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Many-Body Problem with Strong Forces
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A trial solution constructed from two-particle functions is applied to the problem of the N-particle system
with strong interactions. In a variational treatment based on this wave function the expectation values,
which cannot be factored into single-particle integrals, are evaluated by a cluster development in powers of
the particle density. The procedure is illustrated by a calculation of the pair distribution function and zero-

point energy of the hard sphere gas, for Bose and Fermi statistics.

' 'N the present paper we examine, by a variational
~ ~ method, the ground state properties of a quantum
mechanical system of S particles of equal mass m,
contained in a volume 0, and interacting through cen-
tral two-body forces represented by the potential V(r).
Our interest is primarily in potentials V(r) of short
range relative to the mean particle spacing.

It will be assumed that both N and 0 are large
enough to permit the neglect of surface e6ects; the
properties of the ground state then depend only on m,
V(r), and the particle density, n =X/Q.

The Hamiltonian of the system is

$2 N
H= — PV,'+ P V(r;,).2' i=1 i&j=l

The eigenfunctions f of (1) are usually approximated
by (symmetrized or an. tisymmetrized) products of
one-particle functions,

interaction (I VpI~~), the upper bound provided by
V increases without limit.

The estimate of V is improved if (2) is replaced by a
form containing the correlations implied by the relations,

P(r, .rid) =0, r;; &rs,

which the eigenfunctions of (1) must satisfy when V(r)
is a strong repulsion. The conditions (4) are easily
fulfilled by trial functions which depend explicitly on
the interparticle separations r;;; of such functions, the
simplest is the product over all E(1V 1)/2 pairs, '—

4- II f(r')

with f(r;;) defined to vanish for r &re and to approach
unity for r&)r p.'

The particular example of the hard sphere gas re-
quires for f(r) a form such as

0-II g '(r'), (2)
j'=0,

e
—p(r—ro)

r&rp,.

(6)
r&rp,

the effect of the interactions V(rg) being introduced as
a perturbation on the independent particle motions; an
upper bound on the energy of the ground state is then
obtained by computing' H= J'P*HP/J"P*P from (2)
and minimizing with respect to variations in the func-
tions cp;. This procedure fails in problems involving
strong interactions, however, through the omission of
correlations in particle position from (2). As an example
we consider the repulsive potential,

r rp

in which P is an arbitrary parameter. For the varia-
tional application of (5) and (6),

II If(r')I' (&)
~J i&j=l

V=
I VpI, r;,&rp,.

V=O r;j&rp.

The mean potential energy per particle, V/E, com-
puted from (2) and (3) is seen to be of the order of
(Mrs'/0)

I VsI; if now (3) goes into the hard sphere

must be evaluated and minimized with respect to
variations in P.

(3) The form (5) may be applied to other interactions
V(r;;) if f(r;;) is chosen more generally as an approxima-
tion to the eigenfunctions of the two-body Hamiltonian

*Present address: Nucleonics Division, Naval Research Labora-
tory, Washington, D. C.

f Part of this work was assisted by the joint program of the
Ofhce of Naval Research and the V. S. Atomic Energy Commission
and by the 0%ce of Ordnance Research, V. S. Army.

' Integrals are taken over the 3N coordinates of all particles
unless otherwise indicated.

2 This form has already been suggested by N. F. Mott for the
hard sphere Bose gas, and applied in the low-density limit by
R. B. Dingle LPhiL Mag. 40, 573 (1949)j.

3 As r moo, f(r) mu—st approach a constant amplitude, conveni-
ently chosen as unity. If instead f(r) were to vanish for large r,
P would vanish almost everywhere in the configuration space of
the system.
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within the range of V; as before, f must approach
unity at large distances.

