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A rigorous method is described for treating the problem of the hydrogen-like atom in quantum electro-
dynamics by the separation of integrals into parts which can be evaluated with relativistic and nonrela-
tivistic approximations. The method is based on that developed by Baranger, Bethe, and Feynman for the
second-order problem, and is applied here to the problem of the fourth-order radiative energy level displace-
ment. It is shown that the result inferred by Weneser, Bersohn, and Kroll from the study of fourth-order
radiative corrections to elastic scattering by a given external potential is correct to order n'(ns)'mc' for a
hydrogenic atom. It is also shown that the nZ corrections to this result can be obtained using this method,
just as was done in the second-order problem by Baranger, Bethe, and Feynman.

INTRODUCTION

HE possible significance of fourth-order radiative
corrections in the interpretation of the experi-

mental results of Lamb, ' etc. , on the 2S;—2P~ separa-
tion in hydrogen has been discussed by Weneser,
Bersohn and Kroll. ' Their procedure for determining
the effect consisted of evaluating the radiative correc-
tions to the elastic sca, ttering (in Born approximation)
by a given external potential, inferring a modified
potential from the result, and using the modified
potential to compute the energy level displacement.
While this procedure is certainly a plausible one, it
would appear to be more satisfactory to deduce their
result from a systematic treatment of an exact ex-
pression for the fourth-order self-energy. Such a pro-
cedure has the additional advantage that one then sees
clearly how to obtain the nZ correction to their result.

Low' has discussed the problem of defining this energy
level displacement in terms of the experimental methods
which might be used in its determination, with par-
ticular reference to the line shape problem. He finds
that up to, but not including, terms of order cr'(nZ) srlc'
for a hydrogen atom, the level shift so determined cor-
responds precisely to that which would be obtained by
the application of standard steady-state perturbation
theory or by the application of perturbation theory to
the modified Dirac equation proposed by Schwinger. 4

A«} . ext.
lP

Thus, up to the fourth order, one finds

where
AE =DE "&+3,E,t4&+

AE "'= Re {iH, t'& (E,)},

AE.&4& =Re iH, '4' (E.)—H &'& (E,)

(sl (E )H„(s)(E )

E —E.

H-'"'(E) = —(2~)'+e 9-(ys)~'"'(ys, yt; E)

x p. (p ) (dp)'. (2)

In the aforementioned expressions, AE, '2) and AE &4)

refer, respectively, to the second- and fourth-order parts
of the level shift for the ath state, E„refers to the un-
shifted level of the mth state, while y„(p) is the corre-
sponding steady state solution of the Dirac equation in
the given external field. ' The functions Z&»(ys, yt', E),
which we shall also write simply as Z'r&(ps, pt) with
pss= prp= ps= E/(Ac), are for convenience taken to in-
clude both what one might call mass operator and
vacuum polarization contributions to the self-energy.
Accordingly, we write,

M "&= —-', i(2z.)sn &„Ss'(Ps—)'s, Pt Is)y„Ds (k)d4k—
—8x "&1&s(ps—yt), (3)

g(&(p p)=~(&+p & $p
—

p
—p)

'L J with
p (2)

FIG. 1. Second-order contributions to the self-energy, with the
appropriate contributions to mass and charge renormalization
explicitly displayed. The solid lines represent the propagation
function for the electron in the external field, and the dashed lines,
the photon propagation function. Pt &=-',si(2 ) Dz&sr(rp, pt)(Trf p—ps'(ps Is pl fs)]d4~

* Work supported jointly by The Signal Corps, The Office of
Naval Research, and The Air Research and Development

—l'2/(iee) jA ' j„'"'(ps—pr)}.
Command.

f Now at Brookhaven National Laboratory, Upton, New York. 'The "momenta" p, q, and k in this paper, like the "mass"
'Triebwasser, Dayhotf, and J.amb, phys. Rev. 89, 98 (1953). x=m, c/5, have the dimensions of inverse length. The momentum
'Weneser, Bersohn, and Kroll, Phys. Rev. 91, 1257 (1953), space wave functions p (p) havethenormalization J'~y„(p)~'dp

hereafter referred to as WBK. = (2~) '. If a and b are two four-vectors, we take the convention' Francis Low, Phys. Rev. 88, 53 (1952). a b =a„b„=aiba+ a2b2+ a3b3+a4b4 =a b —apbp. Heaviside units are
4 Julian Schwinger, Proc. Natl. Acad. Sci. U. S. 37, 452 (1951). used.
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Furthermore,

Ds(k)= —2z(2s) 4k '

is the Feynman Green's function for the electromag-
netic 6eld, while the Feynman Green's function for the
Dirac equation, with the specified external potential is

S '(p, p)=
3 -(P2) 3 -(Pi)

pr (1—ie)E„Acpp—

ZhC

X ~V,S3'(ps ks, p4 —k—s)V,

XS3"(p4 —ki —ks, ps —ki —ks)q „
XS3'(ps —ki, pi ki)q, Dp(k—i)

XD~(ks)(d k)s'dpsdp4,

Msi'i =-', (22r)'ir ~y„Sp'(P2 —k, P4 —k)

The appropriate mass and charge renormalizations are
subtracted out explicitly. The corresponding Feynman
diagrams appear in Fig. 1.

Similarly we write

Zs(P2, Pi) =Mt"'+ M2'3'+ (MI') i+ (3IIP)2+By&'i+8, &'i,

with

FrG. 3. Improper self-energy diagrams, corresponding to
the second and third terms in nE'" L'Eq. (2)g.

at a later stage. The improper self-energy diagrams
illustrated in Fig. 3 correspond crudely to the second and
third terms in the expression for AE(').

Our task now consists of the separation of DE&4) into
four kinds of terms: (1) A set which is recognizable as
mass and charge renormalization. (2) A set which cor-
responds precisely to the set of terms evaluated by
WBK, and which gives rise to an energy level displace-
ment of the S state of order ct2(nZ)'. (3) A set which is
of the same order of magnitude as the WBK terms,
which must be separately discussed, and will ultimately
be shown to vanish. (4) The remainder, consisting of
terms individually at least of order o.Z smaller than the
WBK terms.

