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The relative probabilities for alternate processes initiated by a nucleon-nucleon collision depend on the
dynamics involved and on the volume in phase space accessible to each final state. The assignment of relative
u priori probabilities to the final states proportional to their extension in phase must be consistent with the
translational, rotational, and Lorentz-invariant properties of the colliding system. The latter in particular
implies a conservation law for the center of energy. Its effect is not only to lower the power of the condgura-
tional volume by one dimension but also to severely reduce the contributions from high momenta to the phase
space integrals.

The limitations on accessibility arising from the controllable constants of motion are not sufficient to
insure well defined probabilities. Some additional restriction on the configurational part of the phase space
must be imposed. A cutoff factor for each particle is accordingly introduced. The con6gurational volume

accessible to the particle thus decreases with increasing energy, a picture not inconsistent with the uncer-

tainty principle.

HIS note describes a statistical model which divers
in some essential respects from the one proposed

by Fermi. '
Following Fermi we assume that in a high-energy

collision a state approximating that of equilibrium is
established. The probability of disintegration into vari-
ous possible modes is then taken proportional to their
relative extensions in accessible phase space. The limita-
tions on accessibility arise from the assumed controllable
constants of motion.

In this note they are taken to be energy, momentum,
center of energy (the relativistic analog of center of
mass), and isotopic spin. For simplicity conservation of
angular momentum has been neglected.

*This work was performed under the auspices of the U. S.
Atomic Energy Commission.' E. Fermi, Progr. Theoret. Phys. (Japan) 5, 4, 570 (1950).

If it is assumed that the extension in accessible phase
space (in the center-of-momentum system) correspond-
ing to particles of masses 3f1, 312, ~ can be approxi-
mated by the classical phase integral divided by h"" '),

g„T„ t. t=~
I'„= II dy;dx;8(E —Q E;)

(2~h)3(n 1) Q—
pg xg;q

Xb(—& p~)bl l, (1)
E t

one sees immediately that this integral does not con-
verge and therefore some additional restriction is neces-
sary to give the phase integral a well-de6ned meaning.
This difhculty is overcome in the quantum theory by
enclosing the system in a container whose walls aer
eventually removed to infinity since (having been
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cancelled by the normalization factor in the wave func-
tions) its volume does not appear in any physically

significant context. This procedure cannot be followed,
however, in our case. Imagine a light and a heavy
particle with center of mass fixed starting out from the
origin and moving according to Newtonian mechanics in

opposite directions. When the lighter particle reaches
the boundary of the container and is reQected, the
heavier one must also turn back, even though it is still in
the interior of the region, in order that the center of
mass may be conserved. Thus, the conservation of
center of mass and a finite volume, the same for light
and heavy particles, give rise to unwanted spatial
correlations amounting to interactions with the walls of
the imaginary container. Since these cannot have any
physical basis, this trivial example suggests that one
enclose the particles in spheres whose radii decrease in
some manner with increasing mass. In a nonrelativistic
theory such a restriction may be imposed by inserting
into the spatial part of the phase integral factors
f;(M;,x,) which are to be chosen in such a way to make
the integral well dined. A simple physical motivation
can be supplied for such factors by an appeal to the

TAsLz I. Values of 2'„ for a nucleon-nucleon collision when
S~= T =v&„&=1. The last column indicates the number of
nucleons and pions which the reaction yields.

P2
P3
P4
P4'

2.5

0.030
0.012
0.0043
0

6.3

0.025
0.022
0.006
0.000001

10

0.022
0.022
0.0089
0.00022

Process

2E
2N, 1m

2F, 2m

4Ã

uncertainty principle. One may imagine that at the
instant of the collision between two colliding nucleons a
virtual cloud of particles of various masses is formed of
which that portion due to particles of mass 3f; extends
to a distance &ri/M, c. This suggests that one represent f;
by a Kennard packet

f;=exp( —x;s«;sr, ).