Although (5) is constructed from two-body functions
and apparently includes only pair correlations, it should
be noted that e6ects involving &3 particles are also
present: for example, the 3-particle group (i,j,h) is

connected in (6) by the factor
I f(r;;)f(r, ),)f(r)„)j, and

particles i, j, h, and l by factors such as I f(r,;)f(r, s)
&(f(rst) f(r~;)]. The contributions of these terms appear
explicitly in the cluster development of H to be given
below.

CLUSTER DEVELOPMENT H

The expectation value of H may be computed from
(7):

f*(r;;) — NVt'+ ', N(IV-1)V—(ris) g f(r;)
~&i=& i 2m , i&j=l

H=

II If(r')I'

The cross terms in the kinetic energy vanish in the integration and we obtain

~ II f*(r')
i&j'=1

II=N(N 1)—
&' ~r'f(r»)

+-'V(ri) II f(r')
2m f(ris)

Because f approaches unity outside the range of forces,
(9) is identical in form with the configuration integrals
encountered in the classical theory of the imperfect
gas. Ke treat it similarly, writing for the energy per
particle

where

g(') (r„)=1,

g(')(r„)=) h(r„)h(r„)d'r„

(11a)

1—H=
iV

N —1 t. O' Vr'f(r»)
+s V(r»)

0 & 2m f(r is)

Xg(rrs)d'r12 ~ (1O)

a'"(» ) Kd" (»)=7+J"L2&(» )&(» )&(» )

+4h(ris) h(res) h(rs4) h(r4, )

The pair distribution function, g(r»), is defined by
integration of P over particles 3, , N:

+ h( 4r]) h( )rs)h(rss)h(rs4)h(r4s) jd'red're. (11c)

The leading term in (11) describes the correlation
which results from the explicit dependence of P on r)s
through the factor f(ris). The next term (g(") is associ-
ated with the distortion of f in its dependence on rts,
resulting from the presence of a third particle in the
neighborhood of 1 and 2, etc.

it determines the probability of a separation r» be-

tween particles 1 and 2.
The function g(r) may be expanded in ascending

powers of particle density rt, =N/0, , following the cluster

development of Ursell and Mayer. ' Defining

Bose Particles

The function (5) is symmetrical in all particles and
directly applicable to Einstein-Bose systems. We have
for the expectation values of the potential and kinetic
energies per particle,

we have
h(rr;) =f'(r, ,)—1,

1
V= 4rrrr )~r'V (r)—g (r)dr,r (12)

g(r12) =f'( i )rI gs"'(rts)+rsg"'(r12)
+rs'g"'(r»)+ ] (11)

4 e r(»»»))s replaces f (r;;) in the classical analog.
~ The cluster development is reviewed by J. De Boer in Repts.

Progr. Phys. 12, 305 (1948).

f"+(2/r) f'-—T=4m' r' g (r)dr,
N

with g(r) given by (11).

(13)
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jFerm. i Particles Application of the cluster development to (20) yields

A modification of (5) appropriate to antisymmetrical
(a) Correlational kinetic energy:

S(r . .r ) II f(r,,), (14)
1 O'

I
f"+(2/r) f'

TQ' — s g(r)"'»
22»z~ . f

(21)

where 5 is a Slater determinant of one-particle func-
tions, 323(r ). We choose plane waves for these:
~&(r ) —~i&1 ra

The corresponding modifications in the cluster de-
velopment of Il/E are readily obtained. The potential
energy again takes the form

with g(r) defined by (16)—(18);
(b) Fermi energy:

1 A 1 N

Tp ————p k.12

2' Ã ~~=&

with

1—V=4m-rz I »2V(r)g(r)dr, (15)

j'1 N

X 1+rz~ p (Qaiaz Qaza3*) ~+ ' ' '
& (22)

I&, jp CL2 %3=1

where

g(r) =f (r)[g~ &(r)+zzgi3&(r)y ~ ]
where now

g&'&(»12)= P exP[—i(k 1 ri+k 2 r2)]

