
PH YSI CAL REVIEW VOLUM E 98, NUM B ER 5 JUN E 1, 1955

Multiple Photon Production in Quantum Electrodynamics
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Multiple production of photons in high-energy processes in quantum electrodynamics is investigated,
and the electron-positron annihilation is specially discussed in detail, It is found that at very high energies
in cosmic rays, multiple production of up to four or five observable photons can easily take place. But, the
probability, according to quantum electrodynamics, for the multiple production of a larger number of ob-
servable photons is quite small.

l. INTRODUCTION

KCAUSE of the small value of the fine structure
constant, multiple processes in quantum electro-

dynamics have not received much attention. In fact,
it is usually believed" that the cross section for a
process involving the multiple production of photons is
always much smaller than the cross section for a
similar process involving the production of a lesser
number of photons. However, in view of the recent dis-
covery of a narrow shower of about 20 high-energy
photons in cosmic rays by Schein and co-workers, ' it
seems to be of interest to carry out a proper investiga-
tion of multiple photon production by charged particles
at high energies.

We shall, therefore, first investigate in some detail
the multiple production of photons in the annihilation
of a pair of electron and positron, and then we shall
consider the multiple photon production in any arbi-
trary process in quantum electrodynamics. We shall
see that at very high energies, which are available in
cosmic rays, multiple production of several photons can
easily take place. For instance, in cosmic rays it should
be possible to observe multiple production of up to
four or five photons in electron-positron annihilation,
and also in some other processes. However, the
probability for the multiple production of 15 to 20
photons is so small that Schein's photon shower cannot
be explained solely by multiple photon production
within the framework of quantum electrodynamics.
This seems to suggest that the Schein shower is probably
partly due to multiple photon production and partly
due to the usual cascade process. Another possibility
seems to be that this shower was produced by some
process, which involves mesonic as well as electromag-
netic interactions. Therefore, the production of a photon
shower by the decay of a m meson4 and also by some
other processes is at present under investigation.

' W. Heitler, Quantum Theory of Radiatiou (Clarendon Press,
Oxford, 1954).' R. E. Marshak, Mesou Physics (McGraw-Hill Book Company,
Inc. , New York, 1952).' Schein, Haskin, and Glasser, Phys. Rev. 95, 855 (1954).
Several cases of Schein's photon shower have been observed more
recently by DeBenedetti, Garelli, Tallone, Vigone, and Wataghin,
Nuovo cimento 12, 954 (1954).

4 The results of the present paper and some possible interpreta-
tions of;the Schein shower were described by the author in an
invited paper at the Chicago meeting of the American Physical
Society, November, 1954.

Some preliminary results on multiple photon pro-
duction, based on rough calculations, have been pub-
lished earlier by the author. ' However, some of the
conclusions, mentioned there, are unjustified in the
light of more accurate calculations, described in the
present paper. '

2. MATRIX ELEMENT FOR THE PRODUCTION OF
THREE PHOTONS IN ELECTRON-POSITRON

ANNIHILATION

We shall first consider the annihilation of a pair of
electron and positron with the production of three
photons. Following Dyson's treatment, ' we can write
the 5 matrix element for this process as

S,= (es/cshs) dx, ! dx' dx"A„(x)A, (x')A, (x")
J

&&it (x)y„Sr (x—x')y„Sp (x' —x")y&,lt (x"), (1)
where

1 zp'7 K

Sp(x—x') = lim dpe'3'&
e-++0 (2w)4 J p+K $e

We now put
P(x")= V ~a„(k)tt, (k)e'" "

lt(x)= V lb, (k')v, (k')e'"'*

where k and k' are the propagation four-vectors for the
electron and the positron respectively, a„(k) and b, (k')
are absorption operators for these particles, N, (k) and
8, (k') are the spinor amplitudes, and the indices r and s
can take the values 1 or 2 depending on the spin states
of the particles. We can also express the transverse parts
of A„(x), A„(x'), and A&, (x") as

t ch)&
A(x)= P V-l~

~

e'a, *(q')e-'&"
&2qs')

( ck
A(x')= P V '~

~

e"a."*(q")e *'"'*', (4)
E2qp" &

(cA) *

A(x")=& V—:I
I

ea.*(q)e
&2q, )

' S. N. Gupta, Phys. Rev. 96, 1453 (1954).
'In fact, the cross section 0„, given in reference 5, must be

divided by a factor (e—2) f. This was first pointed out to me in a
private communication by Professor F. J. Dyson and Dr. R. H.
Dalitz, who made use of semiclassical and statistical arguments.