In the following sections our attention will be devoted
chieQy to eGecting the previously described separation
and to the demonstration that terms in class (3}above
do in fact add up to zero. The number of terms which
must be put in class (4) is very large and we shall in
general assign terms to this class without proof. There
are, however, important guiding principles which should
be kept in mind. We note that the Fourier transform of
the Coulomb potential is given by

(6)
XM"'(p4 —k, p3 k)S"(p3 k pl k) Ys

XD3 (k)d4kdpsdp4,

ie—A '(q)=
Ac

Sp4.
27) q

(~+)1 22(23r) & 7.Ss' (p2 k2) pl kl)yv
4

XLD;i'i (ks, k,)]„„(d,k)',

[Ds'&» (k, ,k,)]„„=——,
'

(27r) PnDp (k2) Dp (ki)

XJ"Tr [y„SiP'(p4,ps)y„SF'(ps ki p4 ks)](d4p)'

—Cps&Ds (ki)54(k2 —ki)8„„.

We will have no occasion to discuss the remaining terms
explicitly and so we content ourselves with illustrating
them, as well as the above defined terms, by means of
the Feynman diagrams appearing in Fig. 2. These
expressions contain fourth-order mass and charge renor-
malization terms which will be recognized and ignored

\ / /

M
'"'

(MP) ( ( MP) g P( p~'"'

FIG. 2. Fourth-order contributions to the self-energy. Mass and
charge renormalization contributions are not explicitly displayed.

It generally appears multiplied by a three-dimensional
volume element in q-space. Thus the appearance of an
extra factor eA„' in an expression will as a rule reduce
the value by a factor nZ or (crZ)2, accordingly as the
significant values of q are of order unity or nZ. Further-
more, the momenta p associated with a bound state
may usually be taken as being of order nZ. The binding
energy, s—pp is of order (uZ)2. One of these factors
will always be involved when approximations "valid to
order n2(nZ)"' are made or when terms are consigned
to class (4). The problem at hand would be trivial if
there were not important exceptions to the criteria
given above, and it is these exceptions which will require
our attention.

First of all, it can be readily shown that the terms
(MP)2, I'2&+, and P„H,„H„,(E„E,) ' belong in-
class (4), that is, they do not contribute to the order
in which we are interested, nor did any scattering cor-
rections which one might associate with these terms
occur in the WBK calculation. The contribution of
P&(4& has been computed by Baranger, Dyson, and
Salpeter, ' and will not be discussed here. We therefore
confine our attention to the terms Mi&~, cV2'", (MP) i,

' Baranger, Dyson, and Salpeter, Phys. Rev. 88, 680 (1982).
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and IP2&BII&2&/BE. The terms of the WBK calculation
(which will hereafter be referred to as the scattering
approximation) to be associated with each of these
terms can be readily guessed and will appear explicitly
later. These are illustrated in Fig. 4. It is worth noting
that in the case of (MP)1, the scattering approximation
yields a result which is finite in the infrared. This is
not the case for the remaining terms; one gets a finite
result only when the contributions from the three
terms are added. Associated with this situation is the
fact that the scattering approximation is valid for
(MP)1, considered separately. This fact mak. es the
treatment of (MP)1 essentially trivial, and we shall
therefore discuss it first. On the other hand the scatter-
ing approximation is not valid for the other terms con-
sidered separately; one finds, indeed, u2(nZ)' terms
with infrared divergent coefficients. The fact that the
infrared difhculties disappear in the scattering approxi-
mation after adding the terms together implies that the
same will happen to the corrections, but does not
obviously imply that the corrections add up to zero.
In order to demonstrate that they do we have found it
necessary to compute these corrections explicitly.

VALIDITY OF THE SCATTERING APPROXIMATION
FOR THE TERM (MP)z

v %/
1 1 1R %I

/

g

FIG. 4. Contributions to the scattering approximation calculated
by WBK. The crosses represent interactions with the external
Coulomb field.

(MP)1= —
—2,i(22r)4ns y„sp'(p2 Io, pi —k)—

with

Dp&2& (l'r) =— i t' s2(1—
—s,s2)

(22r)' "o s'+-'k'(1-1&')

Xy„Dp "&(k)d4k

Furthermore,

(MP)1= —
—o,i(22r)4n2 y„sp(p2 —k)y Dp"'(k)d4k

X&2(p2 pl) 'i(2~)'[ie/(&2c)3

Rather than consider the consequences of such a
substitution in full detail we shall simply assert that
the Sp' functions appearing in the closed loop can be
replaced by free-particle propagators. The expression
for (MP)1 can then be written'

The most straightforward way of separating the scat-
tering approximation from the expressions we have
written down is simply to replace Sp'(P2, P1) by

Sp'(p2, pi)

x v„sp(p2 —&)v ~'(p2 —pi)

Xsp(P1 l'o)y„Dp—&2& (k)d4k

(10)

=Sp(P,)52(p,—pi) ——',i(22r)'[ie/(Ac)

esp�(P,

)

X7 ~ (p2 pi)Sp(pi) —s(2~)'[ie/VC)esp(p2)

X y &'(q )s2p.'(p2 q2 p1+ql)

xv ~'(qr)(dq)' sp(pi), (7)

[qro= qso= 0),

obtained by iterating the integral equations satisfied

by s, (p„p,):
SP'(P2, P1)

=S,(p,)5,(p,—p )—li(2 )'[ e/(~ )j
XSp(p2) "y &'(q)Sp'(p2 —

q, pr)dq

= Sp(pr)52(ps —pi) —2i(22r)'[ie/(lrc) $

—-'(2 )'[ /(@)J' .S~(p —&) ~'( )

XSp (p2 q2 ~r pl+ql ~)7'~ (qi)

XSp(P1—k)y Dp&'& (k)d4k(dq)'

It is clear that (MP)1 bears a close resemblance to
3f('), the only difference being the replacement of the
Dy function by the D "' function. This difference is in
fact very significant, as Dp&2&(0) is finite. As a conse-
quence, the infrared difhculties associated with the
evaluation of M(') do not manifest themselves here. To
order n2(rrZ)', one can, in fact, simply replace the Sp'
appearing in the third term by the free-particle prop-
gation function. Using familiar manipulations (see, for
example, Kroll and Pollock') one can extract from

where

X ) Sp'(P2, P1+q)y A'(q)dq Sp(P,),

2'L 27'p K

Sp(p) =-
(22r)4 P2+r2

((MP) 1)= (2~)' o.(pi) (MP)1~.(pi)dpidp2,
J

to order r12(crZ)', four kinds of terms. The first term of

r R. Karplns and N. M. Kroll, Phys. Rev. 77, 536 (1950), Eq.
(13)

2 N. M. Kroll and F. Pollock, Phys. Rev. 86, 876 (1952).
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(10) yields expressions of the form

(1)
~

P(P)p (1i)dP,

(2) Lie/(~c)] j P(p2)v'A (p2 pl) p(p1) dpi dp2

(3) L«/(&c)]'j~~(p2)v A'(p2 pp)

(pp p&) ~(ni)duidp2dpp.

