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The problem of the derivation of a two-nucleon Schrsdinger
equation from quantum field theory has been investigated, where
only those mesons which are exchanged between the nucleons are
taken into account. One expects that the two-particle Schrédinger
picture will be useful if the energy (less rest energy) is small
(Z /M), and if the important matrix elements are those which
couple states of small momenta (< pu). The procedure which has
been followed has been to go over to Fock space in the manner of
Tamm and Dancoff, and then to decouple the two-particle Tamm-
Dancoff amplitude from all the others by a series of canonical
transformations (the over-all coupling is assumed weak). Unlike
the methods developed by Lévy-Klein and Bethe-Salpeter, the
characteristic difficulties such as energy-dependent and non-
Hermitian potentials are avoided. By way of application, the

formalism is used to analyze the nonrelativistic nuclear forces for
the neutral scalar and charge-symmetric pseudoscalar theories
(with both pseudoscalar and pseudovector coupling). In this
approximation, it is shown that there is agreement with the results
of Lévy-Klein. In the course of the calculations, it is made evident
that the “nonadiabatic velocity-dependent” corrections of Lévy-
Klein appear even when the nucleons are taken to be fixed sources.
Within the context of the method of canonical transformations,
there is no justification for dropping these corrections as has been
suggested by Brueckner and Watson. Finally, there is some
evidence that the Tamm-Dancoff approximation is not an im-
provement over weak-coupling perturbation theory when applied
to the nuclear-force problem, at least when the coupling constant
is small.

I. INTRODUCTION

T appears by now to be reasonably well established
that, within the domain of what is commonly
referred to as classical nuclear physics (corresponding to
energies up to 10 or 20 Mev, say), the behavior of
nuclear systems is governed by orthodox nonrelativistic
quantum mechanics. This means, in particular, that the
state of a system of J-nucleons is characterized by an
l-particle wave function y (x1,%s, - - - ,47) where x; denotes
all the coordinates (space, spin, and charge) of the ith
particle and where ¥ is a properly antisymmetrized
solution of an /-particle Schrédinger equation. An
important drawback of this type of theory is that the
interaction between nucleons needs to be given phe-
nomenologically. It is, of course, an essential task of
quantum field theory to give a fundamental basis for
this interaction.

Now, the description of a nuclear system as given by
quantum field theory is generally a very complicated
affair. This is due to the fact that all meson theories
must be in accord with the special theory of relativity
and, when so constructed, give rise to the possibility of
the creation and annihilation of particles. Thus, if we
assume that we have to deal with an interaction Hamil-
tonian which is linear in the meson field variables and
bilinear in the nucleon field variables, the state ¥ of
our system can be conveniently represented in terms
of an infinite, denumerable sequence of configuration-
space wave functions y,," in the manner given by Fock,!
where m denotes the number of mesons and #» the
number of nucleon-antinucleon pairs which are present
in addition to the original l-particles; both » and #» can

* This research was supported, in part, by the U. S. Atomic
Energy Commission.

1 The essential contents of this paper were presented at the
Chicago meeting of the American Physical Society (November
27-28, 1953).

1V. Fock, Z. Physik 75, 622 (1932).

assume the values 0, 1, 2, - - -. The state functional ¥
satisfies a Schrédinger equation from which one can
deduce an infinite set of coupled integral equations? for
the ¥,

We accordingly have two descriptions of our nuclear
system; the one is field-theoretical and relativistic, the
other is phenomenological and nonrelativistic. It is
clear that any consistent treatment of the nuclear-force
problem must reconcile these two pictures, i.e., from the
Schrodinger equation for the state functional ¥, or,
equivalently, from the infinite set of coupled equations
for the Fock-space amplitudes ¢,,”, there must emerge,
at least for low energies, an equally valid description in
the form of a Schrédinger equation for an Il-particle
wave function y. It must be emphasized that our stand-
point is that, in classical nuclear physics, the hypothesis
that the wave function of a system of /-nucleons need
only involve the coordinates of these particles has been
justified, at least empirically. It is a moot point as to
how far one can in fact push this type of description
sensibly; we shall return to this question shortly.