~ F. J. Dyson, Phys. Rev. 75, 486, 1736 (1949).
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where u,*(q), u, ~ (q'), and u, *(q") are emission
operators for the photons, whose propagation four-
vectors are q, g', and q" and whose directions of polari-
zation are given by the unit vectors e, e', and e"
respectively. Substituting (3) and (4) in (1), we obtain

—P—P/2 P P P t d&e(x(0+k~ p q—' q—~~)—u (k)
q, e q', e' q",e" j

( e' )(
~

Xb.(k')u. '(q) u. *(q')u."*(q")
I I (qpqo'qo") '
&2cA)

i (—k' q'—)y «—
X8,(k') (~ e') (y e")

(k' —q')'+ «'

i(k —q)y —«

X (y. e) ~,(k). (5)
(k—q)'+«'

We shall also assume that the energies of the initial
electron and positron are very large compared with
their rest energies, i.e.,

kp2»~~. (7)

We shall denote the angle made by the vector q with
k as 8, while the angles made by q' and q" with k' will
be denoted as 0' and 8" respectively.

We note that

(k—q)'+«' 2qp(k, —ski cos8)

which, in view of (7), can be written as

(k—q)'+«' qpt «'+2kpP(1 —cos8)]

Ke shall now carry out our calculations in the center-
of-mass system, so that

kp =kp.

The quantity (9) has a sharp maximum at 8=0. This
shows that practically the entire contribution to the
matrix element (5) arises from those values of q, which
lie within a narrow cone around the vector k. Similarly,
the quantity

&o

(k' q')'+—«' qp'L«'+2kp'(I —cos8')]

has a sharp maximum at 0' =0, so that practically the
entire contribution to the matrix element (5) arises
from those values of q', which lie within a narrow cone
around the vector k'. For small values of 8 and 8', (9)
and (10) reduce to

&p

(k q)'+.—q,L«yk, 8']'

kp

(k' —q')'+«' qp [«'+kp'8"]
(12)

Ke have seen that the photon q is contained within
a narrow cone around k, and q' is contained within a
narrow cone around k'. It follows from the conservation
of momentum that if qp" is comparable to qp 01 gp the
photon q" must also make a small angle with k or k',
while if qp" is small compared with qo or qp', the photon
q" can make any angle with k or k'. However, for
simplicity, we shall assume that q" also is always con-
fined within a narrow cone around k or k'. We then
have to consider two cases: (u) The photon q is confined
within a narrow cone around k, while the photons q'
and q" are confined within a narrow cone around k'.
(b) The photons q and q" are confined within a narrow
cone around k, while the photon q' is confined within
a narrow cone around k'. The case b can evidently be
obtained from the case u by interchanging the roles of
the electron and the positron. Hence, the cross sections
for these two cases are the same, and we need calculate
only the cross section for the case a.

We can write the matrix element (5) for the case u as

0 0'
Sp ——V '"P P g ~ @de'* "("'+' " "')u„(k)b, (k')u *(q)u .*(q')u ~ *(q")

q q', q" e,e', e" ~

( e' ) I 6.(k')(T. e')t i(k' q—')p «—](T e—")(i(k q)p «]—(y e)—u, (k)
xi i (qpqp'qp") ' (13)

& 2ch) t (k~ q~)P+«P]L(k q)P+.«P]

where P denotes summation over all values of q within
n'

a small solid angle II around k, and Q denotes sum-
ql qII

mation over all values of q' and q" within a small

solid angle II' around k'.

Further, we can interchange the roles of the photons

q& and q2 without changing any given physical state.
Hence, we can express (13) as

0 0'
p'—5/2 p p~ Q dppesz(p+p' p q' q")———

q ql qP I e el el I J
Xu, (k)b, (k')u, *(q)u, *(q')u, *(q")

xi
) 2chi t (k—q)'+«']

A 8
x t + , (14)

I (k' —q')'+"] t
(k' —q")'+.] '
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with

A = v, (k') (y.e')[—i(k' —q')y —K](y e")
X [i(k —q)y —K$(y e)u„(k), (15)

8= V, (k') (y e".)[ i—(k' q—")y K—](y e'.)
X[i(k—q)y —K$(y e)u, (k), (16)

In the extreme relativistic case, we also have

—,'(1+iy4yp+Ky4/kp)u, (k) = u, (k),
—,
' (1+iy4yp+Ky4/kp) v, (—k) = 0,

o(1—i7473 —Kvq/kp)v. ( k) =" (—k)

3 (1 i—y4/3 K—74/k 3) up ( k) = 0.

(23)

where P' denotes summation over all values of q' and
~l qll

q" within the solid angle 0' such that each physically
diferent state occurs only once, and the second term
within the curly brackets in (14) is obtained from the
first one by interchanging the roles of the photons q'
and q".

3. CROSS SECTION FOR THE PRODUCTION OF THREE
PHOTONS IN ELECTRON-POSITRON ANNIHILATION

In order to simplify our calculations for the process
under consideration, we shall make two types of
approximations, which are justified for high energies of
the initial electron and the positron. Firstly, we shaH

neglect K'/koq compared with 1. Secondly, since the
photons are confIned within narrow cones around k or
k', we shall also neglect 0', 8", and 8'" compared with 1.
We shall not, however, neglect any of the quantities
K'/koq, 8', 8", and 0'" as compared to each other.

