
SCATTER I NG PHASE SH IF T

phase shifts among the sets which reproduce the cross
section. An estimate of a can be obtained only from an
at least qualitative theory of the nature of the inter-
action. It is commonly believed, for instance, that the
pion-nucleon scattering proceeds via absorption and
re-emission of the pion by the nucleon. If this is the
case, e will be of the order of the pion Compton wave-
length, i.e., Is/tsc. However, it would be quite diiIicult
to tell to what extent tt=2k/tsc is a permissible choice

or whether it is necessary to assume a=3Pi/ttc or an
even larger a, giving less and less stringent forms to
(4b). An alternative form of applying the relations of
this paper, which might be somewhat more free of this
ambiguity, would be to plot II., as calculated from (3b),
against the energy and to judge whether any possible
deviation of the R obtained this way from a regular E.
function can be blamed on having assumed a too low
value for u.
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The polarization formulas for the general reaction a+9 —+ c+d
are given in a compact form and specialized for the scattering of
polarized nucleon beams at unpolarized targets. These targets may
have arbitrary spin, possibly being different before and after
collision. An interesting quantity in this problem is the polariza-

tion of the scattered nucleon beam. On the basis of general in-

variance properties of the transition matrix, this polarization is

expressed by the polarization of the incoming nucleon beam and

the relative momenta before and after collision. The invariant
coeKcients in this relation are functions of energy and scattering

angle only; they are given in terms of the parameters of the transi-
tion matrix.

By using these formulas, it is shown that with triple scattering
experiments one can obtain two new relations between the
parameters of the transition matrix at fixed energy and angle.
Quadruple scattering leads to two further relations. These relations
represent information in addition to the differential cross section
and the polarization resulting from unpolarized beams. The re-
sults are specialized for targets of spin zero and spin one-half,
where in the latter case also the scattering of identical particles is
discussed brieQy.

I. INTRODUCTION

A BEAM of identical free particles with equal
momentum represents in general a quantum-

mechanical mixture, i.e., a classical statistical ensemble
of difterent pure states. ' %e can characterize such an
ensemble by the contributing pure states 0 and their
relative abundance W(%), where gs W(4) = 1.Accord-

ing to the usual rules of probability the expectation
value of any operator co in this beam is given by

(to)b,. ——Ps,W(%) (e,toe).

Decomposing 0' with respect to a complete set of or-
thogonal eigenstates Cs, %=gras(%')Cs, we can write
this expectation value in the form

( ) --=Tr(p )=Z(E W(+)a'(+)a *(+))(C, @;).
ittb

Here p is the density matrix' of the beam. If the par-
ticles have spin s and differ only by their spin state,
then p is a Hermitian 2s+1 by 2s+1 matrix in spin-
space. From the normalization of the state vectors to
one follows Trp=1.

It is useful to expand the density matrix in terms of
*Research supported by the U. S. Atomic Energy Commission.
' J. von Neumann, Mothematische Grundlugee der Quumtem-

mechanih (Springer, Berlin, 1932 and Dover Publications, New
York, 1943),p. 174; and H. VVeyl, Theory of Groups @ed Quantum
Mechanics (Dover Publications, New York, 1931),p. 78.

a complete set of (2s+1)' basic Hermitian matrices
co& in spin space, ' which obey the relation

Tr(a&&(u") = (2s+1)5„„.

These M& are related to the irreducible spin tensor
moments TI,«), where q is the rank of the tensor and
k(~ k~ &q&2s) indicates its components. "The tensor
moments are not Hermitian operators as the ~l", but
they transform directly according to the representation
S«) of the three dimensional rotation group. Using
the Hermitian matrices cv& we can express the density
matrix by the expectation values of all basic matrices
u& in the beam:

(2@+1}2

P= -—Z (~-o)b.. ~o.
2s+ 1

We say a beam is completely unpolarized if the ex-
pectation values of all tensor moments and therefore
all operators co& vanish, except the expectation value of
the zero rank tensor To('& =co'= 1.

s See, for example, U. Fano, Phys. Rev. 90, 577 (1953); and
F. Coester and J. M. Jauch, Helv. Phys. Acta 26, 3 (1953); these
papers contain further references.' E. Wigner, Gruppentheorie und ochre Anwendung auf die
Quantenmechanih der Atomspehtren (F. Vieweg, Braunschweig,
1953 and Edwards Brothers, Ann Arbor, 1944), p. 263.

