
DA Vl 0 FELD MAN

deuteron, say. Brueckner and watson, in their dis-
cussion of the nuclear-force problem for ps-pv theory,
have suggested that the fourth-order interaction is
better approximated by the term V&"&, in which case
the repulsion, mentioned above, is turned into an
attraction. However, this procedure is difficult to justify
in the light of our previous discussion of the neutral
scalar theory Limmediately following Eq. (50)].

Finally, we need to consider the nonadiabatic cor-
rections of order u/3f with respect to the second-order
potential (77a). For this purpose, we can essentially
take over the results of our earlier calculation for the
neutral scalar theory LEq. (51) ff.$ suitably modified
for the ps-pv theory. The final result is to find"

35 This result has been obtained previously by L. Van Hove,
Phys. Rev. 75, 1519 (1949).

(pP, t, ps)ts
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~'(&)—L&(ps) —E(ps —k) j'
Xut(pt)ti) (o k)r~u(pt+k)ts)

Xut(ps)ts) ((r k)r u(ps —k)t4). (86)

It is clear from (86) that the nonadiabatic corrections
of order u/M vanish so that the nonrelativistic potential
for ps-pv theory is given by the fixed-source calcu-
lation L(77a) and (85)]."
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Renormalization prescriptions are given for the covariant integral equations of meson-nucleon scattering,
taking into account the difhculties of overlapping divergences. The covariant wave equations, corresponding
to the iteration of second-order irreducible processes, are solved approximately and renormalized in closed
form (in the case of the pseudoscalar theory with pseudoscalar coupling). The S-phase shifts corresponding
to the states of isotopic spin 1/2 and 3/2 are computed, and their variation with energy is compared with
experiment. The only parameter which can be adjusted is the meson-nucleon coupling constant G. It is
found that a good agreement with experiment is obtained when G'/4s. =7.5. The possibility of this agreement
being purely coincidental cannot be ruled out, but other interpretations of this result are discussed.

I. INTRODUCTION

a foregoing paper, ' a covariant treatment of
i - meson-nucleon scattering has been presented, which
permits, in principle, the elimination of special re-
normalization difhculties arising in this problem. The
main result was that —once the wave integral equation
corresponding only to the finite processes is solved —it
is possible to express and to renormalize in closed form
all the remaining contributions to the scattering cross
sections. '

The renormalization prescriptions which have to be
applied to the closed expressions yieMed by the theory
were, however, incorrectly stated in that paper, ' mainly

* Work supported in part by the U. S. Atomic Energy Com-
mission.

f On leave of absence from the University of Paris, Paris,
France.

'M. Levy, Phys. Rev. 94, 460 (1954). This paper will be, in
the following, referred to as (I). References to its equations will
be given as Eq. (I, ).

~ This applies, of course, only to the special divergences men-
tioned above. The "normal" radiative corrections must be handled
by means of the well-known methods of Feynman and Dyson.

' The correct results were stated without proof in a note added
in proof to paper (I), Most of the results contained in Sec. I of

because the difhculties coming from the so-called "over-
lapping" divergences4 were not properly taken into
account. Fortunately, it is possible to reformulate
those prescriptions without losing the advantage of
having a closed expression for the corresponding part
of the renormalized S-matrix elements. This reformula-
tion is given in Sec. II of the present paper.

Once this formal work has been done, however, there
still remains the problem of actually calculating the
scattering differential cross sections, in order to compare
them with experiment. The first difhculty, here, is that
the kernel of the partial wave-equation corresponding
to the finite processes is still expressed as a series of
powers of the large coupling constant G. This series
does not seem easy to sum, and its first few terms do
not appear to yield a good approximation. However,

the present paper have already been reported in a letter from the
author to Prof. N. M. Kroll, which has been reproduced, together
with the answer from X. iB. Krol], in an Appendix to the Pro-
ceedings of the Fourth Annual Rochester Conference on Higlz Fnergy
Physics (University of Rochester, Rochester, 1954). Our special
thanks are due to Prof. N. M. Kroll for this interesting corre-
spoIldence.

4 A. Salam, Phys. Rev. 82, 217 (1951).
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FIG. 1. The two basic diagrams of meson-nucleon scattering to
the second order in the coupling constant.

the two basic diagrams corresponding to the second
order in G (Fig. I) have been the object of a detailed
study without renorrnalization, ' the intrinsically di-
vergent terms being either discarded or arbitrarily
cutoff at high frequencies. It seems therefore interesting
to investigate to what extent a coherent renormaliza-
tion scheme aGects the results deduced from these
processes. It must be emphasized, however, that —even
if a good agreement with experiment is obtained —there
is no reason to suppose that higher order irreducible
terms in the expansion in 6' will not largely contribute
to the results. The interest of a calculation limited to
order G' is mainly a methodological one, since the
difhculties which arise in obtaining a finite solution are,
in this case, sufficiently representative of what happens
in general. Furthermore, it is possible that higher order
terms, although important, acct mainly the value of
the effective coupling constant without changing very
much the qualitative behavior of the various phase-
shifts as functions of energy. '