~; is the Compton wavelength appropriate to the mass

3E;, and r, is some scaling factor. Of course any other
monotonic function with similar properties would do as
well. This choice does, however, simplify the calcula-
tions and the results should not depend too drastically
on the choice of f;(M;,x~)

In a relativistic theory, however, center of energy
rather than center of mass is conserved, so if different

cutoffs in configurational volume for the various par-
ticles are introduced these cutoGs must be energy-
dependent. Relativistically, the notion that the func-

tions f; represent the extension of a virtual cloud of

TABLE II. Values of P~/r&~&i&" '& for a p-&& co11ision
at three energies.

pp
pp'
Pn'
pp'
pp00
Pn+0
nn++

1.5

0,015
0.003
0.018
0.00026
0.000043
0.00077
0.000065

6.3

0.0125
0.0055
0.033
0.0036
0.0006
0.0108
0.0009

10

0.011
0.0055
0.033
0.0053
0.00089
0.016
0.0013

particles with energy E; implies that they should have a
range I'sc/E;. For simplicity one may choose

( +.s
f;(E;,x;)=exp~ —x,s r; ~.

&ii'c' )

TABLE III. Values of I /r„i " for an I-p eojjjsion jn s, T'=p
isotopic spin state at three energies.

Pn
pp
Pn0
nn+
pp'
pn00
pn+
nn+o

1.5

0.030
0.002
0.004
0.002
0.00072
0.00072
0.00043
0.00072

6.3

0.025
0.0037
0.0073
0.0037
0.001
0.001
0.006
0.001

10

0,022
0.0037
0.0073
0.0037
0.0015
0.0015
0.0089
0.0015

As before, this choice is arbitrary to the extent that any
other monotonic function with similar properties would
also be suitable. Nonrelativistically the assumption of
absence of fictious correlations (i.e., interactions with
the walls of an imaginary container) has the simple
effect of multiplying the momentum space part of the
phase integral by a factor depending on the ratios of the
masses of various particles. Relativistically, however,
the energy-dependent range of the virtual cloud intro-
duces a drastic modification in the momentum integral.

No mention has so far been made of any contraction
factor such as that which occupies a prominent position
in Fermi s statistical model. This indeed is absent here.
What one gets instead is something like a uniform
shrinkage of the configurational volume with increasing
energy due to the energy-dependent cutoffs. The eGect
of shrinkage of configurational volume with energy is of
course more signi6cant for a light particle than for a
heavy one. As a result one finds in calculating the energy
spectrum of a single emitted meson in a nucleon-nucleon
collision that low-meson-energy emissions are favored
above the high ones.

A quantitative formulation of the preceding discus-
sion is now given. The expression for the number of
states per unit energy interval in the accessible phase
space as restricted by conservation of energy, mo-
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mentum, and center of energy may be written as

1 (2E)4
P.= S„.T„rr

(2~)'&" '& 2cAE

X txdk;B(2E —Q(k'+~')l)8( —Q k )

1
=—Qrg

v(„)" ' e i=&

and define a quantity

(4a)

the formula we introduce a reduced scaling factor for the
system of n particles

xdx; expL —r;x (k '+z ')&]

!t'r(„&) «" '& 1

(4~) e~
(4b)

X8(P x;(k s+~;s):). (2) Equation (2) then assumes the form

In this formula the index e refers to e particles with
Compton wavelengths Ky K2 ~ ~ K . The letter S„
denotes a constant whose exact value depends on the
number of indistinguishable groups and the population
of each occurring among the e particles. The isotopic
spin weight factors are denoted by T„.The symbol K
stands for the energy per incident nucleon in the center
of energy system. A gaussian cutoff with an, as yet,
arbitrary parameter r; for the configuration space of
each particle has been introduced in the integrand. The
quantities s;, E, k have the dimensions of reciprocal
length. Thus the integral has the dimensions of the
product of four delta functions, or that of (2z) '. The
weight factors S„and T„are of course dimensionless.
Carrying out the integration over configuration space
we obtain

S T„(2E)' 1 ~ 1

(4r)«" '& &r&c(2E) ~ 1 '=t r;&

dk;
X g(2E—(k s+g ')&)g(—P k ) (3)

(k;s+&t;s) &

where the v-, 's are constants, independent of energy.
Looking back at (3) we see that the size of the "wave
packet" of a particle is determined by its energy and the
7 i s play the role of intrinsic scaling factors. To simplify

where
P =Q„S„T„J„, (5a)

(2E)'
II

&&&c2E ~ ~ &Lk '=+g ']&

dk;

X5(2E—P(k +~;s)')h( —P k,). (5b)

The nonrelativistic limit of expression (5) is not
essentially different from that of Fermi's model with the
conservation of linear momentum. ' A short calculation
carried out along the lines of reference 2 yields

1 1 1 ]Tq&
P.=r.«" '&S.T ,'——-(

~ ) (6)
mc' rl& (—'e —5/2)! Emc')

where

=Pm;

and T is the kinetic energy per colliding nucleon in the
center of mass system.