4 G. Racah, Phys. Rev. 62, 442 (1942).
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provided Trp;„= 1. Let 0& be a complete set of
(2s,+1)'(2ss+1)' basic Hermitian matrices in this
combined spin space with the property

Tr(Q"Q") = (2s,+1)(2ss+1)fi„„.

We can expand p;„ in terms of these operators and find
with Eqs. (1) and (2):

pin= P(Q);„Q.
(2s.+1)(2ss+1) o

(3)

The matrices 0& are the direct products Q&=co &co~~

of the corresponding basic matrices u and co~t' in the
spin spaces of the particles a and 6 respectively. If the
expectation values of all basic operators in the incoming
beams are known, the density matrix p;„ is completely
determined.

The system after collision consists of the two beams
of particles c and d, having spin s, and s& respectively.
These Anal beams may be completely characterized by
a density matrix p, „t, in the combined spin space of
the particles c and d. If p;„ is known and also the transi-
tion matrix T(a+b —+ c+d), which transforms every
initial pure state contained in the quantum-mechanical
mixture described by p;„ into a corresponding final
state in the mixture p, „&, we find for the density matrix
of the outgoing beams

pout = ~pinT~.

II. REACTION a+b c+d WITH POLARIZED
BEAMS' '

In the general reaction o+b ~ c+d we can describe
the system before collision either by the density
matrices p;„( ' and p;„'~) of the two independent beams
of free particles with spin s and s& respectively, " or
by a density matrix in the combined spin space of the
two particle system. In the latter case the expectation
value of any operator 0 is

and with Eq. (5) the expectation value of an operator
0' becomes:

(Q'),„,= (7)

Equation (7) expresses the expectation value of any
operator 0' in the outgoing beams by the expectation
values of the complete set of basic matrices 0& in the
incoming beams. The relations (6) and (7) give a com-
plete description of all physically measurable quantities
for the general reaction a+it —+c+d in. terms of the
transition matrix; they hold for particles of arbitrary
spin and beams with any polarization.

Q""= {Tr(TTt)+Tr(TrrTt) P'"), (8)
2 (2I+1)

where we have written tr for tr&(1 and P'" for the
expectation value (trX1); . The expectation value of tr

in the out-going nucleon beam becomes according to
Eq. (7):

Tr(TtrrT)+Tr(rrTrr P' Tt)
P&"—= (tr&&1).„,= (9)

Tr (TTt)+Tr (TerT t) P'"

III. NUCLEONS SCATTERED AT UNPOLARIZED
TARGETSt

Let us now consider the special case of particles with
spin one-half scattered at unpolarized targets with
spin I before and spin I' after collision. The basic
matrices Q&=to (rs) &&cop(I) in the combined spin space
of the incoming particles are then of the form 1Xto~(I)
and tr)&to~(I). Since the targets are initially unpolarized,
only the matrices 1)&1 and v&1 have nonzero ex-
pectation values before collision. If T is the transition
matrix, we obtain the cross section for the process
tt (-',)+b (I, unpolarized) —+ c(-,')+d(I') by specialization
of Eq. (6). It is of the form

In the special case of an unpolarized incident nucleon
beam the quantities Q"" and P&" reduce to

Quo- Tr(TTt),
2 (2I+1)

P"~=Tr(TttrT)/Tr(TTt).
(Q').„,=Tr(p.„,Q')/Trp, „,. (~) and (10)

Using the expansion (3) of p;„with respect to the opera-
tors 0&, we And for the differential cross section In Eqs. (8) and (10) the traces containing tr are a

priori diferent. But Wolfenstein and Ashkin have
shown that these traces must be equal as a consequence
of the invariance of the transition matrix with respect
to inversion of motion as well as to the usual invariance

Q= Q (Qo) Tr(TQoT t);
(2s +1)(2ss+1) o

(6)

The matrix p, „~ is not normalized to one, but Trp „t,
gives the differential cross section of the reaction. The
expectation value of any operator Q' in the combined
spin space of the particles c and d after collision is then

5 See A. Simon and T. A. Welton, Phys. Rev. 90, 1036 (1953),
and A. Simon, Phys. Rev. 92, 1050 (1953) for a treatment in
terms of Fano X-functions.