In comparing the results yielded by the pseudoscalar
meson theory with pseudoscalar coupling with recent
pion-nucleon scattering experirnents7 at low or moderate
energies, the study of the S-wave appears of special in-
terest. In a previous paper, ' Levy and Marshak have
calculated the phase-shifts nt and ns (corresponding to
isotopic spin 1/2 and 3/2 respectively) using the unre-
norrnalized nonadiabatic Tamm-Dancoff equation. The
result was that the magnitude, sign and variation with
energy of 0.3 are, on the whole, in reasonable agreement
with experiment, but that the properties of 0.~ are com-
pletely unacceptable. It was remarked, however, that n&

is precisely the only S phase-shift which is likely to be
greatly modified by renormalization. The solution of
the noncovariant integral equations in meson mo-
rnentum space was, in both cases, an approximate one,
based on the replacement of the true kernel E(p, p')
by a product for Zi(p)Ks(p'). It was verified by itera-
tion that this approximation is adequate at low energies.
Unfortunately, a similar approximation cannot be used

5 G. F. Chew, Phys. Rev. 89, 591 {1953);S. Fubini, Nuovo
cimento 10, 564 (1953); N. Fukuda, Proceedings of the Inter-
national Conference of Kyoto, 1953 (unpublished); Fukuda,
Goto, Okubo, and Sawada, Progr. Theoret. Phys. 12, 79 (1954);
see also reference 8.' See the discussion of Sec. IV.

'Barnes, Angell, Perry, Miller, Ring, and Nelson, Phys. Rev.
92, 1327 {1953);Bodansky, Sachs, and Steinberger, Phys. Rev.
93, 918 (1954); Anderson, Fermi, Martin, and Nagle, Phys. Rev.
91, 155 {1953);J. Tinlot and A. Roberts, Phys. Rev. 95, 137
{1954).

s M. Levy and R. Marshak, Nuovo cimento ll, 366 (1954).

here for the solution of the wave equation for pb,
because of its noncovariant form. It is, indeed, essential
that fb be expressed covariantly before it can be intro-
duced in the remaining renormalized expression of

Sin. ce an exact solution of the fb integral equation
seems out of question, it is therefore necessary to 6nd
a covariant method of approximation. This method,
which is given in Sec. III, is also based on the trans-
formation of the kernel into a product form, by modify-
ing the expression of the nucleon propagation function.
It can be verified that this approximation is quite good
for S-scattering at not too high energies, because it
amounts to neglecting only terms of order (e/3f)',
where e is the meson energy and 3f the nucleon mass. '
It becomes, however, very bad for P-scattering, as
indeed all approximations which transform the kernel
of the integral equation into a product" (one would
obtain, for example, no scattering at all in the states
corresponding to 5=3/2).

By solving the fb equation approximately, one intro-
duces, however, another difficulty. The renormalization
prescriptions given in (I) and corrected in Sec. II of
this paper are valid only if the soisbtiotb of the petite
eqlatioe is exact. A straight application of the pre-
scriptions to an approximate solution will not, in
general, lead to finite results. This means that the re-
normalization prescriptions have 10 be adaPted to each
special method of solution. This can, however, be done
without too much difficulty (see Sec. III) by using
Salam's general prescriptions" for obtaining finite
integrals in relativistic field theories.

The resulting expressions of n~ and 0.3 as functions of
energy are compared with experiment in Sec. IV. It
is found that for a value of the coupling constant corre-
sponding to Gs/4v. = 7.5, the magnitude, sign, and
variation with energy of both phase-shifts agree reason-
ably well with the experimental data. The only dis-
crepancy remains in the value of (k) '~nt —ns

~

at zero
energy, which does not seem to agree with Panofsky's
measurement of the absorption cross section of slow m.

mesons in hydrogen. " Possible interpretations of this
discrepancy are discussed at the end of Sec. IV. It
might be of interest to note that the calculations given
in this paper involve only one parameter, namely the
coupling constant G, No cut-o8 momentum or critical
minimum radius are introduced.

II. RENORMALIZATION PRESCRIPTIONS FOR THE
"OVERLAPPING" VERTEX OPERATORS AND

NUCLEON PROPAGATION FUNCTION

We use the same notations as in (I). The calculation
of the it, part of the wave function (Eq. I,10), involves
two vertex operators F5( ' and F5~t') and one modified

We take, in the following, A=c= 1.
' The iterated approximation should, however, be good in

P-states. This is being investigated at the University of Paris.
"A. Salam, Phys. Rev. 84, 426 (1951).
"Panoksky, Aamodt, Hadley, and Phillips, Phys. Rev. 80, 94

(1950).
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nucleon propagation function E~ . The renormalization the equation
of the vertex operators can be done by means of two
methods: one can start directly from the integral A '(p~q)=F1+A '(ps~ps)3A s '(p, q)

equations which these operators satisfy (a method
similar to the one used by Edwards" ); or one can follow
the prescriptions of Salam" for obtaining finite inte-
grals in relativistic field theories. These prescriptions
being rather difFicult to carry out in detail, we have
used here the two methods simultaneously, in order to
verify that we were following Salam's procedure cor-
rectly, since the renormalization of E&' can only be Consequentl if we de6ne
done b means of Salam's subtraction method.