(16)
Q...;= h(r A)

d f2
Xexp[—i(k; ri+k; r2)]D"&(ij; 12) . (23)

0
a)ay=1

(c) Cross term:
eXp(Zkai ri)

X
exp(ik 1 r2)

g"'(»1)= ~d'»3h(»13)h(»3)
1 N

X —p exp[—i(k 1 ri+k 2. r2)]D"'(12; 12)
g a2=C

a1a2a3=1

Xexp[—i(k 1 ri+it 2' f2+143'r3)]

exp(ik 1 »1) exp(ik 2.ri) exp(ik 3 ri)

X exp(ik 1.»2) exp(ik 2 r2) exp(zk 3 r2) . (18)

exp(ik 1 r3) exp(ik 2.r3) exp(ik 3 r,)

1 N

+I d'r, h(r13)h(rz, )—
g2 ~a~3

Xexp[—i(k 1 ri+ir 2 r2+it 3 r3)]

exp (ik.2. r,)
(17) 1 &&32—&op= —2z zz

~
d'»12f(»12)Vf(»12)' Q k 1

E 2m~ g +1=i

r
g&'&(»12) = d'rzh(r13)h(r32)

with

X{1—2[P (k pr12)+P(k pr13)+P(k p»23)]

+l(kp»12)l(kp»13)i(k p»23) } (18')

l(x) = 3 (sinx —x cosx)/x'.

The kinetic energy operator produces three terms:

1 A'

(~~'(IIf) &A

X 2m
+((IIf)7'~&.+(»~ &(IIf))" (2o)

These terms, in order of their appearance in (20), are
identified as the correlational kinetic energy (2'o), the
Fermi energy (Tp), and the cross term (Top).

The sums in (17) and (18) are taken over all states
within the Fermi sphere of radius kp ——(&n'zz) &. We find

g&2& (r12) = 1—P(k pr12),

XD&"(123; 123) (24)

D&') and D&3) denote the determinants occurring in
(17) and (18), respectively.

Expansion of the Energy in Powers
of Particle Density

The expansion of B in integral powers of m is directly
given, for Bose particles, by insertion of (11) in (12)
and (13).

The corresponding development of H for Fermi
particles is complicated by the density dependence of
the Fermi wave number, kp= (6n'rz)~, occurring in
(17)—(24). A development in mixed powers of rz and
zz3 is obtained by first expanding (18), (22), and (23)
in powers of (kpr, ,)'. The results are given in the
Appendix.

HARD-SPHERE GAS

Ke apply these formulas to a calculation of the
kinetic energy of a gas of hard spheres, with interaction
radius ro, for Bose and Fermi statistics. It will be seen
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FIG. 1. The kinetic energy of a hard-sphere gas with (a) Bose
and (b) Fermi statistics: The abscissae represent the ratio of
hard sphere interaction radius (rp) to mean particle spacing (L);
the ordinates on the left refer to particles with nucleon mass and
ro ——10 "cm, those on the right to particles with the mass of He'
and ro=2.5X10—s cm.

that the results take the form,

i= (5'/2mrp')t, (25)

(i) Gaussian: f= 1—expL —P'(r —rp)']'

(ii) Exponential: f=1—e e~" ""

e
—P (r—7O)

.r&rp,

Yukawa: f=1—

f=0,
r/rp

The leading term in the density expansion of the
kinetic energy is

in which t depends only on Prp and rp/L, where J.=e &

indicates the mean particle spacing.
The calculation is 6rst made for a Bose gas, to lowest

order in n, for several choices on the form of f(r):

ai 0,2 CL3

ro/I.
0.4 0.5

FIG. 3. The fraction contributed to the kinetic energy of a
hard-sphere gas by the three-body term (go&) in the cluster
development.

Evaluation of (26) for the several forms of f and
minimization with respect to P leads to the following
results:

1 A (rp)sr=a-
2mrp' I L3

(27)

IOs
I

KINETIC ENERGY

(0) 80SE
(0) FERMI

The constant 8 and the value of P at the minimum in
T are given in Table I.