Using (6) and the relations

Therefore, averaging the quantity AA* in the usual
way over the spin states of the electron and the positron
in the initial state, we get

(AA*)„,=—,', qp'qp" tr{[(y e)(iK/ko+0n)+2(k e)/qog

X (1+ ~.~ +.~,/k. )L(—'/k. +0 ) (~')
+2(k e)/qpg(y e")[(y e') (iK/kp+0'II')
—2(k e )/qp j(1+iy4y3 —Kp4/kp)

X[( i«/—kp+ 8n')(y e')
—2(k e')/qp'7(y e")). (24)

Further, summing over the states of polarization of the
photons q, q', and q" in succession, we find

(AA*) „=4qo'q()"[ '/ko'+0'(1 2ko/qo+—2k, '/q, ')]
el ell

X [K'/ko'+8" (1—2ko/qp'+2kp'/qp")g. (25)

According to (15) and (16), 8 can be obtained from
A by interchanging the roles of the photons q' and q".
Hence, we obtain from (22)

(iky+K)u, (k) =.0, v. (k') (ik'y —K) = 0,

we can express A as

(17)
8=qpqpV, (—k)[(—iK/kp+8"n") (y e")—2(k e")/qo" ]

X(y e')[(y e)(iK/kp+8n)+2(k e)/qpju„(k), (26)

where

A=v, (—k)[(q'y)(y. e') —2(k e')j(y e")
X[(y e) (q7)+2(k e) ju„(k). (18)

We can also choose our xp axis along k, and denote the
azimuthal angles of q, q', and q" around the x3 axis as

g, g', and (t" respectively. Then the components of q,
q', and q" are

q= (qo sin0 cosQ, qo sin0 sing, qp cos8),

q'= (qp' sin8' cosP', qp' sin8' sing', —qp' cos8'),

q"= (qo" sin8" cosP", qp" sin8" sing", —qp" cos8").

(19)

Using (17) and (19), and making the approximations
mentioned above, we get

n"=yI cosg"+yq sing". (27)

Using (22) and (26), and averaging the quantity AB*
over the spin states of the electron and the positron,
we get

(AB*)«,———,'oqpqqo'qp" tr([(y e) (i K/pk+n0)

+2(k e)/qpj(1+iyqyp+Kyq/ko)

X[(—iK/kp+0n)(y e)+2(k e)/qpj(y e')

X[(y e")(iK/ko+8"n") —2(k e")/qp"j
X (1+iy4p3 «y4/k p) [( iK/k +8p'a')—

X(y e') —2(k e')/qp'](y e")). (28)

Then, summing over the states of polarization of the
photons, we find

with

(qy)u, (k) =qp(i /k +8 )u„(k),
V.(—k) (q'7) = V. (—k)qo'( —iK/ko+0'~')

(A 8*)« =48'8"ko'qo' cos (P' —P")
(20) e,e', e"

X [K'/ko'+0'(1 —2ko/qo+ 2ko'/qo') $ (29)

u='rI cosp+'rq sing, 43 =+I cosp +'rp sing', (21)

which enables us to write (18) as

A =qpqp v, ( k)[( i /—K+kon—8') (y e') —2(k e')/qp'j

X(y e")[(y e)(iK/kp+8n)+2(k e)/qpju„(k). (22)

We can now write (14) as

0 0'
Jl 3/2 P P& P 7d—~&ie(k+«' q q' q")———

q', q" e,e', e" «&

Xa„(k)f), (k')(3.*(q)(3.*(q')(I."*(q")E, (30)
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where where 8 is the angle of the narrow cones within which

q and q' have been confined.
It is evident that in order to obtain the cross section

0-3, we can interchange the roles of the photons q' and
A 8 tI" in any term of the quantity EE*.Therefore, (33) isx + . (»)

[(k'—q')2+ K2] [(k'—q")2+Ihip)
equivalent to

E= (e2/2ch) '(qoqo'qp") '*

[(k—
q) 2+F2)

2AA*kp4/
Simplifying the denominators in (31) for small values
of the angles 0, 0', and 0", we obtain &2c@) q, 'q, q,

' ["+k,'8')' q,"[.'+k,'8"]
kp

E= (e2/2cirt) '(qoqo'qo")
q 0[F2+k 0282]

2AB*
(40)

q tq &1[~2+k 28&2][~2+k 28&&2]

A

e2 ) 2

g (EE*)„„=g~
e, e', e" ( 2cfz & ko[tt +ko 8 ][K2+ko 8' ]

so that
kp4

EIP= (e2/2ch)2
qo qo qo [tt +ko 8 )

20"kp'
AA*

X — +
q &2[A2+k 28&2)2

q &&2[~2+k 28&12]2

X —, +
qo'(ko —qo') qo"[~'+kp'8")

8'8"ko' cos (tt
'—P")

(41)
qp" (kp- qp')'[tt'+ ko'8'"]I . 33

qo'qp"[lt2+ ko'8"][~2+kp28'"] I
~ ~ ( 't

The cross section for the process under consideration
is related to the quantity (33) as