The second term of (10) yields terms like (2) and (3),
plus a term proportional to:

(4) Lie/(&c)] p (1 2) (P2 Pl)'

Xv A'(pp —pi) p (pi)dp&dpp.

This last term, when one notes the form of the second
term in (MP) i LEq. (10)], is easily seen to be identical
with the contribution of diagram g, Fig. 4, to the scat-
tering approximation. The third term of (10) yields a
term like (3). Terms (1) and (2) are obviously mass
and charge terms, to be dropped by renormalization.
The term (3) corresponds simply to the expectation
value of the square of the potential. We now make
use of the fact that ((MP) i), which we may write as

L(2p7l) cKjt p(pp)vpSE (pp kpp pl kl)

Xvplp(pl)[Dp (kp)kl)]ppd4kid4kg)

is a guage invariant quantity, so that the sums of the
coefficients of the charge renormalization (v A') and
potential squared f(v.A')'] terms must vanish. Con-
sequently, only the (y&

—p&)'v A' term remains and the
scattering approximation is seen to be valid for (MP) i.

In view of the fact that the (v.A')' term is not re-
movable by charge renormalization and is of the same
order of magnitude as the main level shift term
[(pp —pi)'V A'], previous writers have, in dealing with
the second-order level shift, always computed the coef-
6cient to verify explicitly that it vanishes. The full
evaluation of the (v A')' term for the fourth-order
level shift would, however, be a task of magnitude com-
parable to that of evaluating the (pp —pi)'v A' term.
We shall therefore depend completely upon the kind of
gauge invariance argument given above. Thus the
identification of n'(nZ)4 contributions which can be
attributed to (v A')' terms will be an essential part of
our task, but a term so identi6ed will be subsequently
ignored.

CONTRIBUTION OF Mg&'&

It would be a simple matter to separate the scattering
approximation out of 3f&'" using a technique identical
to that employed in the discussion of (MP)i. After

replacing Si"(p&,pi) with the form appearing in Eq. (7),
one then finds that the terms in which y.A' appears
once explicitly contain the scattering approximation.
On the other hand, examination of the multiple-
potential terms, i.e., terms containing y.A' more than
once, shows that these yield contributions at least of
order n'(nZ)4 and possibly larger, not identifiable as
(v A')' terms. Yt therefore becomes necessary to evalu-
ate the contributions arising from these terms. As pointed
out by Baranger, Bethe, and Feynman, ' the separation
described above is not a convenient one in those cases
in which the evaluation of the multiple-potential con-
tribution is essential. We therefore extend the BBF
procedure to the fourth-order problem.

We wish to separate the scattering approximation in
a way which leaves the remainder tractable. We
proceed as follows:

BBFgives the general identity, valid. for any operator
0, and any two vectors pi and pp.

0=~(0 P2 Pi)(iv Pi+~) —(iv P2+~)&(0; p2, pi),

where
(iv Pp)0+0(iv ui)

&(0;P2 Pi) =
P2 Pi

F'(o; P, k) =-~(0;P, P-k)

k' —2p k
(13)

(iv p)0+0(iv (p —k))

k' —2p k

When 0=v„, we get the forms actually used by BBF
in the second-order calculation. Now p and g, satisfy
the integral equations

(iv p+&) p.(p) = Lie/(&c)]j "v A'(q) q. (y—q)dq

[pp ——E./(hc)], (14)

p, (p)(iv p+~)=[ie/(Ac)]~t p, (p+q)v A'(q)dq,

while Si" satisfies (8), which can be rewritten

(iv p, +z)Si,"(pp,pi)

= [ie/(@c)]j~v'A'(q)Si'(P2 0 Pi)dq

+2i(2s.) 'bp(pp —pi),
'Baranger, Bethe, and Feynman, Phys. Rev. 92, 482 (1953),

hereafter referred to as BBP.

We shall use a less symmetric, but more convenient,
fqrm as follows:

O=F(0; p, k)(iv p+.)—(iv. (p—k)+.)F(0; p, k)

=(iv p+~)F'(0; p, k) F'(0; p, k)(—iv (p —k)+~);

(iv (P—k))0+0(iv'p)F(0 p, k) =8(0; p —k, p) =
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S '(p, p)(z& p+ )

=Lie/(Ac) j SF'(p2, pl+q)& A'(11)dQ

+2z(2m-) 482(p2 —pl). (15)

When we use the identities (13) in the expressions
sF'042 and g,0$F', we get

SF'(pz —k, pl —k)0 (pl) q. (pl)dpi

= [ie/(hc) 5~' SF'(Pp —k, P,+q —k)

X (FLO (P +q); P.+q, kjv A'(a)

A ' (ll) F
1 0 (P1); P1 kjj 2).(121)d121d41

2Z(2)r) 'FLO(pp) ) P2»1&a(»)

scattering approximation contributions associated with
the diagrams a, b, c in Fig. 4. The only nonignorable
correction s to the scattering approximation are of
order (aZ) 2 smaller. Apart from a demonstration of
this last fact, our real task consists of the evaluation of
the contribution from the multiple-potential terms A y.

We now carry through the process described pre-
viously. Thus,

(~ "')= —('/ )L!(2 )"jA.