The Yukawa function, which varies as 1 rp/r nea—r
the sphere boundary in agreement with the exact
solution to (8), yields the lowest kinetic energy, and
will be assumed for f(r) in the remainder of our
calculations.

(26)
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FIG. 2. Values of the variational parameter (Isro) at the minimum
in T, for a hard-sphere gas with the indicated statistics.

FIG. 4. The kinetic energy of a hard-sphere gas; the low-
density values are obtained from Fig. 1; those at high density are
t;stirgated from a cell model. Tht: ordinated arg as in Fig. 1.
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The next (e') term in the cluster development intro-
duces a three-body integral which may be reduced to
combinations of exponential integrals. The variation
of 7.' must now be carried out numerically; the results
of the computation are shown in Fig. 1, with terms in-
cluded to order n' and e')', respectively, for Bose and
Fermi gases. The ordinate scale on the left refers to
particles of nucleon mass and to a hard sphere inter-
action radius of 1.0X10 " cm, that on the right to
particles with the mass of He' and an interaction radius
of 2.5&10 ' cm. Values of T for other choices of nz and
rp may be obtained from Fig. 1 and (25).

The values of Prp for which T assumes its minimum
are shown in Fig. 2.

Figure 3 indicates the fraction of the complete
kinetic energy which originates in the three-body cor-
rection to g(r) We . note that the contribution of

Its& (r) is appreciably reduced by the antisymmetrization
of II/, and, therefore, that the cluster development will

be applicable to relatively dense Fermi systems.

High Density Limit

Inspection of Fig. 3(a) suggests that the cluster de-
velopment cannot be applied to a Bose gas at densities

YAl3LK I. Hard-sphere Bose gas: dependence of F on
the form of f(r)

(i) Gaussian
(ii) Exponential

(iii) Yukawa

2.05
1,21
1.00

&3/2
v2/2

L4s (rp/L)')I

above that corresponding to (rp/L) 0.4. However, an
estimate of the kinetic energy in the high density limit
may be obtained from the cell model. For this purpose
we choose a body-centered cubic arrangement of
lattic spacing a. The minimum separation of particles
is (v3/2)a, and the number per unit volume, 2/a';
a particle in such a lattice has, therefore, a kinetic
energy roughly given by

I I
RADIAL DISTRI8UT ION FUNCTION

fl g&l I

f [glcg g'ts))

FIG. 5. The pair distribution function, g(r) of the present
calculation, compared with the classical result.

over the entire density range:

9.2 (rI&/L)'
Fermions: T=

2mr p' (1.1—rp/L)'

14.7 (rp/L)'
Bosons: T=

2mrp' (1.1—rp/L)'

Radial Distribution Functions

The distribution functions g(r) of the classical' and
quantum-mechanical (Bose) hard-sphere gases are
compared in Figs. 5 and 6 for rp/L=O. S. Figure 6
indicates that the three-body correction to g(r) in the
quantum gas is substantially larger than its classical
analog. In this connection we note that for Axed density
the expansion parameter of the classical cluster de-
velopment is the radius of interaction (rp), while the
corresponding parameter of the quantum mechanical
development is the generally greater radius of dis-
tortion (~rp+1/P) of the two-particle wave function.

0.6

A2—7.'=3
Ã 2m

ITI,
s 7 4(ro/L)'

(28)
4$(V3/2) a rp$' 2—mrp' (1.1—rp/L)'

As a criterion for the application of (28) we take the
condition, 2rp) a or rp/L) 0.63, corresponding to
densities great enough to prevent the passage of a
particle between two neighbors.