+iG'(22r) ' A*&~&(P, P k)—K&v(P k)—K»r(k)

XysK&v(q —k)ysdk —iG2(22r) ' h.*'~'(Pp, Po—k)

XK&v (Ps k) K&&r (k)y sKÃ (Ps k) Vsdk (7)

A.& &(P,q) =~*"(P,qVL1+«"&(Po,Po')r
I. Renormalization of I 5( ) and I &(t') by the Method

A, ( ' is a convergent function which obeys the equationof the Integral Equation

We write, for p=cr, P,

I'2'"(5*;*,y) = rn 25(x—8)5(y—8)+As'"(4; x y), (1)

and put, furthermore:

A, & '(P, q) =h.*s& &(P,q)+iG2(22r) ' A, & &(P, P k)—
XK&v (p k)K—sr (k)ysK&v (q k)ys—dk iG2(—22r)

4-
and

A, &-&(P, ; x,y) = r,~~&-&(P x y)

As&~&(g; xy) =A«&(P xy)&sr; (2)

XJ A. i- (p„pp—k)K&v(ps —k)K&&r(k)

XVsKrr(Po' k)Vsdk. —(9)

A( ) and A(@ obey integral equations which can be
written, in momentum space Lsee Eq. (I,17)j, as
follows:

A&.&(p,q) =As&.&(p,q)+ iG'(2~) —'J A&.&(p p —k)

XK&v(p —k)Ksr(k)ysK&v(q —k)ysdk, (3)

A«&(P, q) =As«&(P, q)+iG2(22r) ' ysKir(P k)—
XysKsr(k)K&v(q —k)A«& (q—k, q)dk, (4)

where we have put

Ap& &(p,q)

= iG2(22r) ' Kpr(P k)Ksr (k)V 2K—x(q k)V sdk (3)—

and
Po(P) —F5+0(0')y5

I.et us write 6rst'4:

Equation (8) can be written in 'terms of I'& &=1+A&~&

and is equivalent to

p (~l = It (~l (p q)/C p(~) (ps ps') j
The infinite constant F'~& (ps,ps') is just the Z constant
introduced by Edwards. " A similar relation is, of
course, found for I",(t'), the in6nite constant being, this
time, I'«& (ps, ps').

2. Renormalization of the Vertex Operators by the
Method of Salam

In this method, the subtraction of partial diver-
gences from a diagram of a given order yields expres-
sions which are proportional to the contributions of
lower order diagrams, multiplied by inlnite constants.
It is therefore always convenient to start subtracting
partial divergences from the highest order term, and
move progressively down to the lowest order. As an
example, we shall apply the subtraction method to the
sum of the first four terms of I'&&& =1+A&@.With nota-
tions similar to those of Salam, let us put:

F(P,ti) = iG2 (22r)
—

'K&v (P—ti) K»r (ti)
and

A* - (p q) =A - (p q) A™~(p. p,')—
where ivps+M=O, and (p,—p, ')2+&us=0. A*& & obeys

"S.F. Edwards, Phys. Rev. 90, 284 (1953).
'4 Note a diiierence with the corresponding equation (I,18),

where two equal free momenta were used in the substracted vertex
function. The prescription used in the present paper is equivalent
to the standard method of F. J. Dyson /Phys. Rev. 75, 1736
(1949)j, after summation over a certain number of graphs. It is
di6'erent both from that of N. Kroll and M. Ruderman, Phys.
Rev. 93, 233 (1953), and of Deser, Thirring, and Goldberger,
Phys. Rev. 94, 711 (1954). The variety of prescriptions in the re-
normalization of vertex operators is related to the well-known
ambiguity in the definition of meson charge-renormalization,

G(p, ],,12) =y,K&v(p —ii—ts) ys.

We have, consequently,

r«&(P, 1,)=1+Jr G(P,~, ,1,)P(P,~,)di,

+ G (p~/1)& 2)P (p)12)G (p)f2)ts)P (p~$3)d12dfs

f+ G(P1 1)F(P1)G(P1 ()P(P 1 )G(P 121)
J

XF(p, t4)dtsdtsdt4+etc . (10)
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Let us consider first the fourth term of the right-
hand side of Eq. (10).We have to subtract from it the
partial divergences over t4, over t3 and t4, over t2, t3, and
t4. They are all logarithmic. All the other integrations,
or groups of integrations, are—according to Salam's
terminology —"superficially convergent. " Before doing
the subtraction, it is convenient to expand &'@(po,po'),
the infinite constant (which is just a n8(n8ber) introduced
in the preceding subsection, in powers of the coupling
constant

A(f)) (pp pp ) p Ap 2
(» (11)

where A0, 2„~J'& is proportional to O'". Subtracting the
divergence over t4 in the fourth term of Eq. (10) yields
an additional term:

G(p)fl)f2)P (p)t2)G (p)f2)tp)F (p)to)

XG(PQ) Pp Pp, t4)F—(PQ)f4)df2dtodf4

A rapid inspection of (13) shows that this is nothing
but the expansion, up to G, ' of the expression

I'."'(P,t ) = I'(p, t )/(1+2 Ao, '"),
which is the same result as Eq. (9).