A = p,'r„SF'y„SF''r„SF' r„p DFDF (/4k)2(d p)4

=
I ze/(kc) )) g»; u'1„,,SF'y„SF'y„S 'A:

Xel...p).DFDF (d4k)'(dp)'(2 41)'

—2i (2~) 'Lie/ (A c)) "p,A, 'F'1„,,SF'y„

= Lie/(Ac) j SF'(pl k, pl+q——k)A, '(q)
(16)

XSF raFl)lpaDFDF(84k) (dp) dll2

X&,(0; p 1,q, k) 2).(111)lf 12lli 11

—»(22r) 'FÃ(pp) ' P2»3& (»)

J Ppa(P2)0(P2)SF (P2 k) P4 k)d122

= I ie/(Ac) j p).(p2)A, '(q) &,'(0; pp, q, k)

—2Z(2zr) 4Lie/(AC)] ))2,F'1„'r„SF'y„SF'A '

Xp, „,.22.D,D, (d.,k)'(d11)'dq,

—4(2~) ' t PaF'1,V.SF'V,Fl.ea

XDFDF(d4k)2(dP)2, (18)
where

XSF'(P2 q k, p4—k—)dy—2dll

—»(22r) '2).(p4)F'LO(P4) ' P4»l '

where

F,„=F (r„;p„k2); Fl„F("r„;pl, kl)——;
S la, p Fa (Va ) p2)q2)k2) ) Fl), a +a(7) ) pl&ql)kl) ~

(19)

s,(0; p, q, k) =Ft 0(p+q); p+q, key,

—|.FLO (P); P,kj;
(17)

r, '(0; p, q, k) = r,F'$0 (p q); p q, k)— —
—F'Lo(P); P,kl~'

We shall apply this only to operators 0 which do not
involve the external potential at all, so that, according
to (16), SF'022, or p),OSF' is split into a term involving
A ' once explicitly, as well as through S~', and a term
not involving A ' at all, except through the wave func-
tion q . In the latter term, if the total integral still
involves S~', we can incorporate the F into a new op-
erator 0, and apply the identity (13) again. We thus
work in from both ends of (Ml&4l) until we are left with
terms of two types: terms in which A ' appears twice
explicitly, and implicitly through Sp', and terms with
no S~', so that A ' appears implicitly only through

and explicitly no more than once. These one-
potential and no-potential terms, which we call A 0, will
be seen to yield terms identifiable as mass renormaliza-
tions, charge renormalization, and (r A')', all of which
can be ignored, and terms which correspond to the

F'2„. F't) 22(2zr) ——'F'l„y—„)p2, kl+k2) )

F2a) =FL 2z(2zr) VaF1), ) Pl) kl+k2$ )

F'2„——F'[—2z(22r) 'F'2„,'r„; p2, klan;

F2„——F$—2i(22r) Q„F2„„,pl, k2$;

with the F's deined correspondingly. Finally,

A =Al+AP,

Al 421+lz2+lz2 +128+)23 +l24)
where

lzl= Lie/(Ac) j' ga(122)A p (212)5' lF, p

(20)

(21)

(22)

XSF'(p2 —
q2

—k2, p4 4)—
Xy„SF'(p4 kl kz) pp —kl —k2)— —

XV„SF'(P2 kl) pl+ql k—l)Aa (Ql)—
X+1),a'Pa(P1)DF(kl)DF(k2) (84k) (dP) (li%) )

We continue the process with the terms containing F
or P', taking
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a2 ——fze/(Ae)]' 4.(P2)A, '(q )F'2„„,,

XS3"(p2- q2- kl —k2, p3—kl —k,)

Xp„S, (p,—k„p,+q,—k,)A. (q,)S'„,.2.(pl)

XDzv (kl) Dzv (k2) (d4k)'(dy)' (dq)"

a2' ——[ie/(hc))'
~ y. (P2)A p'(q2) &'1„,,

XS3"(p2 —
q2

—k2, p4 —k2)&„S, (p4 kl k2,

Xpl+ql kl k2)A (ql)+2p, P (Pl)

XD3 (kl)Dp (k2) (d4k)'(dp)'(dq)',

a3 [ze——/(&e))' p (p2)Ap (q2)+ 3, p

XS3 (p2-q2-k„pl+ql-kl)A. (ql)~1...
X .( )D (k)D.(k)(d k)'(dp)'(dq)';

XS~'(p2 —q, —k, , pl+ ql —k2) A.'(ql)»„, .
X4.(Pl)D~(kl) D~(k2) (d4k)'(d p)'(dq)'

a4——fie/{Ac)]2 t 22, (p2)A, '(q2) P'2„., ,

(23)

When the calculation is completed one lets A~~ and
X ~0. The need for ultraviolet regulation arises from
the fact that we do not remove the charge renormaliza-
tions associated with the second-order vertex operator.
As a consequence, even the physically important parts
of M&(4) are divergent in the ultraviolet. Such a pro-
cedure is possible because M~2~ and H&"BH&'~/BE contain
similar renormalizations associated both with the
second-order vertex operator and with the second-order
electron propagation function. It is known that these
renormalizatioos sum to zero, so their explicit removal
is unnecessary. The infrared regulation is needed in
part for the same reason, and also because the separation
into Ao and A~ introduces additional infrared diver-
gences arising from the fact that B(0;p2, pl) ~ ~ as
P2 —Pl —&0. In the course of a computation, of course,
one always allows A and X to approach their limiting
values as early as possible, to minimize the complica-
tions they introduce.

Demonstration that Ao Yields the Scattering
Approximation

We now show that, apart from previously discussed
ignorable contributions, A3 yields to order n2(42Z)4, just
the scattering approximation. First of all, the last term
of Ao is of the general form

p.(y)II (p, k2, kl) p.(pl) (d4k)'dp

= "p.(p)[k3(p')+(iy p)kl(p')]p. (p)dp,

XSF (P2 q2 kl k2v Pl+ql kl k2)

XA. (q )».„.~.(p )D.(k,)D.(k,) (d,k)'(dy)'(dq)'.

(Of course, a2 ——a2' and a3 ——a3', but it is convenient to
keep them separate in this way. ) Furthermore,

Ap ———2i(2zr) 4[ie/(Ae)) 4p. (p2)A, '(q)
J

X[F 3v+lv, p++ lp, pF3p+F 2pv, pF2pv]'Pa(pl)

XD3 (kl)Dp(k, ) (d4k)'(dp)'dq

which, to order n2(nZ)4, separates into mass renormali-
zation, charge renormalization, and {y A')' terms, all
of which we ignore.

The terms with A' appearing once are all of the
general form

—2i(2zr) 4[ie/(Ac)) t 22.F'A'rq.