We restrict ourselves, in this paper, to the two-
nucleon problem which is the simplest mathematically
and perhaps the most important physically. There has
been a good deal of interest recently in the construction
of relativistic two-body equations which are suitable
for application to the deuteron, say. One approach, due

2 A configuration-space wave function can be represented in
either coordinate space or momentum space, and we shall generally
distinguish between these two possibilities by using the notations
¥ and ¢, respectively. As a matter of practical convenience, it is
simpler to work in momentum space in which case the equations
for the Fock-space amplitudes are coupled linear integral equa-
tions, whereas they are integro-differential equations in coordinate
space. In the detailed considerations of the following sections, we
shall take advantage of this simplification. For the purposes of
the general discussion of this section only, however, we let ¥ denote
generically a configuration-space wave function in either repre-
sentation, and refer to the equations satisfied by the y’s simply
as ““integral equations.”
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to Tamm?® and Dancoff* and extended by Lévy® and
Klein,® proceeds as follows: one assumes that all the
Fock-space amplitudes which correspond to having
more than a limited number of mesons and nucleon-
antinucleon pairs in the field vanish, and proceeds to
try to treat the now finite number of coupled equations
which are satisfied by the nonzero y.,,"’s as rigorously
as possible. Clearly, the Tamm-Dancoff method pre-
supposes, for its validity, certain restrictions on the
energy of the system and the strength of the meson-
nucleon coupling, but it is equally clear that some
higher-order effects beyond those of a straightforward
weak-coupling calculation are included.

In the simplest Tamm-Dancoff approximation, we
have two coupled equations involving the amplitudes
¥o® and ¥, which, for brevity, we write as ¥o and ¢.
These equations are adequate for a relativistic treat-
ment of both the bound and scattering states of the
two-nucleon system within the framework of the Fock-
space formalism and subject only to the limitations
inherent in the original Tamm-Dancoff approximation.
A convenient procedure in the solution of these equa-
tions has been to eliminate algebraically the amplitude
Y1, thus leading to a linear integral equation for ¥o. This
equation has customarily been identified as a genuine
Schrodinger equation for the two-nucleon system, with
Yo being taken to be the two-particle wave function for
the system.”

This identification, however, cannot be generally
correct. From a physical standpoint, the functions ¥,
and ¢; have a very definite meaning; they represent the
probability amplitudes for finding two nucleons and
two nucleons plus one meson, respectively, in the field.
They correspond to a Fock-space description of the
system, and so must be normalized so that, in terms of a
symbolic notation, |¢o|?>+ |¢1]|?=1;* furthermore, in
the computation of expectation values, the contribution
from ¢ cannot be ignored. The construction of a
Schrodinger-like equation for ¥, by algebraic elimination
of Y1 may be convenient mathematically, but one does
not, in this way, decouple the two-nucleon-plus-one-
meson state from the two-nucleon state.

There are also other difficulties. The interaction
operator in the ¥, equation depends on the energy of
the system?® so that the solutions of this equation are
not even orthogonal to one another. Furthermore, as
we shall see, when an iteration procedure due to Lévy
and Klein is applied so as to remove this explicit

31. Tamm, J. Phys. (U.S.S.R.) 9, 449 (1945).

4S. M. Dancoff, Phys. Rev. 78, 382 (1950).
(1;\%\% M. Lévy, Phys. Rev. 88, 72 (1952); Phys. Rev. 88, 725

6 A. Klein, Phys. Rev. 90, 1101 (1953).

7In practical applications to the nuclear-force problem (i.e.,
when more than two amplitudes are included), the interaction
operator in the o equation has generally been expanded in the
form of an infinite series in the coupling constant, with the series
being terminated at some convenient point. One must accordingly
be careful to distinguish between exact and approximate treat-
ments of the Tamm-Dancoff equations, although, for the purposes
of our general discussion, this distinction is immaterial.
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energy-dependence, the resultant interaction operator
is not even Hermitian. These results are again clearly
manifestations of the fact that the description of the
two-nucleon system as given by the Tamm-Dancoff
method is inherently a relativistic one, allowing for the
creation and annihilation of particles, and that the
transition to the nonrelativistic Schrédinger picture
has yet to be made.