P e'y' ~' r'
I

„dqo'
442rchl J "0 JpZap

dtoqp
2(22r) J tt -d(qO+qO ) Oo'=constant kp' 2

X +-
[~2+ko'82)[~'+k028"] (ko—qo')ko qo'

gp

X g (EE*),„, (34)
e, e', e"

)( +, (32) Vsing (25), (29), and (35), we obtain
qp'[A'+kp'8" ] qp" [tt'+ko'8"']

where des denotes an element of the solid angle in the
direction of tI, and ( )A„denotes an average over the
spin states of the electron and the positron in the
initial state. But, in the present case, we have approxi-
mately

2K 8'8"ko' cos ($'—@")

q [0+ttko'8 "] (ko—qo')'[~'+ko'8'")

Carrying out the integrations in (42), we find

(42)

qo+qo =qo=ko, (35) g 2
——3 (e2/42rch)'kp ' log (kp/X) [log (bko/tt) )', (43)

which gives

d(qo+ qo ) —Oo' =co-nstant

We can also put

=12'
where we have denoted the lower limit to the values of

(36) qo' and qo" as X, and we have neglected terms involving
lower powers of log(kp/X) or log(bkp/tt).

Ke now put

0'—P = (22r)
—' dtI'= (2~) ' dqp' qp"dry'. (37)

p' q' Jit. J J tt

Hence, we can express (34) as

trp= p(22I) )I dqp t dco dtdqp qp p (EE )Aq, (38)
~n ~o e, e', e"

ko E/cA, tt = IA/ch,
——X= 0//cubi, (44)

where p is the rest energy of the electron, E is the energy
of the electron or the positron in the center-of-mass
system, and e is the lower limit to the energy of the
emitted photons in the center-of-mass system. We can
then express the cross section (43) as

o 2
——3np (Cput/E2) 1Og (E/0) [1Og (bE/p) ]', (45)

~5

02 ——-', (22r) ' "dqo' 8'd8' I 8d8qo"qo' Q (EE*)Av,
o Jo e, e', e"

where
it= e2/42rck (46)

(39) denotes the fine structure constant.
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It should further be noted that the expression (45)
represents the cross sections for the process, in which
two of the three photons are emitted within a narrow
cone around the direction of motion of the positron. As
explained in Sec. 2, the cross section for the process, in
which two of the three photons are emitted within a
narrow cone around the direction of motion of the elec-
tron, will be the same. Hence, the total cross section for
the production of three photons in electron-positron

annihilation is

o2.,.„1= 202 . ——6(12(csh'/Es) log(E/0) [log(f)E/)1)]'. (47)

4. MULTIPLE PRODUCTION OF PHOTONS IN
ELECTRON-POSITRON ANNIHILATION

We shall now calculate the cross section for the
production of e photons in electron-positron anni-
hilation. The 5 matrix element for this process is'

1—
( i) n(& 2/2&is) n P P . . . P P'—(—n+1) (iver ((2+)'tql qq ' ' qn) &'

X X
01 n1 qq. ns qn nn (qp 1qp 2' ' 'qp n)' &

8, (k')(y e )[iP„ry )(]—(y e 1) [iP)y —)c](y.er)u, (k)
X—,(4S)

K '''
y K

where
P1= k q1~ P2= k

pn —2 k q1 ' ' '
qn 2qn+qn——1

pn 1=& —q1 '' ' —qn ——1=qn —k

(49)

that the r photons q~, q~, . , q„are emitted in a
narrow cone of angle 8 around the vector k, while the
remaining e—r photons are emitted in a narrow cone
of angle f) around the vector k'. We shall neglect f)2

compared with 1. Then, from the conservation of
momentum and energy, it follows that

k'= —k, kp' ——kp. (50)

As before, we shall carry out our calculations in the
center-of-mass system so that qp, 1+qp, 2+ ' ' '+qp, r qp, r+1+qp, r+2+ ' ' '+qp, n kp ~

It will be convenient to express the p's as
(51)

Moreover, we shall be interested only in the case when
kp)&A:.

In the present case, we shall be largely guided by the
calculations of the preceding sections. Thus, we assume

p1
——k —

q1,

p 1=q„—k',

so that we can express (48) as

p, =k —
q1

— —q„,
(52)

P.+1=q-+" +q+ —k',

r
$ = (—i)n(es/2&@),'n p p . . . —p p'—(—',n+1)

(q q
. . .

q )
—',

~
(i& g((2+2'—q1—~ ~ qn) n'—

ql, el q2, e2 (iq)„eqt,

8, (k')(y e„)[i(q„—k')y —)c] (y e„+2)[i(q„+ +q„~2 k')y —)(]—
X (v e.+1)

L(q- —k')'+ "] L(q-+ +q.+2 k')'+"]—
[i(k—

q1
—. q,)y s](y e„)— [i—(k—q))y —a](y er)u, (k)

X (53)
L(k—

q1
—' ' qr)2+&2] [(k——qr)2+)(2]

In order that S„may be as large as possible, the qp's should be as small as possible. But, on account of the relation
(51), at least two of the qp's must have large values. We further note that qp, „and qp, „yr occur the least number of
times in the denominators of the propagation functions in (53). Therefore, it is evident that the largest values
of 5„correspond to the case, when qp „and gp +.g are large while all other qp's are small. We can expect to obtain
a reasonable result by making approximations, which are justified for the above values of the qp s.