= —2i(2zr) 4[ie/(Ae)) p,F'Fy A'p,

—4(2 ) ')"2.(y)F' "~.F .~.(y)

XDp (kl)D3 (k2) (d4k)'dp. (24)

In order actually to carry out the indicated integra-
tions over the momentum space of the photons, it
is necessary to "regulate" the photon propagation
function both in the ultraviolet and the infrared. This
may be easily accomplished by replacing Dp(k)=—[»/(2~)'7(&/k') by

)"rp, F'y A'F p. . (2—6)

The first term on the right, after integration over k~
and k2, is of the general form

22a(P2)[k2(p2 )+(Zp ' p2)k3(p2 )]
XV A'(p. —pl) 2 -(yl)(dy)',

2i
D~z(k) =—

(2~)4 (k2+g2) (k2+g2)

which, to order 42'(nZ)4 yields a charge renormalization
(25) term and a (y A')' term, so that this term may also be

ignored. To deal with the remaining term in (26) we
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note that F can be rewritten as follows, using (13):

F(0; p, k)
(22r)4

2i iy (p-k)-K iy p+K-
0+0

(22r)4 k' —2p k k' —2p k

p2+ K2

=Sp(p k)0—+Sp(p k)0—
k' —2p k

22 2+ ' p+K0, (27)
(22r)4 k' —2p k

since

2i iy (p —k) —K

(22r)4 k' —2p k

2i ip (p —k) —K( p'+K' q
I

1+
(22r)4 (p —k)'+K2 q k2 —2p k)

general types: (1) (y A')' terms of the type encountered
in the discussion of (MP) i. Once such terms have been
separated oG, they may be evaluated by replacing Sp'
by Sp. As noted before, terms of this character will
simply be isolated and recognized. (2) Terms which can
be expressed as (y2 —pi)2y A' terms; these are clearly
identical in form with the scattering approximation
terms and will be explicitly evaluated. They arise from
terms apparently quadratic in the external potential by
virtue of identities like the following:

lAC (le )
~.(122)v A'(q2)qi q2

2r Ehc]

4 -(122—q2) 2 -(12i+qi)
X p A'(qi) 2.(pi) (dp)'(dq)'

E„—E,

= —(i/~) [ie/(@c)]Z 2.*(u2) P2' qi V' (P2)

X2-(1i+qi)V A'(qi)2. (1i)(dp)'~ql (30)

P'+K
=S.(p —

k)~ 1+
k' —2p k)

So
—2i(22r) 'F(0; P,k) q.(p)

(28)
= —2i(22r) '[ie/(Ac)] (p. (p2) p2 (p2 —yi)

XV A'(P2 —Pi) V.(Pi) (dP)'

= —i(2~) '[ie/(&c) j 2.(P2) (p2 —
1 i)'

=S2(p—k)Oy. (y) —[ie/(hc)$) (k' —2p k)
—'

X[S2 (p —k)0(iy p —K)+2i(22r) —40J

Xy A'(y —y') q. (p')dy'. (29)

The second term on the right will produce expressions
which can be broken up into pure charge renormaliza-
tion terms and (y A')' terms, which we ignore. We are
left only with the first term, and since 0 itself is either
y„or of the form y„P, the process can be repeated until
we are left with a product of Sp's and p's. An analogous
procedure for the factor g,Ii' reduces it also to a product
of S2's and y's. Thus the surviving term of (26) in-
volves a product of factors ySp to the left and Spy to
the right of y A', and is readily identifiable, with a
term in the scattering approximation. In carrying out
the scattering approximation one always takes Pi'+K'
=P2 +K =0, and p, (y2) (i r p2+K) = (2 r pi+K) rp, (pi)
=0. This approximation, again to order n2(nZ)4, cor-
responds to the neglect of (y A')' terms

On carrying out the procedure described previously,
one finds in a straightforward manner that the three
terms linear in A' appearing in Eq. (24) correspond to
the terms of the scattering approximation illustrated in
Fig. 4, (c), (b), and (a), respectively.

identificatio and Evaluation of 422(42Z) 4

Terms in A&

There remains the problem of isolating and evaluating
the cP(42Z)4 contributions from Ai. These are of two

Xv A'(p2 —1i)~.(12i)(&1)'.

The factors E„—E, appearing in the denominators
come from the Sp' functions; their appearance implies
that one cannot, for these terms, expand Sp' in terms of
Sp and powers of the potential. One always can, on the
other hand, make appropriate nonrelativistic approxi-
mations, familiar from the treatments given for the
second-order level shift problem. To see how terms of
types (1) and (2) may be separated, we write

z.(0; p, q, k) =r.(0)+g.,
r.(0)=e.(0; p,o,k) = [F(0;p, k), ~.$,

B.= IF[0(p+V); P+V, k3

F[0(p); p, —kJ)7. ;

e,'(0; p, q, k) =s,'(0)+g, ',

(31)

with F,'(0) and g, ' defined similarly. A direct examina-
tion of the 5 functions shows that the F(0) is at least
one factor k better behaved as k ~0 than g. This is the
crucial property which makes the rather involved
scheme we are using for the M~&" term superior to the
simple expansion of the Sp' used for treating (MP) i. As
a consequence of this fact, the terms involving only
F(0) factors are sufiiciently well behaved in the infrared
to permit the replacement of S&' by Sp. These terms
are very similar to corresponding terms in (MP)i and
the only c2'(aZ)4 terms which they yield are (y A')'
terms.
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The g factors obviously vanish when q vanishes, and
correspond in a crude way to differentiation of the ex-
ternal potential with respect to the spatial coordinates.
It follows that terms involving g cannot be (y A')'
terms. In the absence of singular infrared behavior
which brings into prominence the energy denominators
of the SJ' functions, such terms are at least a factor nZ
smaller than the order of interest. The infrared singu-
larities are sufIiciently mild, in the case of cross terms
between an F(0) and a g, for such terms to be indeed
a factor aZ smaller. On the other hand, the terms con-
taining two g factors are, in fact, of order n2(nZ)4 and
must be evaluated. For these terms, nonrelativistic
approximations make evaluation straightforward.