The expression (28) is plotted in Fig. 4(a), and the
sum of (28) and the Fermi energy (30a) in Fig. 4(b). The
same Ggure also shows the results of the cluster de-
velopment, taken from Fig. 1. Simple formulas are
given below which pass to the correct low density
limits and represent both branches within 20 percent

0.2—

O.I—

C/fp

Fro. 6. The three-body correction, g&'&(r) to the pair
distribution function.

P J. G. Kirkwood, J. Chem. Phys. 5, 67 (1935).
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X [(6n')4t'n't'(1/280 3—/175) (rqs'+ rr s'+rvs')

The density expansion ofjf for a bard sphere gas of +n J
d'r»d'r»f'(r»)[V'f(r»)/f( )1h( s)h(»)

Fermi particles, follows from the expansion of (18),
(22), and (23) in powers of (h&r;;)':

l (her) = 1—(her)'/10+ (h&r)'/280—

Q-;;= [(h-;—h-;)'/6] ""h(.)d r (2nt/hs) (f'tr/&) = (3/5) (6srs) sst a (30a)

+ (2/100)(r» r» +r»'rss'+rrPrsss)+ j. (29b)

—[(&;—h;)4/120] r4h(r)d'r+

inserting these expressions in (21)—(24) and carrying
out the sums over k-space, we obtain the following
series in e:
(2 n/th') (T./Ã) = rs) "d'rrsf'(rrs) [Vf(rrs)/f(r12)]

+6(6n')4t'(1/50 —23/1050)rtrtv) h(y)dsy+. . . (30b)

X~ rrsf(res) f'(rrs)d'r»+, (31)

X[(6srs/5)sr&ssrti —(3/175)(6m')4' r'rt't'+ ) (29a) V/X: replace (A/2nt)(V f/f) by V in (33a). (32)
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Statistical Model for High-Energy Events*
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(Received July 16, 1954)

The relative probabilities for alternate processes initiated by a nucleon-nucleon collision depend on the
dynamics involved and on the volume in phase space accessible to each final state. The assignment of relative
u priori probabilities to the final states proportional to their extension in phase must be consistent with the
translational, rotational, and Lorentz-invariant properties of the colliding system. The latter in particular
implies a conservation law for the center of energy. Its effect is not only to lower the power of the condgura-
tional volume by one dimension but also to severely reduce the contributions from high momenta to the phase
space integrals.

The limitations on accessibility arising from the controllable constants of motion are not sufficient to
insure well defined probabilities. Some additional restriction on the configurational part of the phase space
must be imposed. A cutoff factor for each particle is accordingly introduced. The con6gurational volume

accessible to the particle thus decreases with increasing energy, a picture not inconsistent with the uncer-

tainty principle.

HIS note describes a statistical model which divers
in some essential respects from the one proposed

by Fermi. '
Following Fermi we assume that in a high-energy

collision a state approximating that of equilibrium is
established. The probability of disintegration into vari-
ous possible modes is then taken proportional to their
relative extensions in accessible phase space. The limita-
tions on accessibility arise from the assumed controllable
constants of motion.

In this note they are taken to be energy, momentum,
center of energy (the relativistic analog of center of
mass), and isotopic spin. For simplicity conservation of
angular momentum has been neglected.

*This work was performed under the auspices of the U. S.
Atomic Energy Commission.' E. Fermi, Progr. Theoret. Phys. (Japan) 5, 4, 570 (1950).

If it is assumed that the extension in accessible phase
space (in the center-of-momentum system) correspond-
ing to particles of masses 3f1, 312, ~ can be approxi-
mated by the classical phase integral divided by h"" '),

g„T„ t. t=~
I'„= II dy;dx;8(E —Q E;)

(2~h)3(n 1) Q—
pg xg;q

Xb(—& p~)bl l, (1)
E t

one sees immediately that this integral does not con-
verge and therefore some additional restriction is neces-
sary to give the phase integral a well-de6ned meaning.
This difhculty is overcome in the quantum theory by
enclosing the system in a container whose walls aer
eventually removed to infinity since (having been