When qp „and qp „+1 are large and the other qp's are small, we may simplify the denominators in (53) as

[(k—qr)2+)(2] . [(k—
q1

— . —q,)2+a']
= [2kpqp 1 2k' qr] ' ' ' [(2kpqp 1 2k' qr)+ ' ' '+ (2kpqp „1—2k' (1„1)][2kpqp „2k' (I„], (54)

[(q —k')2+((2] [(q.+ +q,~2 k')2+((2]—
= [2kpqp —2k ' q ] ' ' [(2kpqp 2k ' q )+ ' ' '+ (2kpqp, „+2 2k ' (1„+2)]. (55)

We also have approximately

[i(k—qr)y —s](y er)n, (k) =[iky —s](y er)n, (k) =2i(k er)N((k),

Note that in (48) the quantities q„and p„denote four-vectors with the components (q„,iqp, „) and (y„,ipp, ,) respectively.

(56)
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and in this way we find

[i(k —
q~

— —q,)r—~](y e,) [i(k —q~)r ~](T e~)ut(k)
= (2ik e, i) (2ik ei)[i(k—q,)y —~](y e,)u~(k), (57)

v, (k')(y e )[i(q„—k')r ~] . (y e„+&)[i(q„+ +q„+&—k')r —~]=v, (k') (—2ik' e„) . (—2ik' e,+2) ~ (58)

Using (54), (55), (57), and (58), we can express (53) as

S„=(—i)"(e'/2cA) l" P P V &'*"+"
(q q qp „)—& I dx'e '&'+"'

eI, , en Ql . ,qn

v, (k') (y e„+~)[i(k—q„)r—~](y e„)u&(k)
X

[2koqo. 2k ' q ]
(—2ik' e„) . (—2ik' e„+p)

X
[2kpqp, —2k 'q„] ' ' [(2kpqp, „—2k' q )+ ' '+ (2koqo, yp —2k' q„+&)]

(2ik e„~) (2ik. e~)
X (59)

[2koqo, s—2k qs] [(2koqo, s
—2k. qq)+ ' ' '+ (2koqo „—]—2k'q y)]

But, we can interchange the roles of the photons q &,
. . . , q„& without changing any given physical state, and

similarly we can interchange the roles of the photons q„+&, . . ., q „.Therefore, we can write S„as
S„=(—i)"(e'/2cA) l"

e1 ' en qrq r+1 q l. . . ir—1 Jr+1 ' ' &Qn

''*"+"
(qo, iqo, p qo, .)

v, (k')(y e„+g)[i(k—q„)y—~](y e,)u~(k)
dg~ i (k+Ic'—ql—~ ~ —qn) x'

~J [2kpqp, „—2k q„]

p (—2ik' e„). (—2ik' e„+p)

p ."..p.+i [2kpqp „—2k q„] . [(2koqp „—2k q„)+ + (2koqo, .+p—2k q„+p)]

P (2ik e, ~) (2ik e~)
(60)

p -& [2koqo, z
—2k qz] ~ [(2koqo z

—2k'qs)+ ' ' '+ (2koqo, —z
—2k q„-z)]

where P' denotes summation over all values of
ql, ~ .~, q

q&, , q„& such that each physically diGerent state
P

occurs only once, and P denotes summation over
q 1.

all possible terms obtained by interchanging the roles
of the photons q &,

- -, q „&~ Then, using the identity

el, ~ ' ', aw ay(a~+a, ) . (a~+a,+. +a~)

where

X
( ) ( )

(63)
[2koqo, i—2k qi] [2koqo, .—i—2k. q„-~]

K„=(—i) "(e'/2cA)' (qp, zqp, z qp, )
v, (k') (p e„~,)[i(k—q„)r—~](p e,)u, (k)

X
[2kpqp, —2k q„]

(—2ik' e„). (—2ik' e„+p)
X

[2kpqp —2k ' q ]' ' ' [2kpqp „qp—2k 'q,+,]
2ik e„~ . . 2ik e~

According to (63), we have
(61)

CC*22n—4Qy82' ' ' 8
KK*= (e'/2cA)"

qo, &' qo, " [2koqo, „—2k. q„]'
(k' e.)'. . (k'. e„+p)'

X
[2kpqp —2k .q„]' [2koqp, +2—2k' q„+p]'

k e, g' k eg'

we can express (61) as

S„= P P P' P' U—&'"+'&

el ' ' ' en 1r qr+1 il ' ' ' qr —1 fr+1 ' gn

X dx'e' &"+' o~ " o-&*'K (62)--.—
J ny X

( ) ( )
(64)