(14)

3. Renormalization of J &' by Means of
Salam's Method

Now that we have veri6ed that we know how to use
Salam's procedure properly, we can apply the same
method to Z(p), the sum of the irreducible parts of
EN', de6ned as follows:

&&'(p) =&&(p)/[1 3 re�(—p) fpE31 (p)). (15)

We therefore consider the first four terms of the ex-
pansion of Z(p) and write:

+ P(p)fl)G(p)fl)f2)F(p)f2)G(p)t2)f3)F(p)f3)dtldf2df3

f+ P(P fl)G(P '1 f2)F(P f2)G(P '2'8)P(P f8)
I (f)) (p tl) —(1 App(P))

2( P )fl df1+ F )tl G )fl)f2 F( )f2 dfldf2
which is equal to the third term of Eq. (10) multiplied

by h.021'@. Similarly, subtracting the divergence over t3

and. t4 amounts to multiplying the second term of (10)
by (1—A04(@), etc . . After subtracting therefore all
partial divergences from the fourth term of Eq. (10),
we are led to the new expression:

f
+(1—Ap4(t')) G(p, tl, t2)F(p, f2)dt2

+(1 A02 ) G(P)fl)f2)P(P)f2)G(P)f2)t8)P(P)f8)dt2dtp

+ G(p, t„t,)F(p,t2)G(p, tp, f8)F(p, t,)

XG (p f 3 f4)P(p, t4)dtpdtpdt4+ etc ~ (12)

We now start subtracting the partial divergences from
the third term of Eq. (12), namely those over t8, and t2

and ta. This yields a new expression F4& ', from which
we 6nally subtract the partial divergence over t2 of
the second term. The 6nal expression of F' & can be
written as

I"8O» (P tl) =1—hpo(t') —(1—402(S))604(t')

XG(p, t„f4)F(p,t4)dtldtldt pdt4+etc . . (16)

8
~.(P) =~ (P)—~ (Po)-(P—Po) —~ (P)

-()P - 8) ='Pp
(18)

One di6erence with the calculation of the previous
paragraph is that we now have divergences at both
ends of each term. Furthermore, all the partial diver-
gences are logarithmic, but the final one is linear. We
consequently subtract 6rst the partial logarithmic
divergences, with the same method as in the previous
paragraph. This yields the result

~1(P)=~(p)/[1+A" (PQ,Po'))[1+A("(Pp Po')) (»)
Subtracting the remaining linear divergence gives the
renormalized expression of Z(p):

+L1 404 (1 402 )402 ) G(p tl t2)

XF (P,t,)G(P,f„f,)F(P,t,)dt,dt,

/04(f)) (1 —/02(t)))g(2(P))t) 02(P)
In obtaining the expression (17), advantage has been
taken of the fact that A( )(PQ,Pp') and A(@(PQ,PQ') are
just numbers, since the operators y~ and v-, have been
subtracted [see Eqs. (1) and (2)), and use has been
made of the relations 8ypp+M= pp'+M =0 and

(p,' —pp)2+f2=0. The relatively simple result con-
XP(p, t )2df2+( —1 A02 ) G(p, f„f,) tained in Eqs. (17) and (18) is not true in general of

any overlapping self-energy graph. It arises from the
following simple property of the particular series of
graphs under consideration: these graphs contain par-

+ IG(pt t)P(Pf)G(Pf f)P(Pf) tial divergences only at the ends (on both sides), but not
J in the middle, where the partial integrations are always

XG(P, tp, f4)F (P,t4)dfpdfpdt4+«c . (13) "superficially convergent. "
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4. Renormalized Expressions of the Wave-Function
and the S-Matrix Elements

The results yielded by the application of prescriptions
(9), (17) and (18) to the expressions of E„P&„and of
the 8=5—1 matrix elements, can be stated immedi-
ately, using the same notations as in (I). Equation
(I,34) becomes:

—iG'
K (»5" y rl&)

= Ep(»t'' 5' 4')vprpE~'
r,-r,»

expression of the required ratios:

y, (0)/r, .=—y, (0)/r~-&(p, k) =y, (k, p —k), (25)

pp(0)/rp'= pp(0)/r'"(k', P') = pp(k', P' —k') (26)

where use has been made of the relations which define
P, P', k and k': iyk+M =iyk'+J&IS=0, (P—k)'+&&4'
= (P' —k')'+&4'=0. Equation (22) becomes now:

(k', —k', j~R. ~
k, —k, i) = iG—'(2s-)4pp~"&(k' P' —k')

Xy pr pK~'(P)y pr &yp(k, P—k)

where we have put, to simplify, 1+A&AD&(Pp, Pp') =rp'
Similarly, the expression (I,35) of P, can be written
now as

The determination of the scattering phase-shifts is
now entirely reduced to the solution of the &Pp equation
and to the determination of the renormalized nucleon
propagation function E~'(P).