It is perhaps useful at this point to recall another
situation in quantum mechanics which is strikingly
analogous to the one under discussion. We have in mind
the general question of the reduction of the Dirac
equation to its nonrelativistic Pauli form. According to
the relativistically covariant Dirac theory, a spin %
particle is characterized by a four-component wave
function which can always be regarded as having been
expanded in terms of the complete set of free-particle
solutions of the interaction-free Dirac equation. In the
interests of clarity, let us assume that we are working
in the Foldy-Wouthuysen representation® in which the
positive- and negative-energy free-particle spinors have
no more than two nonvanishing components each,
which, for definiteness, we can take to be the upper and
lower two, respectively. In this representation, a par-
ticular component of an arbitrary Dirac spinor can be
directly interpreted as the probability amplitude for
finding the spin % particle in a state of given spin orien-
tation and sign of energy.

Now, for nonrelativistic energies, it is known, phe-
nomenologically, that a spin § particle can be ade-
quately described by a two-component Pauli wave
function. One has then the problem of demonstrating
that, even in the presence of interaction with, say, an
external field, a reduction to the Pauli form can be
effected, at least, in the nonrelativistic limit.

One is again faced with the task of reconciling two
descriptions of the same physical situation; the one is
of relativistic and fundamental theoretical origin, the
other is nonrelativistic and phenomenological. One
might first ask : Under what circumstances is it, in fact,
sensible to try to carry through a reduction to the Pauli
form? Here, the answer, as given in the recent com-
prehensive discussion by Foldy and Wouthuysen, is
that the two-component representation of a spin %
particle is meaningful only if the energies involved are
small and if the coupling to the high-momentum com-
ponents of the external field is weak, i.e., only if one
has to deal with basically nonrelativistic problems.

One might next ask : How is one to carry through the
transition from the Dirac to the Pauli form within the
domain of applicability, i.e., for nonrelativistic energies?
The usual procedure has been to eliminate the small
components of the spinor wave functions in favor of the
large ones. However, this procedure cannot be justified
beyond the lowest-order approximation, since the alge-
braic elimination of the small components does not

$1,. L. Foldy and S. A. Wouthuysen, Phys. Rev. 78, 29 (1950).
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constitute a physical decoupling of the positive from
the negative energy states. The correct procedure,
again due to Foldy and Wouthuysen, is to carry through
a series of canonical transformations which rigorously
separate the positive- and negative-energy states to any
desired order in v/c. The Pauli Hamiltonian appears
in the form of an infinite series which is useful only if
the aforementioned restrictions on the energy of the
system and the strength of the coupling to the external
field are satisfied.

We may now return to our original problem: the
derivation of a two-particle Schrédinger equation from
quantum field theory. It is evident that, in a very real
sense, we are dealing with the quantum-field theoretical
analog of the reduction of the Dirac to the Pauli
formalism. It will therefore not be surprising to find
that a description of the two-nucleon system in terms
of a wave function involving solely nucleon coordinates
can, in fact, be justified only if the energies are non-
relativistic and if the coupling to high-momentum
states of mesons and heavy particles is weak. The actual
separation of the two-particle state in Fock space from
states having also a finite number of mesons and/or
nucleon-antinucleon pairs can be carried through by
an infinite series of canonical transformations.

The detailed content of this paper will be devoted to
an exposition of the thesis contained in the preceding
paragraph. Starting with the Tamm-Dancoff approxi-
mation, we shall investigate, in Sec. I, the problem of
how to derive, in a consistent way, a nonrelativistic
two-particle Schrodinger equation from meson theory.
In Sec. III, we proceed with applications to several
cases of interest, viz., the scalar and pseudoscalar
theories (the latter with both direct and gradient
coupling). For the sake of simplicity, we shall ignore
those transitions in which a given meson is emitted and
absorbed by the same nucleon. We shall also not find
it necessary to consider explicitly the creation and
annihilation of virtual nucleon-antinucleon pairs. The
problem of the removal of divergences is therefore not
discussed in this paper.