'L. Wolfenstein and J. Ashkin, Phys. Rev. 85, 847 (1952);
these authors discuss the special case of particles with spin one-
half.

~ We assume always that incident particle and target particle
are incoherent.

1'Note added in proof After having sub.—mitted this paper the
author was informed about the independent work of L. Wolfen-
stein /Phys. Rev. 96, 1654 (1954)j, which contains discussions
similar to those given in Secs. III, V, and VI. The author is in-
debted to Professor Wolfenstein for sending him a copy of this
paper and for bringing to his attention a surplus term originally
contained in Eq. (19) of the present paper.
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properties. The consequences derived from inversion of
motion are applicable only for pure elastic scattering.
Vsing this we may write Eq. (8) in the form

Q""=Q""(1+P""P'") =Q" (1+A) (11)
where A=—P " P'"(~A

~
&1) is the asymmetry of the

scattering. Furthermore, the polarization P" can be
written:

P""=P""+&P'"/(1+P"" P'"). (12)

The components of the real second rank tensor g are

g,s Tr(o——,TosTt)/Tr(TTt) . (13)
Invariance of the transition matrix under inversion of
motion etc., does not imply the symmetry of this tensor.

We also may ask for the expectation values of spin
and higher tensor moments in the beam of the recoiling
target particles. From Eq. (7) we find

Tr (Ttcos(I') T)+Tr (cps(I') To" P'"T t)
(~'(I')). ~=- , (1&)

Tr (TT t)+Tr (T(rT 1) .P'"

but let us con6ne our attention to the outgoing Fermion
beam.

The polarization P" resulting from an unpolarized
incident nucleon beam can only be a function of the
relative momenta k; and kf of the particles before and
after collision. Because P" is an expectation value of
a spin operator, it must transform like a pseudovector
under rotations and inversions of the observer's co-
ordinate system. Therefore, since the cross product of
k, and kf is the only pseudovector one can form from
these vectors, we have

Puu —Puun

with
n= (k;Xkf)/( k,X kf ~. (15)

The invariant quantity I'"" is a function of the energy
and the scalar product (k; k~). Equation (15) ex-
presses the well-known fact that the polarization re-
sulting from the scattering of an unpolarized beam by
an unpolarized target is always orthogonal to the plane
of scattering. " As a consequence of this, measure-
ments of the asymmetry A=P" (n P'") in the scatter-
ing of a polarized beam of nucleons from an unpolarized
target can only give information about the components
of the polarization P'" orthogonal to the direction of
propagation of that beam.

IV. GENERAL FORM OF P~"

In the scattering problem considered here the transi-
tion matrix depends on k; and k~, the matrix e and the
components of the spin matrices S(I) and S(I') of the
target particles before and after collision. The vectors
k; and ky are taken as unit vectors in the direction of
the corresponding relative momenta in the center-of-
mass system. The dependence on the energy in the
center-of-mass system shall not be indicated'explicitly.

' L. Wolfenstein, Phys. Rev. 75, 1664 (1949).' R. J.Blin-Stoyle, Proc. Phys. Soc. (London) A64, 700 (1951).

TABLE I. Transformation properties of the matrix
coeKcients in the transition matrix.