[2koqp z
—2k' q,]' [2koqp, , g

—2k.q„,]'
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where

&= &, (k') (y e,+1)[2(k—q,)y —~](y e„)N, (k). (65)

We now denote the angles made by qi, , q„with k
as 0&, -, O„respectively, and the angles made by
q,+1, , q„with k' as 0„+1, , g„respectively. Then,
for small values of the 0's, we get

[2koqo, ,—2k q,] '= (ko/qo, ~)[ 2+ ko20 '1—' (66)

[2koqo, ;—2k' q ] '= (ko/qo, ,)[i~'+k '0 '] ' (67)

Z(k', )2=k '0 ' P(k' e;)'=k,20' (68)
e&

where i ~&s and j)r. Further, averaging over the spin

states of the electron and the positron in the initial

state, and summing over the directions of polarization
of the photons q„and q„+~, we find

Z K'~*)A.=2(qo, .'/ko')
er, er+l

X[ic'+kp'0„'(1 2k—
p/qp, ,+2kp'/qp, ,')]. (69)

We substitute (66), (67), (68), and (69) in (64), and,

as before, we take qo, „and qo „+~ to be of the order of ko.
%'e then obtain

22n—3$ 2n—4
0

(EE*)A, (e2/2CA) ——n
el ~ ~ ~ qo, l' ' 'qo, r iqo, r+2 q—o, n[A +ko gr ] qp, l ' ' 'qo, r qo, r+2 ' 'qo, n

(kp'01') (kpP0„ 1') (kp'0, +2') . (kp'0„')

[goyk020 2]2 . ~ [A2+k020 12]2 [/pyk020 22]2. . . [/peak 2g 2]2

The cross section ~ for the multiple production of ri photons is related to the quantity (70) as

I I

Vn—2 &l ' '' Qr-1 q,r+2 ~ ~ ~ Qn 2q2gg2 2
dpo„qp, ,2 — P (EE*)„„,

-d(qo, +qo, yi)''&
(71)

where d'ko„ is an element of solid angle in the direction
of q„, and the derivative within the square brackets in

(71) is to be obtained by keeping qo, 1, , qo, , 1 and

qp „y2 ' ' '
qp, constant. From (51), we get

(73), and (74), we obtain from (73)

l 2n—2P 2n—4
o

0 =0! dqo, g
~ ~

(r 1)!(22—r——1)!

and we can put

dgo, r
1
2)

-d(qo, r+qo, r~i)-
(72)

1
X dqo, r 1 — qo, r+2'

qo, l' ' 'qo, r 1—
yr-I ql, ~ ~,qr-l

X, dgo n
(or+2' '

go, n "0
Ogd0g

(y—1) ! (22r) 2 ir
dq&, dQ, &,

(73)

O„do„ e,+ dg,+
Jo

(k02012) (ko'gr-1')
X

[K2+k020 2]2. . .[A2+k02gr 1] [K +kp gr ]—
P'n —v j qr+2 ' ~,%n

1 1 t'
dqr+2' ' '

(22 y 1) ! (22r)2(n r 1& J

where the factorial factors in (73) arise from the fact
that P' denotes a summation such that each physically
diGerent state occurs only once. We further note that

(kp20, +22) (ko'0 ')

["+k'0 ']' ["+k020 2]2

Carrying out the integrations in (75), and ignoring
some lower-order terms, we get

2" 2 1

(r 1)!(n—r——1)!2r" 'kp'

r'
„dq;=22r~~ dqo, ,qo, P 0;dg;,

0

(74) XI »g I I logg) E
(76)

where 6 is the angle of the cones, within which the where qo „and X are the maximum and the minimum

photons have been confined. Hence, using (70), (72), values of qp, i, , qp, „ 1, qp, „+2, , qp, „.Using (44),
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we can also express (76) as

2n—2 C2PP

o

(r —1)!(ts—r—1)!pr"-s E'

where

( Eg)m 1( e )n 2

XI log I 1»g I, (77)
Ia L e )

&max=&k(0, max

Fzo. 1. Feynman diagrams for (a) an arbitrary process with at
least one external electron line, and (b) emission of a photon from
an external electron line of an arbitrary process.

denotes the upper limit to the energies of the photons
Qlp

' ''p q,r—ly qr+2p ' 'p q,n.
When +=3, r=1, e,„=E, (77) becomes

2us (c'h'/E') log (E/e) [log (8E/p) ]'
which differs from the more accurate result (45) only
by a factor 3. Following the treatment of Secs. 2—3, we
have also investigated more carefully the cross section
o-„ for low values of e, and it is found that the result
(77) represents a good approximation.