Separating out the motion of the center-of-mass [Eqs.
(I,50, 51 and 58)], transforming into momentum space
t Eq. (1,64)], and projecting on the states of total
isotopic spin 1/2 and 3/2, we obtain, for the Fourier
transform of the part of the wave function correspond-
ing to the relative motion:

—iG'
y. (p; P) = T.(2 )&r' Ep(p+P, —p; q+P, —q)r,-l, t

XdqypE»&'(P)ypyp(0) (21)

t compare with (I,60 and 65)$, where T,=3 for the
state of isotopic spin 1/2 and T,=o for the state of
isotopic spin 3/2. Similarly, the expression (I,53) for
the E„-matrix elements becomes here:

(k&', k ',j ) 8, ) k&,kp, i) = t —iG'(2&)4/r, -rp~jpp&'& (0)

XypraK~'(P)ypr&gp+(0)8(P —P')8(Pp —Pp'). (22)

The special choice for the renormalization of the vertex-
operators which has been made in the paragraph 2 of
this section has the advantage that expressions (21)
and (22) can now be greatly simplified by a direct
evaluation of the ratios (I'p ) 'pp(0) and (rps) 'pp(0).
Combining Eqs. (I,4), (I,13), (I,15), and (I,16) yields
indeed the fundamental relations

and

p, (»») = t r&.&(y; »s)pp'(s, y)dyds

xb(»») = t xp'(s, y)r&»&(y; s,x)dyds.

(23)

(24)

Separating out the center-of-mass coordinates, and
transforming into momentum space yields the following

—iG'
&p.(z, &;) = Ep(*,$'; $', $p')vprpEzr'($', r&')

ro rot'

XVpr&yp(n', g&')d('dg'. (2O)

III. APPROXIMATE SOLUTION OF THE
WAVE EQUATION

In this section, we erst solve approximately the in-
tegral equation for &pp, and then apply this solution to
the calculation of the renormalized expression of &P„
using an adaptation of the renormalization prescrip-
tions to the special approximate form of the E~'
function resulting from &Pp.

l. Solution of the Equation for 4t&p

After separating out the motion of the center-of-mass
[Eq. (I,51)), transforming into the momentum repre-
sentation and projecting on the states of total isotopic
spin ~ and —,', we obtain, for the part of the wave function
corresponding to the relative motion, the following
equation:

yp(p; P) = (2&r)4yp(k+P, —k)8(k —p)

zG'
TpKx(p+P)Em( p)v 4 ~%&(p+p'+—P)

(2pr)4

Xvgt»(p'; P)dp', (28)

where T~= 2 for the state of isotopic spin —,
' and —1 for

the state of isotopic spin ~3. The whole problem has been
reduced to the solution of Eq. (28), the kernel of which
consists of the expression ypE~(p+ p'+P)y p E~——
X (—p —p' —P). Now, it is worth remarking that p
and p' are actually meson energy-momenta which,
because of the weighting factor coming from the dis-
tribution function 4t&p (which is centered around k), can
be considered as "small" compared to I'. In the non-
relativistic region the kernel is therefore approximately
equal to (y4Pp+cV) ' (2M) '. An approximate form
of the kernel should be based on this property, which is
due to the presence of the two 75 operators on each side
of the E~ function. The brutal replacement of the
kernel by (2') ' would, however, introduce spurious
divergences, coming from the fact that, although the
distribution of the p'-momenta is centered around the
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"small" value k, the integration on the right-hand side
of (28) extends over all values of p', large and small.
A convenient approximation to ysKiv (p+p'+P)ys
should therefore not assume that boik p and p' are small
but that only one of them, p or p', is small compared
to P. Such an approximation exists, and can be written
as follows":

76KN (p+p +P)75
-vsK~(p+P)K~ '(P)K~(p'+P)vs (29)

Making this replacement in Eq. (29), we obtain the
expression of pb(p; P) in the form

rpb(p; P) = (2n)4$s(k+P, —k)8(k —p)
sGsTs—K~ (p+P)KM ( p)K~—(—p —P)

XKrr—'(—P)Cs(P), (30)

where C&(P) is, for a given energy, a constant defined
by:

C (P)= "K ( p P)~-.(p;-P)dp, (»)
(2ir)'~

the expression of which can easily be obtained by intro-
ducing the value of ps(p; P), given by (30), into the
right-hand side of (31):

Cs(P) =I 1+(G'/4 )TbQ(P)l '

XKN( k P)4o(k—+P—,
—k), (32)

Q(P), expressed as follows:

z

Q(P) = tKiv'( P p)K~(P—+p—)

Making use of the method given in Sec. IV of (I),
we then obtain from the asymptotic form of p&(p; P):

(tann) s=—
k (G') (&+Ps) (Eg,+M)

m &4 & 4E.P,

X (37)
1+(Gs/4m) Tpht, (Ps)

where Az(Ps) is obtained by putting y4 ——1 in Q(Ps):

~iV+P, q & xdxL —P, (1—x)+mj
(38)

4x I ~s D(x,Pp')

6&(Pe) can be calculated analytically by standard
methods. It is a slowly decreasing function of energy
which is plotted in Fig. 2 for energies varying between
0 and 200 Mev (Ei,b is the energy in the laboratory
system).