Space
inversion
Inversion
of motion

Scalar
Pseudo- Pseudo-

Scalar scalar scalar

Because T must be invariant under rotations, it can be
written in the form

T(k;,kg, e,S;(I),Sg, (I')) =a+o B, (16)
where a and B are nonquadratic matrices for IWI'.
They depend on k;, k~, S,(I), and S&(I') and have
matrix elements connecting spin space I and spin space
I'. We can decompose B with respect to the three
orthogonal unit vectors

k;X kf
n= —,I=

sin8

k, —kg k;+kg
I=

2 sin(P/2) 2 cos(8/2)

where cos8 = (k,"kf) and have

B=bn+cm+dl. (17)

The quantities u, b, c, and d are rotation invariant
matrices. Considering furthermore the invariance of T'

under space rejections and with respect to inversion of
motion, we find from the known transformation proper-
ties of o, n, m, and I, that these matrices must trans-
form as indicated in Table I."Note that their behavior
under inversion of motion refers only to the case of
pure elastic scattering.

If we now express Q&" and P""in terms of the matrices
a, b, c, and d, there appear only traces of products of
two of them. Because these traces are rotation invariant
functions of k; and k~, they depend only on (k,"k~)
and therefore must transform as (S,+), i.e., as scalars
not changing sign under inversion of motion. As a
consequence of this all traces of those matrix products,
which do not transform as (S,+), must vanish. The
only real coef6cients which may appear in observable
quantities will be the traces of products of the matrices
with their own Hermitian conjugates and the expres-
sions Tr(abt+bat) and i Tr(abt bat) We fi—nd fro.m
Eqs. (10) and (13)

1
Quu- Tr(aat+bbt+cct+ddt),

2 (2I+1)

Qu, upuu- Tr(abt+bat)n,
2 (2I+1)

Qu u (gPin) (Tr(aat bbt cct ddt) —P'"— —
2 (2I+1)

+2 Tr(bbt)(n P'u)n+2 Tr(cct)(m P'")m

+2 Tr(ddt)(1 P' )1+iTr(bat —abt)LnXP'"j).
"See appendix to reference 6 for similar considerations.
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y. TRIPLE AND QUADRUPLE SCATTERING

The information obtainable from triple scattering is
reduced by the fact that with the scattering of a pri-
mary unpolarized beam at unpolarized targets we can
only produce a polarization orthogonal to the direction
of motion of the scattered beam. Therefore, in order to
study the inAuence of a longitudinal component of P'"
on the polarization P&" in the outgoing nucleon beam,
we must have two previous scatterings to produce such
a component. A third scattering then can lead to an
additional term in the polarization P4i'", depending on
the longitudinal component of P' =P2"". A fourth
scattering is needed to analyze P34' by measuring the
asymmetry A4 ——P34'" P4"". The production of a nu-

cleon beam with a known longitudinal component of
polarization is discussed in Sec. UI. A further restriction
in triple scattering experiments is that by measuring
the asymmetry in a third scattering we can determine
only those components of the polarization P2"" which
are orthogonal to the direction of motion of the scat-
tered beam in the laboratory system.

Let us now assume that the incident nucleon beam
is polarized orthogonal to the plane of scattering:
P' =p 'nn. One sees from Eqs. (15) and (19) that
P""must be also proportional to the normal vector n.
By use of Eq. (12), the polarization Pn becomes

puu+ pp in

Pu —P u&n- n.
f+PuuP in

(20)

By the use of Eqs. (11), (12), and (18) the quantities
Qi'" and Pi'u can be expressed in terms of the coefFicients
of the transition matrix.

The last expression in Eq. (18) may be rewritten in
the form

@Pin P'(n. Pin)n

+X{(k;P'")k~+(kf P'")kg}
+I'(kg. P' )k,+Z(k; P' )kg. (19)

The coeS.cients in this relation are functions of the
energy and of (k,"kf) and can be easily expressed by
the traces mentioned before Eqs. (18). In Eq. (19) the
only consequence of the invariance of the transition
matrix under inversion of motion is the equality of the
coeKcients of (k;.P'")k; and (ki. P'")k~. The azi-
muthal dependence of P"" and P&" is exhibited com-
pletely in Eqs. (18) and (19).

