus, each bend grows and
creates new bends which in turn also grow. This kind
of instability in an arc is familiar to anyone who has
seen the serpentine writhing of very high voltage arcs
in air.

This kind of instability cannot exist in a low-density
stream because the very rapid mixing in azimuth about
the axis produced by the spreads in rates of precession
about the axis quickly eliminates any kinks in the
stream.

APPLICATIONS

The theory of low-density streams given here may be
applied to the proton streams travelling from the sun
towards the earth invoked in previous publications' to
account for the aurorae. In these articles, it was sup-
posed that the protons energe from the sun in a diverg-
ing jet at speeds of about 10" cm/sec. Later studies

's W. P. Allis and S. C. Brown, Phys. Rev. 87, 419 (1952)."Called the "pinch eGect" by Tonks. See reference 5.
's M. Kruskal and M. Schwarzschild, Proc. Roy. Soc. (London)

223, 348 (1954).

have made it seem likely that the more usual speeds are
of the order of 2&&10' cm/sec so that e'—c'/225, as
will be explained in a later publication. The divergence
of the jet makes the mean "transverse" kinetic energy
of the solar protons very much greater than the mean
thermal energy of either the ions or the electrons in the
residual ionized interplanetary matter, and conse-
quently, the central observer is very nearly at rest with
respect to the interplanetary matter. The greatest
density of fast ions in a 10000-ampere stream of
2)&10'-cm/sec protons in a stream whose mean radius
is 1000 kilometers is one ion per 200 cm', while the
density of interplanetary matter is generally conceded
to be at least one ion and one electron per cm'.

The interplanetary ions and electrons can be sup-
posed to have Maxwellian velocity distributions both at
the same temperature, but the high-velocity protons in
the stream probably do not have a Maxwellian velocity
distribution. Equation (6) can be applied to the inter-
planetary ions and electrons, respectively, as seen by
an observer at rest relative to the interplanetary matter:

d
her logps=4—z-e'

~
(pr+ps ps)rdr, —

dr 0

kTr logps ———47re' —(p,+ps ps)rd—r,
dr

where T is the temperature of the interplanetary matter;
p~, p2, and p3 are the numerical densities of the fast
protons, the interplanetary ions and the interplanetary
electrons respectively. Adding and integrating: p2 p3= a
constant which equals the square of the numerical
density, n, of each kind of particle remote from the
stream and so is e everywhere. If p&&(e as it is in this
case, (

m —ps
~

and
~
e—ps ~

are each small, and the net
charge density everywhere is small. Substituting for p2
and ps in turn from ps ps=I" in pr+ps —ps

——0 gives

n —p2= 12p1= p3—e

The proton stream in the plasma will be self-focusing
if the current in the stream exceeds the critical current
given by Eq. (4) with q=0:

i=c(2')',
where E is twice the number of fast protons per unit
length of stream which is equal to the number of
protons plus the excess of electrons over slow ions per
unit length of stream; and lt is the mean energy of those
Ã fast protons and E excess slow electrons due to
transverse components of velocity.

If, as assumed in the previous articles, ' the fast
protons come from a jet diverging with a half-angle 0,,
and the temperature of the interplanetary ions and
electrons is too low to affect materially the value of P,
the values of critical current for 2)&10s-cm/sec protons
in a cone of half-angle n are given by substituting
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TABLE I. Critical current in amperes for various cone half-angles.

300

2o

1200

50

7600

iOo

31 000

20

132 000

-',Yes=i in Eq. (17) where s=2&(10'.

i &~ 4'/ee.
P is one-half the mean energy of the fast protons due to
transverse components of velocity. Some values for
various half-angles are tabulated in Table I.

Substitution of numerical values for a typical fast-
proton stream as suggested above, in Eq. (5) shows
that very little progress toward a Maxwellian velocity
distribution is made by the fast protons in their time
of travel from the sun to the earth and the stream will
still be in its first phase when it reaches the earth in
such a case. Although the actual current in the stream
may be much greater than the critical current, it does
not follow that the exponential shrinkage towards the
axis given by Eq. (16) will occur. Such a shrinkage can
not in fact occur for these non-Maxwellian distributions
because of its approximate conservation of angular
momentum of each individual fast proton, about the
axis of the stream. The shrinkage which can occur in
this early part of the first phase of the stream is deter-
mined by the distribution in angular momentum of the
fast protons and not alone by the kind of considerations
which led to Eq. (16).