In the course of carrying through the detailed con-
siderations of the nuclear-force problem contained in
Secs. IT and III, we shall also be in a position to discuss
two aspects of this problem which are, perhaps, of
particular interest. The first has to do with the question
as to whether the Tamm-Dancoff approximation is an
improvement over weak-coupling perturbation theory.
The evidence will be that. it is not, at least when one
restricts oneself to essentially weak interactions. The
second relates to the question as to whether certain
“nonadiabatic velocity-dependent” corrections to nu-
clear forces which have been reported in the literature® 8
ought to be retained® or dropped.’® In point of fact,

9E. M. Henley and M. A. Ruderman, Phys. Rev. 92, 1036
(1953).

10 K. A. Brueckner and K. M. Watson, Phys. Rev. 92, 1023
(1953).
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these controversial terms are simply the higher-order
ladder corrections which are contained in the lowest-
order Tamm-Dancoff approximation. Upon carrying
through the reduction of the Tamm-Dancoff equations
to the two-particle Schrddinger formalism, it will
become clear that these terms are, in fact, not at all
nonadiabatic or velocity-dependent since they are
present even in the fixed-source limit; also, they cannot
reasonably be ignored, at least when one deals with
weak interactions.

II. REDUCTION TO A TWO-PARTICLE
SCHRODINGER EQUATION

Let us suppose that we have two fields—nucleon and
meson—whose interaction with one another can be
characterized by a Hamiltonian & which is linear in
the meson field and bilinear in the nucleon field. If we
denote the free-particle Hamiltonian by 3C, the sta-
tionary states ¥ of the system, where these may be
either bound or scattering states, are determined by
the Schrédinger equation

(E— 50)¥=xV. (1)

We restrict ourselves immediately to a consideration
of the two-nucleon problem. In order to make the
transition from ¥ to a set of Fock-space wave functions
which are given, in particular, in a momentum-space
representation, we introduce the orthonormal subset of
vectors ¥,,”(P), where the latter are those stationary
solutions of the interaction-free Schrédinger equation,

[Ew"(P)— 5" (P)=0, 2)

which can be coupled by & to the free-particle two-
nucleon states. We use the indices m and %, as before,
to specify the number of mesons and nucleon-antinu-
cleon pairs which are present in addition to the original
two nucleons. For a given m and #, there exists, of
course, an infinite number of free-particle states corre-
sponding to the different possibilities for the momenta,
spins, and isotopic spins of the particles; we use the
symbol P to distinguish these possibilities from one
another.

We now expend ¥ (assumed normalized to unity) in
terms of the set ¥,,»(P), and so write

‘I/=Z ‘bmn(P)‘I’mn(P)‘ (3)

Clearly, ¢n"(P)= (¥,*(P),¥) is the probability am-
plitude for finding the compound two-nucleon system
in the state ¥,,»(P). The normalization for the Fock-
space amplitudes then has to be

Zlewn(P)[*=1. 4)

It is to be understood that the summations in (3) and
(4) are to be taken over all indices, viz., m, #, and P.
Now, while, in detailed calculations, it is convenient
to use a momentum-space representation in each con-
figuration subspace, in the development of a general
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formalism it is simpler to use a somewhat more compact,
symbolic notation in which it is the particle aspects
alone of the various Fock subspaces which are em-
phasized—the particular working frame of reference
within each subspace being left unspecified. We can
introduce such a symbolic notation by simply suppress-
ing the variable P. Equations (3) and (4) can then be
rewritten in the forms

T= Z ¢mn\1/mny (33)

ZI¢mnl2=1, (43.)

respectively. The summations in (3a) and (4a) are now
to be taken over m and n. We have denoted by ¥,,”
the unit vector in Fock space which characterizes the
(m,n)th subspace. It is then evident that ¢,," is a vector
which spans the (m,n)th subspace.