The expression (77) gives the cross section for the
production of e photons, out of which r photons are
emitted within a narrow cone around the direction of
motion of the electron. In order to obtain the total
cross section for the production of e photons, we have
to sum (77) over all values of r from 1 to rs —1.Thus,
using the relation

S. MULTIPLE PHOTON PRODUCTION IN ANY
ARBITRARY PROCESS IN QUANTUM

ELECTRODYNAMICS

Let us consider any arbitrary process in quantum
electrodynamics, whose Feynman diagram contains at
least one external electron line, ' as shown in Fig. 1(a).
The S matrix element for this process will be of the
form

Sp ——Sp'(k) N(k), (81)

where u(k) is the spinor amplitude of the electron, and
Sp (k) is some quantity, which is a function of k as well

as some other variables. If we insert an external photon
line in the external electron line, as shown in Fig. 1(b),
then according to Dyson's treatment' of the S matrix,
the contribution of the new process will be

Ioxg
.j::.

n—1 1 2" 2

(79)

St———iV—'*(es/2ch)& P qp
I

Q, B

we obtain for the total cross section in the center-of-
mass system

Sp'(k —
q) [i(k—q)p —x](Y.e)I(k)

X (82)
L(k—q)'+"]

n 2 cs@2 ) gg~ n 1 y—
(fs 2)!pl E ( p )

Similarly, if we introduce e external photon lines in the
external electron line of Fig. 1(a), the S matrix element

(8p) for the resulting process will be

S-= (—i)"I'-:"(es/2ck):" 2 2 (qo, t "qo, .)-'
8 . , qn B1. ~ ~

Sp (k —qt — —q„)[i(k—
q&

— —q„)p—x](Y e„) [i(k qt)p —z](Y e—&)N(k)
X (83)

[(k—q,—" —q.)'+']" [(k—q,) +.]
We shall now try to find a relation between the cross
section o-„ for the above process and the cross section
o.p for the process shown in Fig. 1(a), when the external
electron line represents an electron of very high energy.

As in the case of the electron-positron annihilation,
we may expect that the main contribution to the cross
section o.„arises from low values of the q0's. Therefore,
as in Sec. 4, we may simplify the numerator and the
denominator in (83) as

[i(k qt .——q„)—y—x](Y e„)
X [i(k qr)y x](—T er)u—(k).

= (2ik e„) (2ik et) e(k), .(84)

L(k —
qr

—" —q-)'+"]" L(k —qt)'+"]
= [(2kpqp, t 2k' qt)+ ' ' '+ (2kpqp, 2k' q )]' ' '

X [2kpqp t—2k qr]. (85)

Sp'(k —qt — —q„) =Sp'(k). (86)

Then, using (84), (85), and (86), we can simplify (83)

9 For the meaning of an external electron line and other similar
terms, see reference 7.

If the quantity Sp'(k) is not too sensitive to a small

change in k, we may also take
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as

S =( i—)"V &"(e'/2 ch)&"
Ql) ' ' )Qn el, ~ ~ ~, en

(qp, i. qo, ) ~Sp'(k)N(k)

(2ik e.). (2ik eg)
X (87)

[(2kpqp, &
—2k q&)+ +(2koqo, —2k q )] [2koqp, &

—2k qi]
which can be written as

S„=( i)—"V ~"(e'/2ch)&" P' P (qo x' ' 'qo ) &Sp'(k)N(k)
ql, ~,qn el.

&& (2ik eg) . (2ik. e„) (88)«&~ [2koqo, z
—2k ~ q&] ~ ~ [(2koqo, z

—2k qz)+ ~ ~ +(2koqo ~ 2k —q„)]
where the meaning of p' and Q has been explained in Sec. 4. Further, using the identity (61), we can express
(88) as

(2ik e)) (2ik e„)
S =(—i) "V l"(e'/2ch)l" P' P (qo, i 'qp, ) '*So'(k)N(k) (89)

ql, ~ ~ ~,qn el, ~ ~ ~, en [2kpqp, ]—2k qi] [2kpqp „—2k q„]
or

where

S„= P g' V '"J So'(k)~(k),
el ~ ' ~ en Ql ' ' ' Cn

(2ik e&) . (2ik e )J'„=( i) "(—e'/2ch)~"(qo i .
qo, ) ~

[2kpqo, s
—2k q&]' ' '[2koqo, —2k q~]

(90)

(91)

The relation (90) shows that o. is related to o.p as

„=V-- P' P J„*J„~„(92)
ql ~ ~ ~ qn el, ~ ~ ~ )en

so that, substituting (91) in (92), we get

4n
p „=p-oV

— P' P (e'/2ch)"
Ql ' ' ')Qn el go, z' ' 'go, n,

(k ei)' (k e„)'
X (93)

[2kpqp, i—2k. q]]' [2kpqp, „—2k q ]'
Q(k e.)'= ko' »n'g. , (94)

Then, putting

V " P' =(1/e!)(2)r) '" t dqg dq„,
ql, .-,qn

(97)

J
dq;= 2)r

J dqp, ,qp, PJ
sin8;dg, ,

0

(98)