&x.a ~v)
+o ao I~~ Mo &oo

Fn. 2. Variation of the "damping" function hb, as a function of
the meson energy in the laboratory system.

XKM( p)KN '( P)dp, —(33)— 2. Ca1cu1ation of K~'(P) and (tann),
Using Eqs. (15) and (I,30), we can write, after sum-

mation over the isotopic-spin indices,

3iG'
ls(p P)dP, (39)(M+y4Pp) t' xdxPM y4Pp(1 x)$— —

Q(Po) = (34)
4n- "p D(x,Pp')

3ysZ (P)ys =—
(2~)4~

where L&(p; P) is defined by

Is(p P)'with:

D(x Po') = —Po'x(1 —x)+M'x+ii'(1 —x). (35)

is a finite function of energy. Using I eynman's method
of evaluation of integrals of this type, we obtain

From the expression (30) of ps(p; P), we can deduce
easily the contribution of the (b)-type diagrams to the
5-phase-shifts. Writing T, T~ and the complete S-
phase-shift rr as 2-row matrices (corresponding to ss and
—, isotopic states), we split the expression for tan+ into
two parts:

tanu= (ta nn), + (tan+) s. (36)

"An even better approximation (which leads however to more
complicated calculations) would be to write:

'YAN(p+p +P)Y5
v,Krr(P+k+P)Krr '(P+2k)Krr(P'+k+P)a-„

but the difference between the two approximations is negligible
for low-energy 5-scattering. The situation is different for P-
scattering, where the more complicated approximation should
certainly be preferable.

"Kb(p+» PP'+» P'h—sdp', (4o)—
(2~)4~

and obeys the following integral equation:

I.s(p; P) =K~( P P)KM( P)—— —
iG'

+ rsKiv(p+P)KM( p)YBJ KN(p+P +P)
(2w)4

Xysrs(p', P)dp' (41)

Making again the approximation (29), we obtain

I-s(p P) =K~( P P)KM( P)—— —
X(1+(sG/4 )KN(p+P)K~- (P)

XL1—(G'/4w)Q( —P)3- ~(P')), (42)
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ptP
6

%e W%m~~m~ ~

poP
r

P

FIG. 3. Vertex diagram cor-
res onding to the function
U ~)vs.

again Feynman's method, we obtain

VsEN (P)75

3G' t'Gsq s Gs
= 1+ II(P)+3i —

i
1—Q(p) Ps(Ps)

4m «~)
X&~(—P), (48)

where U(P'), given by the expression

U(p')

1
~

&N(p+P)& ( p P—)&~—( p)dp —(43)

where we have put

Ms t'x'(1 —x)dx (—iyp+M) '
H(p) =

2x "p Do(x) 4~

t
—iqP(1 —x)+Mj log] —[dx, (49)

t' D )
0

is a logarithmically-divergent integral, which is a
function of P' only. qsU(p') corresponds to the simple
vertex diagram represented on Fig. 3.

Integrating J&(p; P) over p, we finally obtain the
expression

with:
Dp(x) =D(x,Ms) =M'x'+ p'(I —x)

1 i' )Dq
F(p') =— log( —~dx.

4 ~, &D)

(50)

3V&(P)Vo=&'(P)

(G2) 2 Gs - —1

+3~ —
~
Z~ (P) 1—-g(—P) U'(P') (44)

3~G'
&'(P) =— vs&sr (p+P)vs&sr( p)dp (45)—

(2w)4~

It can be seen almost immediately that prescriptions
(17) and (18) can no longer be applied to this approxi-
mate expression of Z(P). Instead, it is necessary to
expand Z(p) in a power series of G' by means of the
Neumann-Liouville expansion of integral equation (41),
and to apply Salam's subtraction method to each term
of the expansion. Summing back the renormalized ex-
pansion, one verifies —as it should have been expected—
that the convergent expression of Z(p) is obtained by
replacing Zo(p) and U(p') in (44) by their convergent
forms Z,' and U, respectively:

8
~."'=~o(p) —~P(po) —(P—

po),
—~P (46)

i c)P p=yp

where pp is a free nucleon momentum (iypp+M= p, '
+M'=0), and

Uo(p') = U(P') —U( Ms). —(47)

This convergent form of Z(p) has the correct behavior
when P —+ Pp, Ps-+ —M': Z(P)E~(P) vanishes in this
limit, since it is the square of the function U(P') which
appears on the right-hand side of (44).