We now make the lowest-order Tamm-Dancoff ap-
proximation, i.e., we assume that all the ¢,,”’s vanish
identically with the exception of the two-nucleon am-
plitude ¢ and the two-nucleon-plus-one-meson am-
plitude ¢1°. If we suppress the upper index, Eqs. (3a)
and (4a) become

and

V=¢Vo+¢1¥; (5)
[o[24|1]2=1, (6)

and

respectively.
Let us write the unit vectors ¥, and ¥, as two-com-
ponent column matrices, i.e.,

() () o

we then have, for the state vector ¥,

V= (::) ®)

In terms of this notation, the Hamiltonian operators 3C
and X which enter in Eq. (1) will appear as two-by-two
matrices, with the former having only nonvanishing
diagonal elements, and the latter only nonvanishing
off-diagonal elements; they can accordingly be written
in the following way:

Wo 0 0 Kn
() (L) o

0 W, Ky O
It is to be noticed that the matrix elements in terms
of which 3¢ and X are here expressed are not ¢c-numbers
but are, in turn, also operators. Thus, the diagonal
elements W, and W, are the appropriate free-particle
Hamiltonian operators for the zero-meson and one-
meson configuration subspaces, respectively. The off-
diagonal elements Ko; and Ky serve to couple the two
subspaces. Denoting the Hermitian adjoint of an
operator by a dagger, we observe also that the Her-
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mitian character of 3¢ and & implies (Wo)t=W,,
(W1)f=W1, and (K01)T=K10.

Finally, the Schrédinger equation (1), in lowest-order
Tamm-Dancoff approximation, will appear as a two-
component matrix equation, viz.,

0 o)) G, DC) @

upon carrying through the indicated matrix multi-
plication, we are led, in turn, to the following pair of
linear equations:

(E—Wo)po= Koy, (11a)
(E=W1)é1= K100 (11b)

Now, Egs. (11a) and (11b) can be used as the basis for
a discussion of the stationary states of the two-nucleon
system subject only to our assumption that no more
than one meson is present in the field at any one time
and that no nucleon-antinucleon pairs are produced. As
has already been indicated in Part I of this paper, the
usual procedure®~¢ in the solution of these equations is
to solve (11b) for ¢, in terms of ¢y,

¢1=(E—W1)" K 1000,

and then to substitute this expression for ¢, into (11a),
thus leading to a Schrodinger-like equation for the con-
figuration-space two-particle amplitude ¢,

(E—Wo)¢o=Ko1(E—W 1) K 100. (12)

The essential objections to the use of Eq. (12) as a
starting point for a discussion of the nonrelativistic
nuclear-force problem have been listed in Part I and
need not be repeated here. We want simply to add the
remark that precisely the same criticisms can be
directed against the use of the Bethe-Salpeter equation!!
for the same purpose. Indeed, the equal-times Bethe-
Salpeter wave function for a system of two nucleons is
directly related to a two-particle Tamm-Dancoff am-
plitude,!? so that it is evident that, in both formalisms,
one has still to decouple the two-particle amplitude
from amplitudes allowing for the presence of mesons
and/or nucleon-antinucleon pairs.

Let us then return to Eq. (10) and examine first the
circumstances under which it may be expected that the
decoupling of the two-nucleon (no-meson) amplitude
from the two-nucleon-plus-one-meson amplitude will
have physical meaning. We reiterate at this point that
we shall not take into account that contribution to the
nuclear force which arises from the emission and sub-
sequent absorption of a meson by the same nucleon;
accordingly, we consider that the interaction between
two nucleons comes about solely as a consequence of

1 E. E. Salpeter and H. A. Bethe, Phys. Rev. 84, 1232 (1951).
12 See references 5 and 6; also, W. Macke, Phys. Rev. 91, 195
(1953); F. J. Dyson, Phys. Rev. 91, 1543 (1953).
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the continual interchange of mesons between the
nucleons.

We denote the meson and nucleon masses by u and
M, respectively, and work with natural units for which
#=c=1. Also, it will be convenient, for what follows,
to refer to the momentum p of a particle (which may
be a nucleon or meson) as small or large according as
pZu or >p, respectively. Similarly, we shall say that
the energy of the system is small or large according as
the quantity |E—2M | Zu*/M or >u?/M, respectively.