Although the surviving fast protons leaving the jet
at the sun may, and probably do, leave in a stream with
an oddly shaped cross section far from cylindrical sym-
metry, the rapid mixing due to the spread in rates of
precession about the axis m ill very quickly bring such a
stream to cylindrical symmetry, but of course, the dis-
tributions in transverse momenta remain far from
Maxwellian.

This theory of low-density streams is not adequate
to explain the experiments of Cousins and Ware, and of
Bostick, Levine, and Coombes, "both because large
electromotive forces were applied to the stream and
also because the gas densities used were too large.
Thoneman, Cowhig, and Davenport' used densities
which were too large for this theory to apply in its
entirety, but it is interesting to note that they produced
a large direct current using only an alternating emf.
This seems to illustrate the strong tendency of a stream
magnetically to throw out all subdistributions moving
the wrong way as seen by a central observer" and so to
increase the direct current in the stream. Thus, large
densities and small mean particle velocity in the direc-
tion of the stream results in rapid eGects of collisions
with a rapid increase in mean kinetic energy due to
transverse momenta, with the attendant rapid driving
of subdistributions beyond the criterion of Eq. (11) so
that there is a rapid loss of particles at the walls.

"W. H. Bennett, Phys. Rev. 90, 387(A) (1953).

In conclusion the writer wishes to express his great
appreciation for the opportunity to discuss with L. H.
Thomas some of the mathematical methods used iri this
development.

MATHEMATICAL APPENDIX

A. Virial of Clausius in Cylindrical Coordinates

The probability that a charged particle of the ath
kind is within a velocity range di at i, d$ at $ and dz
at z at a position r, p and s will be written

f„(r,y, s; i,j,z)dird jdz,
where i is the velocity in the radial direction (direction
of r); $ is the angular velocity about the axis (direction
of g); and z is the velocity component parallel with the
axis (direction of s). When this function is non-
Maxwellian, it may be a function of the position coor-
dinates. The function is normalized so that

p 00 00 00

dirQdz= 1.

The density p„ofthe ath kind of particle is a function
of the position coordinates, only, r, p—, and s. The
velocity of mass motion of the ~th kind of particle has
components given by

r$„=« "rpf„dr'rdgd',

z.p= ' zf„drrdQdz'J~J
The velocity of any of the ~th kind of particle may be
considered to consist of the velocity of mass motion at
the position of that particle plus the velocity of that
particle relative to the velocity of mass motion, and the
latter has components $, rq, and f where

i=ip+$, r$=r$p+rrl, z=zp+f
In the streams considered here, radial symmetry has
been assumed so pp

——0; and longitudinal uniformity
has been assumed so Bzp/Os=0. The mean square
velocity of a particle of the I(th kind relative to the
velocity of mass motion has parts in the r and P direc-
tions

r
(t '),„=J' J' ' i'f dird$dz r„ps, —

t'
(q„')A„=

~

@'f.dird(gz,

(f'„s)A„——t ~
' zf.dird$dz z„ps. —' ~

J
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Using arguments analogous to those used by Jeans'"
but in cylindrical coordinates, Boltzmann's equation
can be written for the particles of the ~th subdistribution
as

1 d i r
(m„r')= m„—i'+ m—„r',

2dP 2 2

If we write the mass of a particle of the ~th kind as m„, B.Boltzmann s Equation in Cylindrical Coordinates
the moment of inertia of that particle about the axis is
m„r', and

where nz„i is related to the force F„exerted on that
particle (in the radial direction in the streams assumed
here) by m„r'=F„+m„rvtv. Substituting for F„from Eq.
(2), integrating and summing over all particles in unit
length of stream, and writing the moment of inertia of
all particles in unit length of stream as I:
i d21

=P( omarao + orna($a )Av+ omar (ria )Av}
4 dt'

u up)+P P e epI 1——
I

~ pp(s)2rrsdsp 2rrrdr.
p & c')~o "o

Reversing the order of integration in the last term and
summing twice

F00

pp(s) 27rsdsp 2zrdr
a p a)0 ~0

p (s)2rrsdspp2srrdr
f t'

P a ~0
F00 ~00

pp2rrsdsp 27rrdr

d(p.f.) (F. .,) rl(p.f )
+I —+r4'

I

dt (m„) sir'

»(p.f.) Z. ~(p.f.)+-I —2' I
+-

r Em„) 8$ m, Bz

~(p.f.) ~(p.f.) .&(p f.)+r' +$ +z =0,
Br Bvtv Bz

where C„and Z„are the components of force on a ~th
kind. of particle in the tangential and axial direction
respectively and the radially symmetric and longi-
tudinally uriiform streams assumed here, are each equal
to zero. Multiplying through by r'/p„and integrating
over the velocity ranges:

1 d(p„r'„o) F. 2r'„o' 2(t.')A„——&..');+ +p„d$ m„r r

r & (p.r.o') r cj fp.(p')Av) r ri (pv((vriv)Av't

p„or& r ) p„ar& r ) p„cjoy& r )
& t'p r.oz.op r & (p.(g.f.)A.)+——

I I+——
Ip„cjz( r ) p„azE r )

where

Adding the first and last integral gives (g„ri„)A„—— (r' r'o) $f.dr'rdgdz —=0,

00 F00

ZZ
0, P 40 ~P

pp27rsdsp 2rrrdr=g P N Np=N',
a P

(Pvt v)Av
—

I (r 7 „o)(z—z„o)f dr'rd$dz =r„oz„o,~JJ

1 d(p„r'„o) dr'„o r'„odp„

p& dt d|I p„ d3
F00 p

f'

pp27rsdsp 2rrrdr= ', P Q N„Np. -
0 ~0

dp„/d& can be eliminated by using the equation of con-
tinuity:

where & is the total number of particles of the 0.th and i„0does not vary with r. In the above equation,
kind per unit length of stream, and E is the total
number of all particles per unit length of stream; so

Writing P for the mean kinetic energy of particles due

to transverse components of velocity,
dp„18 (rp„r'.o) 8 (rp, vtv„o) 8 (rp„z„o)+- + -+
df r Br 8$

=0
7

4d'I/dP =Nf+ ', f,q' z~/c'}, -—
where q=g e N is the charge per unit length of
stream and s,=P e u N is the electric current in the
stream. From this, the stream will concentrate towards
the axis, that is, it is self-focusing if d'I/dP(0; that is,

» c(2Ny+q'):.

and in a radially symmetric and longitudinally uniform
stream:

drx0 rst0 ~g+'" ——(.')"+——( .(5')")=o.
dt Br ns„rp„8r

'v J. H. Jeans, Dyvvavvvsoal Theory of Gases (Cambridge Univer-
sity Press, Cambridge, 1925), fourth edition, Chap. VIIl.
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In the steady state obtained by mixing, i„o——0. Multi-
plying through by m„r/2, writing the mean kinetic
energy of the A;th kind of particle due to radial motion
as ~m„(P„')A„——p„and the mean kinetic energy due to
tangential motion as -,'m„r'(g„')A„——8„,and substituting
for Ii„from Eq. (2):

( uu~)e„Pe.!
1- ! 3 p.2n.sds

c' )~0

D. Potential Energy per Unit Length of Stream

The force exerted on a charge e, with velocity I„
parallel to the s-axis and at a distance r from a linear
charge density X parallel to the s-axis consisting of
charges moving at a velocity I parallel to the s-axis is

2c„X»( u„u~)

r E c')
r d(p„P„)+8„y, =O (2O) and the potential energy of that charge e„is
p„dr

C. Relativistic Transformation of Variables

The transformation of velocities and of electric
charge densities is explained in a book by McCrea. "
Velocities are transformed by the mell-known expression

u„ua)dr

E c')r
( u„u ) ( Y )

1»g! —
I

c' l (R]

I=
1+u 'v/c

and the numerical densities are transformed by the
seemingly less well known expression

( 1+u'v/c' )
E (1—v'/c') '*)

The charge on each charged particle is relativistically
invariant but the numerical densities are not. It is for
this reason that the charge density must be transformed.

The term "temperature" with aH its usual implica-
tions cannot strictly speaking be applied to a subdis-
tribution except as that subdistribution is viewed by
an observer travelling with the velocity of that sub-
distribution. In the longitudinally uniform streams
considered here, the e8ects of the thermal distribution
in velocity component parallel with the axis cancel and
only the distributions in velocity components transverse
to the axis need be considered. The term temperature
has been invoked here as a quantity proportional to 8„
and to p„which are each respectively proportional to
the mass and to the square of the corresponding com-
ponent of velocity. Thus, the temperature T' in a
system of coordinates moving at a velocity v and used
in this restricted sense is related to the T in the rest
system of coordinates by

T'= T(m'/m) (u'/u") and T= T'(es/m') (u"/u').

where the integration is performed from a finite radial
distance E. in order to avoid logarithmic infinities,
where E. is by definition the radial distance a charge
must be from a linear charge for the potential energy
to equal zero. The potential energy of a linear charge
density X„parallel to the s-axis (and to X ) at a distance
r from X is

uu~) (r )
! log! —!.

c' J iR)