In principle it is possible to measure the four co-
eS.cients U, X, V, and Z at any given energy and
angle. This would give us, aside from Q"" and P"",
four further relations between the parameters of the
transition matrix at 6xed energy and angle. In order to
see to what extent we may measure these four coefB-
cients, we will discuss in the following section special
cases of Eq. (19), which can be realized by performing
triple and possibly quadruple scattering experiments
with nucleons.

For an incoming nucleon beam which is completely
polarized in the direction n, we obtain for the de-
polarization, which is defined by D„—=P„&"—P„':

D-
Pun

In this expression we have assumed that p„'"=+1.In
terms of the parameters of the transition matrix LEqs.
(16) and (17)) the depolarization can be expressed as

D„=—-- (21)1+»( (~i+&)(a+b) t)/Tr(cct+dd t)

D„ is a function of energy and angle; it varies from
zero to minus two, which is guaranteed by the positive
definiteness of the traces appearing in Eq. (21). Even
if the depolarization D vanishes in a special case
(e.g., if the target has spin zero; Sec. UI), we get a
change of polarization for a partially polarized beam,
which according to Eq. (20) becomes

puu+ p in

p„""(D„=O)=
1+puup in

The polarization is increased or decreased if P„'" and
P""have the same or the opposite sign respectively.

If, at a certain energy and angle, P"" is known from
a double scattering experiment and P'„&" is measured
by triple scattering with all three scatterings in the
same plane, then we can determine V(6) and with
this the depolarization D„. Thus we obtain a new rela-
tion between the parameters of the transition matrix
at this energy and angle. Obviously we do not obtain
any new information if the analyzing scattering occurs
in a plane orthogonal to the common plane of first and
second scattering. In this case P3"" is orthogonal to
P2n, and the symmetry A& vanishes.

If we now assume that the incoming nucleon beam is
polarized in the plane of scattering, we see from Kq.
(19) that also Zp'" is a vector in that plane. In this
case, according to Eq. (12), the component of P&u

orthogonal to the plane of scattering is independent of
the incoming polarization and given by P"".The asym-
metry (P"" P'") occurring in the denominator of Eq.
(12) vanishes because (n P'") is zero. Therefore the
triple scattering experiment provides no more informa-
tion than a double scattering experiment, if the first
scattering occurs in a plane which is orthogonal to the
common plane of second and third scattering. For this
arrangement the asymmetry A3 ——P24'u P,"" becomes
equal to P2"" P3" .

af more interest is a triple scattering experiment
with producing and analyzing scattering occurring in
the same plane, which itself is orthogonal to the plane
of the second scattering. Then P' is orthogonal to n
a,nd k; (the indices referring to the second scattering are
always omitted) and for positive P4"" the vector P3"u
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is parallel to ns ——/k'(lab)&&a]/~L. J~. np is a unit
vector orthogonal to kf(lab) and in the plane of the
second scattering. Thus we 6nd from Eq. (19) for the
special case considered here:

P&"=E""n+(kr P' ){Xkf+Fk;).
The asymmetry in a third analyzing scattering becomes

A =P"" P ""=I""I'""A
7

where
A=sin29{X(kr ns)+I"(k; np)) (22)

and Pi~ is defined by Pi~= Ei~Ln&& k~]. In terms of the
coefficients of the transition matrix this is

Tr(aat bb~) co—s(8/2+x)
2 (2I+1)Q""

+i Tr(ba& ubt) si—n (27/2+x)

We could then determine all four coefficients in Kq.
(19).Further information would of course be obtainable
from the scattering of polarized nucleon beams at
polarized targets.

VI. TARGETS WITH SPIN ZERO AND SPIN
ONE-HALF

For the scattering of nucleons at spin zero targets, " "
the rotation invariant matrices u, b, c, and d in Eqs.
(16) and (17) become complex functions of energy and
angle. Therefore the pseudoscalars c and d must vanish,
and the transition matrix T= a+b(rr n) at fixed energy
and angle is determined by the amounts

~
a~ =up and

~

b
~

= b p and the relative phase P= arg (a*b), aside from
an absolute phase factor. If one includes triple scatter-
ing experiments, the physically measurable quantities
are, in terms of these parameters, in the laboratory
system:

+Tr(cct —ddt) cos(29/2 —x). (22a)

Here the angle p is defined by cosx —=n3. m and we
have x=0 if the masses of the incident particles and
the target particles are equal. This experiment gives
further information about the transition matrix. Note
that A. can be different from zero even if D„vanishes,
i.e., if Tr(cct) and Tr(ddt) are both zero.