The entire procedure is best described in terms of an
example. We discuss the term as [Eq. (23)]. We note
first of all that

2ip,„(iy—kl)y„
)

kl' —2pl kl

The terms of lowest order in the k's in both cases
evidently commute with yP, and so give no contribution
to Fl„,,(0) or F'2„„,„(0). One may now directly verify
that the term arising from Fl„,(0) and F'2„„,(0) is
finite in the infrared and ultraviolet, using Sp for Sp'
and unregulated Dp functions. One therefore gets a
(y A')' term. One can also verify that the cross terms,
while more singular, give contributions no larger than
422(42Z)s. We now evaluate the contribution from the
part involving two cl factors. The important contribu-
tions in this case come entirely from k (nZ)2. Con-
sequently one may neglect k as compared to y, q, and
pp. Furthermore, one may assume [qI &pp, q'([q[14.
Taking advantage of these approximations the &'s

simplify to

spiv ql ' kl
4—

K k]p kgp J

P2 =—2i

(2sr)4 (kl+ks)' —2ps. (kl+ks)

2ips„—y„(iy ks)
X v„y,+

ks' —2ps ks

Vp g2n~v4+ gsv~y, , 4

pps p
$-

(22r)4 4 .. ksp(klp+ksp)

'5 48 4 t
q2'k2 q2' (kl+k2) q+ f

(33)
k20(klp+k20) ~ k20 klo+k20

X[2i(ps„—ks„)—pv(ip. kl) . (32)
The expression for a2 also contains the factor

J
~P (p2 gs kl k2v ps kl k2)Vn~F (ps klv pl+pl kl)lips

p 80„(p,—q, —kl —k,) opn(ps —k,—ks)y„opm(p, —k,) Spm(p, +ql —kl)
dp3

n, m J (4+k 10+k20) (~m+ k 10)

r 0.(ps —q2) 0 -(Ps)V.0-(ps) 4 -(Pl+ ql)
Zpa

(~n+ k 10+k20) (~m+ k 10)

(34)

P = ((1—io)E„—E.)/(hc)),

since, as previously noted, k may be neglected as com-
pared to y and q. This is simply the familiar dipole
approximation, corresponding to the neglect of retarda-
tion. This expression may be further simplified by taking
into account the fact that the significant contributions
come only when e and m are positive energy states of
nonrelativistic energy. One therefore takes

Pn(PS)74tppm(ps)lips ~n4J son (PS) som(P8)lfPS

= (22r) 88„48„, (35)

so that (34) reduces to

'Pn (P2 q2) Pn(P1+ ql)
44K

82rs (8 +klp+ksp) (8 +klp)

With these approximations a2 becomes

it' 2i )4/ie)'1
8.(P2» A'«2)

~ ((2~)4i &kc) .2 - ~

0 -(P —qs) 0.(Pl+ql)
X y A'(ql)02. pl

(~n+ k10+kso) (8n+ k10)

X gy' g2-
klpk20(klo+k20)—

(ql 'kl) (q2 k2)

kgpk2p

(ql'kl) (q2' (kl+k2)) d4kl d4k2
(dp)'(&q)' (36)

k12 k22»0(klo+k20)

The integrations of the timelike components and
angular domains of k& and k2 may now be carried out
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easily. The ko integrations are performed simply by
closing the contours on the negative imaginary side of
the real axis. The low-energy poles from k' —2P k —ie,
here approximated by 2Kokp i~, and those from the
denominators 8„+ks for positive energy states are
thereby avoided. Contributions of the order of interest
come only from the poles of the Dp functions. One then
Ands

2( 2z ) pzep 1 r

~.(p2)~ A'(q)
2r ( (22r)4) (Ac) as n J

& (P2 q2)P (»+ql)
X V A'(ql) 4.(pl)

(8 +kl+k2) (8„+kl)

ql'q2 ( 1 kl ) kl dkl
X

klk2(kl+k2) ~ 3 kl+k2~ kl

dkgdk2

1 klx!1——
3 kl+k2)

a2' ——p C.
(kl+k2) (1+k2) (1+kl+k2)

shall find, in fact, that it is unnecessary to carry out
most of the k integrations, many terms vanishing simply
as the result of combining integrands.

Carrying out the reduction for the remaining terms
in Ml&4i, we find, using k=!k!, 4u= [k'+ (X/8„)2]~,

ai=0;

dkidk2
a2 ——p C.

(kl+ k2) (1+k 1)(1+kl+ k2)

(Here k,=!I,!,k, =!12!.)

k2'dk2
(dp)'(dq)' (37)

k2 A 14 9)
as=

I
»—»n-+- l»1

4)

X! 1—
3 kl+k2)

Now, letting k& ~ b„k&, k& ~ 8„k2, we 6nd

dkydk2
a2 ——p C„

(kl+k2) (1+kl) (1+kl+k2)

1 kl
(3g)

3 kl+k2)
with

C = (2/2r) [2i(22r) 4]'[ie/(Ac)]2(1/142)

Xj 44, (p2)y A'(q2) p„(p2—q2) (1/&„)

X g.(pl+ql)V A'(ql) q. (pl) (dp)'(dq)'. (39)

The expression P C has been discussed at the be-
ginning of this section and has been shown to be pro-
po«tonal to J'P.(p2) (p2 pl) 7'A (p2 pl) P (pl)dpldp2
One has, therefore, only to evaluate the integrals over
k& and k2 to obtain the contribution of this term to the
level shift. "

The reduction of a2 is particularly simple because it
does not have any infrared divergences. In most of the
terms the integral multiplying C„still involves 8

through the ratio X/8„. After carrying out the k-space
integrations one has, in addition to g C„, terms of the
form Q C„ln(X/8„) and P C„lns(X/8„). Terms such
as these occur in the second-order level shift problem.
It is clear, however, that no such terms can remain
after summing over all contributions, simply because
of the fact that all dependence on X must vanish. "We

'0 It might be noted that the contribution of a~+u2' to the 2S
energy level in hydrogen is about —1.3 megacycles.

"This argument is somewhat oversimplified as terms of the
form ln(~/X) also occur. To complete the argument one must
identify all ln(~/X) terms with the second-order charge renor-
malizations which we neglected to remove.

k 'dk k 'dk
+ZC-

I

tel 402 (C01+tu2) (I+col)

k12t'
X! —1+- (4o)

3 oil(oll+Q)2)

h. 14 9)
a,'=l »—21n-+- lii,

14 ) 4)

kl'dklk2'dk2
++C

olP402 (4o 1+to2) (I+to2)

k2'1
!Xl —I+—

3 td2(Q)1+to2) I

kI2dkgk22dk2..=PC„ I

olP4o2 (oil+o12) (I+oll+o12)

k22kg'( 1 1x!2—
3 tot(oil+a&2) 3 to2(M1+cu2)

where

1 k'+k2' i
3 (Gdl+N2)

111=4(22r) ' [ie/(Ac)]' pA' p'1 Sip A8' fl'1

XZbd4k(dp) (dq)' (41)

1 q ksdk ( 1 kzq
= —-QC.