Making the subtractions (46) and (47), and using

ZP(p) corresponding to the lowest order self-energy
diagram:

(tann). =— kG' T.M(Eo+M) 1

(2M)4tr Pp(M+Pp) G'
1+—A, (po)

4x

, (52)

where 6,(pp) is equal to:

3G' G'
a.(Pp) =3h(po)+ 1— Ao(Pp) P'( —Po') (53)

4m 4x

h(Pp) being the value of EI(p) when q 4
——1:

M' t' x'(1—x)dx
h(pp) =

2~~0

1 r 'Po(1 —x)+M pD)
log( —(dx. (54)

4s.& p Pp+M (Dp)

IV. DISCUSSION OF THE RESULTS. COMPARISON
WITH EXPERIMENT

Equations (36), (37), and (52), which define the
complete S-phase-shift in our approximation, depend
on only one parameter: the coupling constant G. Our
problem is to determine whether it is possible to choose
G so as to be able to reproduce the experimental"
behavior of the ni and n3 phase-shifts. This "experi-
mental" variation of n& and n3 with energy is not too

"In calculating (tano. )„we have assumed that Eqs. (25) and
(26), which are rigorous for the exact solution of the @ equation,
remain valid for the approximate solution. This is not quite true.
However, the approximate expressions of the ratios which appear
on the left-hand side of Eqs. (25) and (26) do not differ very much
from their exact values, at least for S-states, as can be verified by
a direct calculation.

Introducing the expression (48) of ysE~'(P)ps into
the matrix elements (27) of E„and using again the
method of Sec. IV of (I), we obtain the value of (tanrr), :"
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G'/4n. & 10.8. (56)

For values of G'/4w larger than 10.8, Eq. (37) would
predict a resonance in the T=i/2 state at a finite
energy, as was already obtained in the unrenormalized
calculations. '" Actually, G'/4z must be appreciably
smaller than the limit of Eq. (5(i); otherwise, ni would
take, at low energies, large positive values incompatible
with the experimental data. It turris out that the value

G'/4ir = '7.5,

gives an n~ phase-shift of about 10' at 40 Mev. The
rapid variation of o.j with energy results from quick
variations of the relative magnitudes of (tann), and
(tanu)& in the T=1/2 state. At very low energies,
(tann)s predominates over (tann)„and produces a
sharply rising slope for 0.&. However, because of the
second (negative) term in h„(tana) increases rapidly
at moderate energies and eventually changes the sign
of o,j. There exists a region where the variations of the

"See, for example, the discussion of H. A. Bethe in the Pro-
ceedings of the Fourth Annua/ Rochester Conference on IIigh Energy
I'hysics (University of Rochester, Rochester, 1954).' Brueckner, Gell-Mann, and Goldberger, Phys. Rev. 90, 476
(1953).

"See L. Sartori and V. Wataghin, Nuovo cimento 12, 260
(1954) who get a resonance in the T= 1/2 state by a renormalized
calculation with a relatively low cut-off momentum.

well known, ' but it is generally agreed that o.3 is nega-
tive and increases slowly in absolute value with in-
creasing energy, whereas n& is positive and shows at
first a rapid increase with energy, up to about 10' in
the 40-Mev region; it remains afterwards more or less
constant up to about 100 Mev, then decreases sharply
arid becomes negative. n~ and o.3 are practically equal
near 180 or 200 Mev (both of the order of —20').

Let us first examine the behavior of the denominators
in (tann), and (tauri) i, . The first term of 6,(Ps) defined
by (53), is identical with the expression calculated by
Brueckner, Gell-Mann, and Goldberger. "It is positive,
and of the order of 3/4z. , so that the factor L1+3(G'/4ir)
&(h(Ps)], if it existed alone, would produce a "damp-
ing" of (tann), by a factor of the order of 3 or 4, if
G'/kr is assumed to be of the order of 10. However, for
such a magnitude of G'/4x. , the second term of (53) is
negative, because (G'/4z. )A&(Ps) is then appreciably
larger than 1, and varies rather strongly with energy.
However, at low energies, 1+(G /4z) 6, is still positive,
so that (tanu)„ for the T=1/2 state, is negative. The
observed positive value of o.~ can therefore be obtained
only if (tann) &, for the T= 1/2 state, is strongly positive.
Since Ts= —1/2 in this case, this means that the de-
nominator on the right-hand side of (37) must be
positive, or that

—', (G'/4m-) d, s(Pp) & 1. (55)

&b(&o) being a slowly decreasing function of Ei,b, it is
sufhcient to impose condition (55) at Ei,b= 0, (Ps
=M+@). This defines a maximum value of G'/4ir
which turns out to be

'x cI+greea
- f2

FzG. 4. Variation of the two S-phase-shifts, 0.1 and n3 as
functions of k/p, where k is the momentum in the center-of-mass
system and p the meson mass.