Considering now an infinitely long thin shell of
radius r, azimuthally uniform and longitudinally
uniform, containing various kinds of charges of various
axial velocities but mixed in uniform proportions
everywhere in the shell. Among the charges in the shell,
the o.th kind of charge has Ã particles per unit length
of shell, each with charge e and axial velocity u . The
force exerted on a narrow ribbon of the ~th .kind of
particle within an azimuthal angle of the shell de„,by
a narrow ribbon of the nth kind of particle within an
angle d0 and located in the shell at an angle 0 from d0„,is

2(N./2m)d8„(N /2~)d8 ( u„u i
2r sin(8/2) E c'

and the potential energy equals

e„eN„N ( u„u ) (2r sin(8/2)q
d8„d8! 1—

! log!
2m' & c' ) 4 R

Substituting for the ratios of mass and velocities The potential energy of the ~th ribbon due to a]l of the
squared" nth kind of charges is

(1—u"/c') '* ( 1—v'/c' i ((1—e'/c') l)
( 1—u'/c' ) k (1+u'v/c')'p & 1+u'n/c' )

' W. H. McCrea, Relativity Physics (John Wiley and Sons, Inc. ,
New York, 1954), fourth edition, Chaps 3 and 4 for velocities and
Chap. 6 for electric charge. Note 8 on p. 61 is of particular interest
in this connection.

e„eN„N ( u„u„) ( (2r sin(8/2) y
»gl !d8

Jo

e„e~NgN~ ( ugu» ) (
c' ) ER~
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and that due to all kinds of charge in the shell is left behind in the shrunken shell,

e„e~N„N~( u„u~) ( r )
1»gl —I«'

co i iRi
e N — e p 2~$dg=e

l
p 2~$dg,

The potential energy of all the ~th kind of particle in
the shell is

e„e~N„N~( u„uN'l (r q
I logl —

Ic' i ERi "0

exert forces. The energy derived from moving all kinds
of charges out to dr at r is

( uupq (r q2ZZ e-epl & — 1»gl —
I pp(0)

P 4 co i Es) ~0
X2w gd(p (r)27rrdr,

and potential energy of all kinds of charges in the and theenergyderivedfrommovingal] kindsof charges
stream, remembering that in summing twice, each tp all radii greater than
charge is counted twice, is

( uaup) (r $—P P e-epN -Npl & —'1»gl —I.
c' i &R)

Suppose that the shell has an initial radius E. so that
the initial potential energy is zero, and that the shell
is then shrunken to a small radius 5 so that the potential
energy becomes

u~upq (S p—2 2 e-epN-Npl & —
I logl —I,

c' i ER)

( uup)
2ZZe-epl & — 1»gl —

I pp(k)
co i ~, (s i ~,

X27rgdpp (r)2~rdr.

The total potential energy gained in shrinking the zero-
energy shell to radius S and then expanding to density
distributions p (r) is

( u~upp f (S )—2ZZe-epl l —
I logl —

I

p L co i~ (Ri
after which the charges will be redeployed radially to
density distributions p(r) at radial distance r from the
axis. The numbers of charges per unit length of shell
are related to the density distributions after redeploy-
ment by

p (r) 27rrdr.
0

The potential energy of the shrunken shell can be
written

( uupq (Sq—E E e-epl l — 1»g'I —
I pp(()2~(dt

p E c' i IRi ~o ~o

pp2mgd(p 2m.rdr, .
0

( u,up) p" (r q—2E&e-epl &—
I

' logl —
I. p & co)&, &si

pp2~$dgp„2m rdr,
0

( uupq Je (rq
+2 + P e epl 1——

I log 1

—
I

co i ~o ES i

( u~up) (S )
Xp (r)2~«r =—2 P Q e epl &—

I
logl —

I(Ri

pp(t)27r(dip (r)27rrdr.
0 0

If in redeploying the charges, the charges are moved
out to successive elementary shells beginning with the
outermost, then in moving an element of the ath kind
of charge p„(r)2rrrdr to radius r, the charges previously
moved out to greater radial distances do not exert a
force on these charges because of their symmetry as may
be shown using Gauss' theorem, and only the charges

pp2mgdgp 2xrdr. .
J0

As S is allowed to approach zero, the last term vanishes
if the densities p(r) are finite everywhere, which they
would have to be in streams of the kind considered here,
in order to avoid the in6nitely rapid effects of collisions
which would otherwise result from infinite densities.
The potential energy per unit length of stream is ob-
tained by adding the erst two terms and is

( uup)—2 P g e-epl & —
I i

pp(g)2~@A
p 4 c' i~o "o

Xlog(r/R)p (r)2mrdr.