2 ~ ~ 4o'(I+lo) ~ 3 ol')
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The expression II& is just the multiple-potential con-
tribution to the second-order level shift, apart from a
numerical factor. Its appearance as a factor is expected
in view of the fact that we have retained charge renor-
malization terms.

CONTRIBUTION OF M2&4&

While the main outline of the treatment of M2'4)

[Eq. (6)] is identical to that of Ml&4&, the presence of
the second-order mass term leads to significant com-
plications in its treatment. Furthermore, the fact that
the photon momenta appearing in the first and third
Sp' factors are the same makes the infrared problem
somewhat more complicated.

We note first of all that M2'4) can be separated, by
successive applications of the identities (13) into a set
of terms B~ involving the potential twice explicitly and
Sg', and another set, Bo, not involving S~', and involv-
ing the potential no more than once explicitly, all in a
manner exactly analogous to the treatment of 3f&").
Again the terms 80 yield the scattering approximation,
renormalization terms, and (7 A')' terms. The terms
forming Bl, (they are exact analogs of al, a2, )23, a4)
are, schematically,

bl=[ie/(hc)]') p.A»'P'1„, »Sp'7.Sp'7,Sp'A:

XF1„,,32,DpDp(d4k)'(dp)4(dq)' 2i(22r) 3a—'

X&~&'&[ie/(izc)]) rp, A»'7'1„, »Sp'Sp'A '

Xvl„,.z .Dpd4k (dp)'(d q)2;

b2 [ie/(Ac)]2 J
——+Z), '5." „.2,Sp'7.Sp'A. '

X»„,,p DpDp(d4k)'(dp)'(dq)';

J Sp'(pz q2 kl, —p4 ——kl)7„

XS» (p4 k, k„—p3 ——kl —k2)dp4

= [(ie/(kc)]J"Sp'(P2 —
q2

—kl, p4 —kl)A, '(q3)

X+ 1)I, ) (p4 kl)Sp'(p4 —
q3 kl k—2) p—3 k—l k2)

Xdp4dqz+2i(22r) 'Fl„'(p2 —
q2

—kl)

XSp (p9 q2 kl k2) p3 kl k2) —2z(2~) '

where
XSp (p2 q2 kl p3 kl)F1 (p3 kl), (44)

F '(P) =F'(7 ; P,k ), ~'
, (P) =~' (7 ; P,q, k ) (4~)

Therefore this part of b& breaks up into three terms:

bl [ze/(Ac)——]'JI p.A'&1„'Sp'A'Fl. 'Sp'7„

Thus mass renormalization appears explicitly only in

b&, and in the formation of F3~ appearing in b3 and b3'.
Further reduction of b& is necessary to remove the

mass renormalization term. The reduction is accom-
plished by using the identities (13) on one or another of
the remaining y„ factors. Apart from the mass term,

bl [ie/——(hc)]' I 3),(p2)A, '(q2)P'1„, ,

XSp (p'2 q2 kl) p4 kl)7)ISp (p4 kl k2) p3 kl k2)

+7.Sp'(pz kl, p—1+ql —kl) A.'(ql) 5'1, .
X 32.(pl)Dp(kl)Dp(k2) (d4k)'(dy)'(dq)'. (43)

[+1, @ (7 p2q2kl)», +(7 plqlkl)]
Now

b2' = [ie/ (Izc)]'J
))'24A 'F 1„, Sp'7„Sp'A.

Xs2„,.3).DpDp(d4k)'(dp)'(dq)',

b3 ——[ie/(hc)]'J p& '5' 3,Sp'A. '

X»„,.3.Dpd4kl(dy)'(dq)2;

b,'= [ze/(Izc)]2J I p~;p', „,S;A:
X$~3„,.p.Dpd4kl (dy) 2(dq)',

(42) XS»"A'Pl„p.DpDp(d4k)2(d p)'(dq)'

+2i(2zr) 4[ie/(Ac)]2 ~p &'6,„'F,„'Sp'7„Sp'

XA'5:1 3 DpDp(d4k)2(dp)3(dq)2

—2i(2zr) 4[ie/(33zc)]2J p,A' $1„'Sp'F1„'7„

XS 'A'Sl„q.DpDp(d4k)2(dy)3(dq)2

= bll+b12+b13.

b4 ——[ze/(Pic)]' ~@~ ap'

XSz,„,.g.DpD p(d4k)'(d p)'(d q)',

where F'a»» (and, analogously, F"»,) is formed by
taking the operator 0 in (13) to be

—2z(22r) Jt F'2»)7gDp(k2)d4k2 22(2zr) 3n 'all&'&)F', „—.
~I

In b», the middle Sp' factor can be replaced by Sg, so
that the k2 integration can be carried out, yielding

A 9y
b11=2i(22r) [ie/(hc)]3( 31n——

~

t 32, (p2)
)l 4) J

XA»'(q2)F 1, Sp (p2 q2 kl pz+q3 kl)

X7.A'(q3)Sp'(p3 —kl, pl+ql —kl)A. '(ql)

X»„,.|3) (pl)D» (kl)d4kl(dp)'(dq)', (47)
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A ~ 9l
b&

———
! ln—21n-+- !II&

s; X 4I

kPdk&ks'dks (' 1 kP l+pc„~
CO&Ms (1+%&+Ms) k 3 M& )

~1 d~1~2 d~2
bs=bs'= —bs+Q C~ „

&P~s (&&+&s)(1+&&+4&s)

1kP 1
X! -1+-—+-

3 MP 3 Go&(co&+&os) )

( h.
bs ——bs' ——4! ln—2 ln —

!II&—Bi(2sr) "[ie/(&&sc))'
xJ

ps
X! 3»——

!
' s.(ys)

s 4) kP —2Ps k&
y A'(qs) (48)

X&'(Ps—
qs

—k&, P&+q&—k&)A.'(sll) &1„,.
X p. (p&)Ds (k&)d4ks(dy)'(d sl)'

+PC
a&P(os'((os+(os) (1+co&)

which, on application of Eq. (14) to

fie/(Ac))S& (P, q,—k„—P,+qs —k,)y A'(sls)

XSs'(Ps —k&, P&+q&.—k) &dysdsIs,

combines with b» to yield a multiple of II&.
The term b» must be further reduced by using the

identities (13) on the remaining p„ factor, again yielding
three terms. One of these involves the potential ex-
plicitly three times and may be shown to be too small.
The other two can be evaluated using the methods
applied in the preceding section. The k2 integration in b»
can be done immediately, yielding a mass term and a
term combining with b~~, as noted above, to give a
multiple of II~.