Because P""(1+2)= P""+ZP'~ is a linear vector
function of P'", one can easily see that D„and A are
the only independent new relations between the param-
eters of the transition matrix, which may be obtained
by triple scattering experiments with nucleons.

We have yet to discuss the inhuence of a longitudinal
component of the polarization P'~ in the incoming
nucleon beam on the transverse component of P&". As
mentioned in the beginning of this section, this in-
huence may be determined, at least theoretically, from
quadruple scattering experiments. If P' is propor-
tional to k, , P'"=.P'"k;, we find from Eq. (19)

P&"=f' "n+f""{(X+Fcos8)kq+(Xcos8+Z)ki).

The asymmetry of a fourth scattering occurring in a
plane orthogonal to the plane of the third scattering
becomes

A4
Tr (act bbt) sin (8/2+—x)P' I'p"" 2(2I+1)Q "

i Tr (bat a—bt) cos(29/2—+X)

+Tr(cc1—dd 1) sin(29/2 —X) . (23)

Summing up we see that with single, double, and
triple scattering we can obtain the four relations Q ",
I'"",D„,and A. between the parameters of the transition
matrix at 6xed energy and angle. Including quadrupole
scattering we gain two more independent relations.

28obp cost/
peal t4— A.=7g2+b2

Gp —50
cost-

&s'+bo'

(24)
2apbp sing

sin8
&o'+bo'

Measurements of Q"", I'", and h. at given energy and
angle are sufficient to determine the transition matrix
for this energy and angle aside from the arbitrary
absolute phase. If we have once determined T for a
certain process, we can compute P& for an incident
nucleon beam with any polarization P'". This fact
may possibly be used in order to produce a beam with
known longitudinal component of polarization. Choos-
ing the polarization P'" orthogonal to k; and n we 6nd
by the use of Eq. (18) or (19) for the polarization P&"

in the beam scattered from a spin zero target

If, in the special case of targets with spin zero, the
incoming nucleon beam is completely polarized in
any direction, the scattered beam must also be com-
pletely polarized, because the quantum-mechanical
mixtures before and after collision reduce to pure
states. For any pure state of free fermions the magni-
tude of the expectation value of e becomes one. The
angle between initial and final polarization in this case
is given by

ap —bp +2(li' P' ) (ap cosf+ 1)bp
cos8= (P&" P'")=

(ap +bp ){1+2(n P' )apbp cosf}
n J. Schwinger, Phys. Rev. 69, 681 (1946)."L.Wolfenstein, Phys. Rev. 75, 1664 (1949)."J.V. Lepore, Phys. Rev. 79, 137 (1950).

Gp —bp 2Qobo slug
P&"=P" n+P' Lnyk;g+ k; .

~o +bo

The longitudinal component of P&" becomes in this case

ap —bp 2apbp sing
(P" kf) =I"" —sin29+ cos8

~io'+bo' ~2o'+bo'
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which becomes

1 for (n P'")=1

cos6= ~ ao' —bo'
for (n P'")=0..iso'+ ho'

the angular dependence of these coeKcients by making
a phase shift analysis. This is usually done in a repre-
sentation of T where the total spin operator S' of the
two nucleon system and its s-component 5, are diagonal.
Using a nomenclature similar to that of Swanson" we
can then write T in the form:

For
I
P'"I &1 we obtain for the amount of polarization (Ts'm, ',sm, P,P,P))

in the scattered beam —v28e '& Ce—22, Q 0'

)t %2De"e'
4i Ce'-'& v28e'&

&2De "—&0'
(26)

0
which reduces to one for

I
P'"I =1.