2kpqp, „—2k q,= 2kpqo, . „[(K'/2ko')+ (1—cose,)], (95)
where H„denotes the angle between q and k, and we
have made use of the fact that kp))K. Using (94) and

(95), we can express (93) as

o =opV " P' (e'/2ch)"(qp &
.

qp „)—'
gl) ' ' ')gn

sin 0]
X ~ ~ ~

[(K'/2ko')+ (1 cosei)]'
sin'0

X (96)
[(K /2ko )+(1—cose„)]'

we obtain

1 1 f t' 1
0„=Oman"— dgo, ].' ' ' dgo, n

))!(2)r)" ~ " qo, x qo,

sin'gi
X ~ ~ ~

J p ~ p [(K'/2kp')+ (1—cos9&)]'

sin'8„
X (99)

[(K'/2ko') + (1—cos8~)]'

Carrying out the integrations in (99), and ignoring
some lower-order terms, we get

2ko)" f qo, ~ )"
=&p—

i

—
i i log i i log

' '
i, (100)

)z! ()r) 0 K ) ( X j
where qo, , and ) are the maximum and the minium
values of the qp's. Using (44) and (78), we can also
express (100) as

n" (2i "( 2E) "p o,„)"
i 1»g I

('01)
))!E)r) ! p i ( o )

where E is the energy of the electron represented by
the external electron line.

It should be observed that the above approximate
result has been obtained with the assumption that the
quantity Sp (k) of equation (81) is not too sensitive to
a small change in k. Therefore, the above general result
represents only a rough approximation, and a more
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as
1 1 c%'( 2E'y" '( E'~" '

(
log

/ f log—
/

. (105)
(e—2)!s." sIJ,E' E p )

a„=n"
6. CONCLUSION

accurate determination of o„'can be made only when (103)
we know the quantity Ss'(k).

We shall now discuss the signi6cance of the results
obtained in the preceding sections. It should first be
noted that the cross sections (47), (80), and (101) all
diverge as the lower limit e to the energy of the emitted
photons tends to zero. However, it is known that this
"infrared divergence" is harmless, and it is compensated
by corresponding divergencies arising in the radiative
corrections to cross sections for the production of a
lesser number of photons. "Therefore, for all practical
purposes, e represents the lower limit to the energy of
the photons, which can be observed in a given experi-
ment.

As a particular case, let us consider the annihilation
of a pair of electron and positron in the center-of-mass
system, such that 1 photon is emitted along the direc-
tion of motion of the electron while e—1 photons are
emitted along the direction of motion of the positron.
Then, according to (77), the cross section for this
process will be

3Eq "—'(
I

log—
/ /

log I (102)
(I—2)!s."-s E' E p, i I e )

2~—' c'gi' ( 2Ey ' (~.=n"
] log ( ( log—

)
. (103)

(e—2)!x" ' E' ( y) ( e)

We now pass over from the center-of-mass system to
the laboratory system, in which the electron is at rest.
We can then put

E'= 2E'/p, e'= 2eE/p, , (104)

where E' is the energy of the positron in the laboratory
system, and e' is the lower limit to the energy of the
photons in this system. Using (104), we can express

'o A general proof of this result has been given recently by
J. M. Jauch, and F. Rohrlich, Helv. Phys. Acta. 27, 613 (1954).

Since we are interested only in the order of magnitude
of o „,we can put e =E in (102). Moreover, it follows
from (101) that if we include the contributions from all
angles instead of a small cone, the factor [log(8E/p))" —'
in (102) should be replaced by Llog(2E/p))" '. There-
fore, in the present case we may take the cross section as

The lower limit to the energy of photons, which can be
observed through pair production in photographic emul-
sions, will depend on the nature of the emulsion. But,
for our general purpose we may take e'=50@,=25 Mev,
which gives us

c'yP ( 2E'y " t (
I log

(e—2)!s." sIIE' 0 p ) 0 50p)
(106)

Now, the cross section for the production of two photons
in the electron-positron annihilation at high energies is
known to be'

o s
——mn'(c'A'/pE') log (2E'/p).

Therefore, (106) can also be written as

(107)

1 (n 2E
(

-log
(e—2)!k~ p

log
50y, )

(108)

When the energy E' of the incident positron is of
the order of 10"ev to 10"ev, we find

(n/7r) log(2E'/p) log(E'/50@) =1, (109)

so that in the above energy region we have

~„=o.s/(e —2)!. (110)

According to (110), o.„ is comparable to os for small
values of e, and therefore multiple production of up
to four or five photons in electron-positron annihilation
can easily take place at very high energies in cosmic
rays. However, 0- for the production of 15 to 20 photons
is quite small as compared to o-&, and therefore we are
not likely to observe a shower of 15 to 20 photons due
to multiple photon production in electron-positron
annihilation even at reasonably high energies.

The general result (101) further seems to show that
a similar situation exists with regard to the multiple
production of photons in other processes in quantum
electrodynamics.
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