Apart from slight modifications in b2 and b3, the
evaluation of the remaining terms in 8& is carried out
along the same lines followed in evaluating 3&, to yield

using. Fortunately a similar term appearing in b2 just
cancels it.

Inspection of the various contributions to 3/I&~4) and
M2&4) yields the result that the integrands of the integrals
having P C„asa factor add to zero, so that Ms' &+Ms& &

may be evaluated without carrying out any of the
integrations. We 6nd that the contribution to AE"' is

Ac) (M& &4&)+ (Ms ~4&))

= —(i/sr)r ss (2sr)sn)skc! ln—2 ln—+— !IIs. (49)
4)

CONTRIBVTION OF —H&s&8H '/BE AND THE
DEMONSTRATION OF THE VALIDITY OF

THE SCATTERING APPROXIMATION

The evaluation of the remaining significant contri-
bution to AE'4) presents no difficulties. This term, cor-
responding crudely to diagram 1 of Fig. 3, is pure
charge renormalization, and was therefore not cal-
culated by WBK. We have not removed the second-
order charge renormalizations from the fourth-order
terms, and so must include this as well. i7I (2) is simply
the second-order level shift. After mass renormalization
it is of order n(nZ)'. Thus only a crude approximation to
BH&s&/BE is needed. We note that it may be written

BH.."&/c&E=-,'i(2sr)&sn I p,y„Sp'y4Ss"y„q,

XD&&dsk(dy)s. (50)

It is sufhcient to replace Sp' by Sp, in which case one
recognizes the expression as the second-order vertex
charge renormalization constant. B&2) is to be separated
into a scattering part, which is to be amalgamated with
the scattering approximation terms, and a multiple-
potential part, which we have denoted, apart from a
factor, by II,. The contribution of H"&BH~s&/BE —to
the multiple-potential corrections to the scattering
approximation is, indeed, simply

A. ~ 9l
(i/sr)! 4 (2sr)'a)%c! ln—2 ln-+ —

!II&,
4)

1 kP
X! —1+-

3 Ql&(M&+cps) )
kPdk&ks'dks &t' 1 kP

b4
——P C„

M] cos((0&+(Os) (1+&v&+&os) E 3 Mp

2 kp 1 kp+kss l
3 co&(M&+cps) 3 (Q)&+los)

which precisely cancels the contribution of A+8. The
validity of the scattering approximation has therefore
been demonstrated.

It is clear that a method of avoiding the rather
elaborate calculation described here would be desirable,
and a considerable eGort in this direction has been
expended. The calculation could be avoided if a method
could be found for preventing the appearance of infrared
divergences in the scattering approximation. The use
of the transverse gauge for the electromagnetic field
overs some promise in this direction. However, because

It is to be noted that b3 contains a term which cannot of the fact that the charge renormalizations appear in
readily be evaluated with the techniques we have been a much less recognizable form, and because of the



1500 R. L. MILLS AND N. M. KROLL

generally much greater complexity of the transverse
gauge, it does not appear that any significant amount of
labor could be saved by such an approach even if it
were to be successfully- carried through.

For the Coulomb Geld,

)rA.'(—p)& .(p)A.'(p)dp &(p') p 'dp

CORRECTIONS TO THE SCATTERING
APPROXIMATION

In the previous sections it has been shown that there
are no corrections to the scattering approximation for
DE&4& which are of the same order in aZ as the scattering

approximation itself. On the other hand, there are cor-
rections one order in nZ smaller. While it appears very
unlikely that these are experimentally significant, it is
not certain that this is the case. A few brief remarks
concerning their evaluation will therefore be made.

In particular we note that the problem here is very
similar to that discussed by BBFwith reference to the
second-order problem. Consequently a procedure very
similar to theirs can be followed. Consider, for example,
(3IIq~'&), as split into two terms Ao and A~. We have
shown that, to order n'(nZ)4, Ao contributes renor-
malization terms, (y.A')' terms, and scattering approxi-
mation terms. We now assert that, in complete analogy
with the BBF problem, there are no corrections to AQ

of order nZ smaller. This comes about as a result of the
special form of the denominators of the J and 5
operators. Following the procedure of Kroll and
Pollock, one can always express the Q.Z corrections as
the square of the wave function at the origin multiplied

by an integral over the momentum space of the poten-
tial. Thus, a typical term of AQ might, after application
of the Dirac equation, have the form

p. (p2)A, '(p2 —p3)&.-(ps) A.'(p» —p~) p. (p~) (dp)'

X&,.(pa)A, '(pa)dp&. (5&)

This last integral vanishes since E(p')/p' turns out to
be suKciently well behaved as p' —+ 0, and E(p') may
be written J'G(p; s„»2, ,s„)ds~d»2. d»„, where G
is an analytic function of p' with no singularities except
poles on the real axis. (The integral is to be evaluated
as a principal part. ) Integrals of this sort vanish iden-
tically, as long as the integrands are not singular at
inGnity.

Thus, for M&&') and M2&'&, the oZ corrections come
only from A& and 8&. These may always be evaluated
by replacing Sp' by Sp everywhere, and setting p& and
y2, the momenta of the initial and anal states, equal to
zero everywhere except in p (p2) and q, (p~). One
immediately obtains the square of the wave function
at the origin multiplied by a definite integral of typical
form. Our previous calculation guarantees that all low-
momentum divergences will cancel when all terms are
combined.

It should, of course, be noted that various contribu-
tions, such as (MP)2, which were not considered here
because they do not contribute to the scattering ap-
proximation, do contribute to the eZ corrections.
Methods very similar to those just discussed can again
be applied.
' The aforementioned remarks should indicate that a

method exists for writing down all oZ corrections in
terms of the wave function at the origin and a deGnite
integral involving the square of the Fourier transform of
the potential, two photon propagation functions, and a
finite number of known functions which are identical
with or similar to free-electron propagation functions.
There are, of course, very many such terms, so that an
actual evaluation of the corrections appears to be a far
lengthier task than was the evaluation in the case of
the scattering approximation.