Finally let us consider the case of targets. with spin
one-half. For the matrix-coeKcients in the transition
matrix we find from their transformation properties
listed in Table I:

0

with the additional condition

A C 2E—= 2 —cotta(D —8).

S,

a=u+y(os n), c=b(e, m),

b=y'+p(e, n), d=e(es 1).

The quantities n, etc. , are complex functions of energy
and scattering angle in the center-of-mass system. In-
dicating the spin matrices referring to incoming nu-

cleons and target particles by e& and e2 respectively,
we obtain the transition matrix in the form

T= +P( n)(~ n)+h' +v n)

+8(ei m)(es m)+e(iri l)(eo l).'"
The experimentally measurable quantities in single,
double, and triple scattering become in terms of these
parameters

Q" = I~l'ylpl'y IVI'+l~'I'+lbl'+lel'
Q""P""= 2 Re (n*y'+P*y),

D ———
1+(l~+~'I'+ IP+~l')/(lb I'+

I
e I') (»)

Q-A=( —I~I'+
I
pl' —I~I'

+ l~'I' —lbl'+
I
el') cos(~/2)

+2 Im(n*y' —P*y) sin(oi/2).

For identical particles the transition matrix must be
symmetric under interchange of o~ and o~. Therefore y
must be equal to p' in this case. If we neglect electro-
magnetic interactions, the same holds for neutron
proton scattering because of charge independence. Thus
the transition matrix for nucleon-nucleon scattering
depends on Ave complex functions, i.e., excluding the
absolute phase factor, on nine real parameters at every
angle and energy. Including triple scattering we can
measure only the four relations (25) between these

parameters. This lack of information available at pres-
ent makes it preferable at lower energies to separate

'4 R. H. Dalitz, Proc. Phys. Soc. (London) A65, 175 (1952).

This relation is a consequence of the invariance of T
under inversion of motion. The complex functions A,
8, , and S in Eq. (26) can be easily expressed in
terms of the functions n, P, , and e. The elements
S, 2, and E are series in Pio(i')), 8 and D in Pi'(t)), and
C is a series in PP(t'7). In all of these series the coeK-
cients depend on the corresponding phase shifts. In
terms of the matrix elements in Eq. (26) we get for
P""and D„

X2

Q" P""=——,' Im((A C+2E) (8*+D—*)),""
16

Q-.
l 1+D„(1+P-)]=Q-V

A.
2

=—,'Ref, (A+C)S*+(2 C)2E*+-48D*}—.
16

Also the cross section Q""and the quantity A defined in
Eq. (22) may be easily expressed by the elements of
the transition matrix (26). The polarization P"" de-
pends, in a direct way, only on triplet elements of the
transition matrix, whereas D and also A contain
singlet-triplet interference terms aside from pure triplet
contributions. Of course there is a dependence on
singlet terms through the cross section. Q"" for un-

polarized beams, but this quantity can be measured
independently.

For identical particles the singlet part of T must be
symmetrized and the triplet matrix elements corre-
spondingly antisymmetrized. We can write the transi-
tion matrix T for identical particles in the same form
as T in Eq. (26), with the quantities A, 8, , and S
replaced by the corresponding elements A, B,
and S, where A=A(i)i) —A(r t'f), 8=8(8)+—8(r—8)

io D. R. Swanson, Phys. Rev. 89, 740 (1953); this paper con-
tains further references.

"L.Wolfenstein, Phys. Rev. 76, 973 (1949).
'7 L.J.B.Goldfarb and D. Feldman, Ph s. Rev. 88, 1099 (1952).
' D. R. Swanson, Phys. Rev. 89, 749 1953).
"G.Breit and J. B. Ehrman, Phys. Rev. 96, 805 (1954).



SCATTER I N G OF POLAR I ZED NUCLEON 8 EA M S

P ""(7r/2) =P '"+D„(sr/2)P„'"

$2+ in

SQ" (sr/2)
Re B(sr/2)D*(7r/2) .

At this angle the depolarization depends only on
triplet elements and thus provides a new relation be-
tween triplet phase shifts.