two terms compensate each other, giving rise to the
observed broad maximum. On the other hand, (tann),
does not contribute to the T=3/2 state and Tb) 0, so
that na is a slowly varying negative function of energy.
The variation of ui and ns as functions of k/ii (k is the
momentum in the center-of-mass system: Es——Es+oi&),
is represented in Fig. 4, together with points taken from
the analysis of experimental results. '7 It is seen that the
agreement is surprisingly good. '"

We would like now to complete the discussion with a
certain number of remarks:

(a) The value of G'/4w given in Eq. (57) is some-
what diferent from the values of 10, which is inferred
from the study of nuclear forces," or 15, used by
Dyson et a/."in their computation of the meson-nucleon
I' phase-shifts by means of the Tamm-Banco' method.
This "discrepancy" should not, however, be taken too
seriously. If the agreement with experiment which has
been obtained, using the two lowest order diagrams, in
the present work as well as in other investigations, ' "
has any other significance than that of a pure coinci-
dence, it means that higher order diagrams, although
quite important, contribute mainly through an "ef-
fective" coupling constant, without changing appreci-

"'The numerical discussion of the results was done with values
of T and T& equal to half of the correct ones (the values of T
and T& quoted in the text are correct). It is therefore necessary
to replace G'/4z. by half of its value (57) to obtain practically
the same results. The only place where G'/47i- does not occur
multiplied by T or Tb is in the product (G'/47r)n (Po), on the
right-hand side of Eq. (52). The difference, however, is insigni6-
cant, since the second term of the right-hand side of (53) becomes
then positive and approximately doubles the value of 6 .

"M. Levy, Phys. Rev. 88, 725 (1952); S. D. Drell and
K. Huang, Phys. Rev. 91, 1527 (1953).

"Dyson, Ross, Salpeter, Schweber, Sunderesan, Visscher, and
Bethe, Phys. Rev. 95, 1644 (1954).
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ably the energy variation of the scattering phase-shifts
at low energies. It is then to be expected that this
"effective" coupling constant would not be the same in
different scattering states or, even more so, in diferent
physical processes involving x mesons.

It should be noted that our results are very sensitive
to the value of G'/47r. For example the choice G'/4rr
=8 would completely destroy the agreement with
experiment.

(b) Although the agreement of our calculations with
the experimental data on m —p scattering is quite good,
there is a definite discrepancy with the value of k '
X ~n&

—nsj at zero energy, deduced from Panofsky's
measurements of the absorption cross section of slow
negative ~ mesons in hydrogen or from the photomesic
production near threshold. From Eqs. (37) and (52),
we find, using the value (57) of G'/4s-:

~
(rri —ns)/k

~

25' per 100 Mev/c, (58)

to be compared with the experimental value"

i (err —ns)/k i, , 8' per 100 Mev/c. (59)

The reasons for this discrepancy are that the slope of
n& at low energy is still rather high, whereas ns varies
linearly with k near k=0. It has been suggested, from
the analysis of low-energy m

—p scattering" that ns

should actually vary like k", with v) 1, near zero energy.
This effect might come from the influence of meson-
meson scattering or, perhaps, simply from higher order
meson-nucleon diagrams. In this connection, it is worth
remarking that the special choice of higher order
diagrams which is made by iterating diagrams (a) and

(b) of Fig. 1, violates the "symmetry theorem" of
Gell-Mann and Goldberger, '4 which states that, in an
exact calculation, n& and n3 should be equal in the limit
k —+ 0 and li/M ~ 0. In other words, the difference in

slopes of n& and 0. near the origin should only be a
p/3II effect. When the limit p, —+ 0 and k —+ 0 is made in

~This value results from measurements of the photomesonic
production cross section near threshold, at the Massachusetts
Institute of Technology and Cornell University: B. T. Feld and
R. R. Wilson (private communications to R. E. Marshak).

s3 H. A. Bethe (private communication).
s4 M. Gell-Mann and M. Goldberger (to be published).

our Eqs. (37) and (52), one 6nds, by putting

1 (G')
)

2s. E4rr)
(60)

the following values of n» and n3'.

ni 2s. s(—,'z —1)

k M (1—s) (-',s+1)
(k —+ 0). (61)
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The two limits are equal when s is very small, but
with our value of G'/4s-, we have s=0.60, so that a
large part of the result (58) comes actually from effects
which should be absent if all higher order diagrams had
been taken into account. An investigation of higher
order diagrams, selected in such a way as to respect the
symmetry rule, is now in progress at the University
of Paris.

(c) It can be seen that the approximation (29) is

equivalent to introducing a kind of "natural" cut-off
function in the integral equations (28) or (41), and that
the corresponding cut-off momentum is of the order of
M+Es &2M+ @.This is a very high cut-off momentum,
which agrees with considerations which have already
been made" in the study of nuclear forces, where a
central repulsive core at r, 0.50&10 " cm can be
seen to result from a "natural" cut-ofII' momentum of the
order of 2'.