It is readily seen, however, that the factor $k,s+a,s]—&

will introduce essential modi6cations in the high energy
domain, These will show up primarily in the shape of
the energy spectrum of the emitted mesons. For a fixed
multiplicity, this is independent of any uncertainties in
the factor Q„. Figures 1, 2, and 3 show the general

Tp& 6.3 Bee

S{q)

Stql

OO

0
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3 4 5

MOMENTUM qg~

FIG. i. Momentum spectra of singly and doubly emitted mesons
in the laboratory system for incident nucleons with 1.5-Bev kinetic
energy.

FIG. 2. Momentum spectra of singly and doubly emitted mesons
in the laboratory system for incident nucleons with 6.3-Bev kinetic
energy.

' J. V. Lepore and R. Stuart, Phys. Rev. 94, 1724 (1954).
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TABLE IV. Values of P /r&„&I&" '& for an e-p collision in a 7= 1
isotopic spin state at three energies.

Tp ~ IO Bev

Ps
pp
pn0
en+
PP '
pg00
Pn+
n~+0

0.030
0.003
0.012
0.003
0.00017
0.00013
0.00077
0.00017

6.3

0.025
0.0055
0.022
0.0055
0.0024
0.0018
0.011
0.0024

10

0.022
0.0055
0.022
0.0055
0.0036
0.0027
0.016
0.0036

tendency for mesons to be emitted with low rather than
high energies. This is a general feature of the model
resulting from the fact that high-energy mesons have
less configurational volume available to them than the
low-energy ones. This feature is present in single- as
well as multiple-meson production. An experiment
carried out under conditions where single-meson pro-
duction would be expected to dominate would therefore
be of some interest.

At higher energies where multiple production is also
possible the predictions of the model would depend on
the assumed values of the scaling factors r and r~ that
enter into the definition of Q„. Explicitly

Q2(ne) = (r~/87r) 1,

It is seen from these expressions that even if 7 „=7- = v,
the assumed value of this single parameter will still
e6ect the predictions of the model in an essential
manner.

In view of the general qualitative agreement of the
shapes of the spectra with those observed at the
Brookhaven Cosmotron, a further attempt might be
made to account for the observation in greater detail by
fixing one or two parameters (r = r~=r, or r&tr, r /r~)

MOMEI&ITUM q/Isa

FIG. 3. Momentum spectra of singly and doubly emitted mesons
in the laboratory system for incident nucleons with 10-Bev kinetic
energy.

empirically on the basis of single-meson production.
With a view towards such a program when further data
become available we include tables with some computed
values of the expressions appearing in Eq. (5). Table I
lists the values of P„when 5„=T„=r(„)= I, Table II
those of P /(r )""" for a p-p collision, Table III the
same quantity for an e-p collision if the colliding par-
ticles are in an isotopic spin state T=0, and Table IV
if they are in a state T=1. Columns are labeled by the
kinetic energy (in Bev) of the incident nucleon in the
laboratory system.

In constructing Table I we reduced J4 to a double, J3
to a single integral. J2 can be expressed analytically in
terms of elementary functions. The remaining integra-
tion were carried out numerically on the IBM Card
Program Calculator at the I.ivermore site of this
laboratory. Tables II, III, and IV were constructed
using Table I and the numerical coefficients T calcu-
lated by Fermi. '

It may perhaps be worth-while to point out that the
probability for the production of a nucleon pair in a
nucleon-nucleon collision is seen from Table I to be
exceedingly small even at 10 Bev.

We are grateful to Miss H. Cox and Mrs. M. Harrison
for carrying out the computations.

' E. Fermi, Phys. Rev. 92, 452 (1953).