&(+)+S(sr—tt), etc. In practice this simply means
summing only over odd / for triplet elements and even l
for the singlet element and multiplying the results by
a factor of two. We note that A and E are proportional
to cos8 and that C is proportional to sin28 cos8. Whereas
these elements become zero at ninety degrees in the
center-of-mass system, the quantities B, D and 8 do
not vanish identically at this angle. The functions B
and D are proportional to sin8. Using these properties
of the matrix elements we find for identical particles
that P„""(8=7r/2) becomes

If the polarization of the incoming beam is orthogonal
to n and k;, the polarization P""(et=sr/2) in the beam
scattered at ninety degrees becomes

$2jpln
P""(7r/2) = -5—Re(S(~/2) D*( /2) )k;l.

16Q""(sr/2)

In this relation I""is de6ned by

I -=P'-LnXk, j.
According to Eq. (22), the quantity A(tt=sr/2) is then

A(~/2) = —Re(S(sr/2) D*(sr/2) )
&216Q""(sr/2)

and depends only on singlet triplet interference terms.
The author wishes to express his thanks to Dr. S.

Cohen, Professor M. L. Goldberger, and Dr, H. Miya-
zawa for helpful discussions. Thanks are also due to
Dr. G. Luders for a remark about time inversion.
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Mesonic Decay of an Ejected Triton

HERMAN YAGODA

Nateoeal Iastetates of Elealth, Bethesda, Maryland

(Received September 23, 1954)

A heavy fragment is ejected from a star of type 21+Sp which decays at rest into three charged particles.
Gap counts indicate that the ejected fragment is singly charged and heavier than a proton. The mass of
the particle, as estimated by constant sagitta scattering along its range of 1330 microns, is 2.93&1.36
proton masses. All three secondary particles terminate their range, and one of them can be identified as a
negative pi meson of 26.6&0.9 Mev kinetic energy. Two short recoil tracks, if assumed to be protons,
have kinetic energies of 1.43+0.04 and 2.31&0.15 Mev, respectively. Momentum balance applied to
several decay schemes suggest that the event probably represents H'*—+H'+H'+e'+m=+Q=31. 5&1 Mev.
The binding energy of the excited triton is found to be 5.4~1 Mev, less than that of the normal triton
(8.48 Mev). The time of ffight of the excited triton is 4.2X10 "sec.

'N the examination of a unit of Ilford G5 emulsions
& - flown in the stratosphere' a star of type 21+5p was
observed in which two of the gray tracks could be
identi6ed as negative pi mesons of 13.5 and 16.6 Mev.
In the detailed study of this event it was noted that
one of the heavy prongs (F of Fig. 1) had a 3-prong
star at the end of its range. As indicated in the photo-
micrograph of this detail (Fig. 2) track F appears to
have come to rest, and the tracks of the disintegration
products seem to reside in a single plane approximately
perpendicular to the field of view. The recoil tracks A
and 8 terminated in the same emulsion sheet (1500
microns thick) and the third track C could be followed
into an adjacent pellicle where it terminated with the
formation of a 4-prong sigma star. This identification
indicated a mesonic-decay process, occurring under

' For details of exposure see H. Yagoda, this issue t Phys. Rev.
98, 103 (1955)$.

exceptionally favorable circumstances, such that the
momenta of the decay products could be evaluated
accurately from the measured ranges of the tracks. A
study was therefore made on the identification of the
several members and the evaluation of the most
probable mode of decay of the heavy fragment.

IDENTIFICATION OF THE EXCITED FRAGMENT

The range of track P is 1330 microns and it makes a
small angle with the original emulsion plane (tanP
=0.344+0.017). This permits the determination of the
charge of the particle by gap counting. ' These measure-
ments are summarized in Fig. 3 where the solid curves

20ur gap-counting procedure yields essentially a gap-length
measurement. The gap of minimum discernibility of about 0.4
micron is given a single count. 'Larger gaps are weighted visually
in proportion to their apparent length with the aid of a reticule
in the eyepiece scale. This technique is rapid and eliminates the
need for a special stage constructed with a micro screw feed.