Now, there is a nominal energy gap of width u
between the no-meson and one-meson subspaces. In
point of fact, however, the actual gap between the two
subspaces can be much smaller than x, and the extent
to which it is smaller may be measured by the amount
of high-momentum component contained in ¢o. Thus,
if the energy of the system is large to begin with, the
no-meson amplitude ¢, will generally contain important
high-momentum components, so that one can then
hardly speak of an energy separation between the two
subspaces at all. Even if the energy of the system is
small, one cannot immediately conclude that there are
only low-momentum components in ¢o, unless the
coupling to the high-momentum components of ¢; can
be characterized as weak. Thus, only if the energy of
the system is small, and if there is weak coupling between
¢o and ¢; in the sense just described, can one be certain
that ¢ will contain solely low-momentum components,
or, equivalently, that there exists a real energy sepa-
ration ~u between the two subspaces.

The importance of having such a sharp energy gap
consists in the fact that it is only then that it appears
physically significant to characterize the system by a
two-particle Schrodinger equation. This can be seen in
the following way. In the quantum-field theoretical
description of the system, the particles are point par-
ticles and the interaction is a point interaction. When
one proceeds to try to simplify the two-nucleon problem
by eliminating the meson-field variables, one immedi-
ately introduces a new complication in that the inter-
action between the nucleons generally becomes very
complicated, being nonlocal in character. This com-
plication can be considered to occur in consequence of
the fact that the nucleons now have a structure with
radius of the order of the nucleon Compton wavelength
1/M. Tt is then evident that the transition to the two-
nucleon Schrodinger picture is pointless unless nucleon-
structure effects are small, and indeed this will be the
case only if the recoil momentum p of a nucleon on
emitting or absorbing a meson is small compared to M.
This last condition will be satisfied if p<Zu which cor-
responds to the existence of an energy separation
between the no-meson and one-meson subspaces of
width ~p.

We see therefore that, only when we have to deal
with essentially nonrelativistic problems, can the de-
scription of the two-nucleon system by a two-particle
Schrédinger equation be expected to be useful. We
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shall accordingly assume, for all that follows, that the
energy of our system is small and the coupling to high
momenta weak. In order to develop a consistent pro-
cedure for carrying out the reduction to the two-
particle Schrodinger picture, we shall, in fact, impose
the stronger restriction that the over-all coupling
between the nucleon and meson fields is weak.!® Under
these circumstances, it becomes possible to decouple
Eq. (10) in a systematic way by applying a sequence of
canonical transformations. The resultant two-particle
interaction operator, valid for internucleon separations
S1/u, will then appear as a double series expansion in
the coupling constant and nucleon recoil. We shall
presuppose that this series expansion is asymptotic in
both parameters.

We proceed to exhibit the transformations which will
decouple Eq. (10). Let us use, for the moment, the more
compact notation of Eq. (1),

(E— 50)¥ =%V, (1)

it being understood that the lowest-order Tamm-
Dancoff approximation has already been made, and
that, in detailed calculations, we will use a momentum-
space representation in the no-meson and one-meson
configuration subspaces. We apply the canonical

transformation
= (exp—18)®, (13)

where 8§ will be determined so as to eliminate the first-
order coupling between ¢ and ¢;. If we recall the
theorem that, for an arbitrary operator @,

(expi8) @ (exp—18)

it becomes evident that we must choose § so that
—i[8,3¢]=%. (15)

Upon examination of the matrix representation of
3¢ and & as given in (9), it is apparent that one can
take 8 to be

8=—ix/,

5! (0 KOI,)
Ko 0/

and where Koi' and K¢’ are, in turn, operators which
link the no-meson and one-meson Fock subspaces.
Since § must be Hermitian, X’ will be skew-Hermitian
so that (Ko)t=—K;¢’. The momentum-space repre-
sentations of Ko’ and K1¢' can be directly determined

(16a)

where

(16b)

13 One must be careful to note that the supposition that the
meson-nucleon coupling constant is small is made for mathe-
matical convenience; the condition that nucleon recoil be small
is, on the other hand, a physical requirement which must be
satisfied in order to be able to go over to the two-particle
Schrodinger picture at all.
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from (15) and (16). One finds
(P|Ko'|Q)=(P|Kot|Q)[Wo(P) = W1(Q) T,
(QK1'| P)= (Q| K1o| P)LW1(Q)—Wo(P)]™;

here, P and Q denote the momenta, spins, and isotopic
spins of free-particle no-meson and one-meson states,
respectively.

It is a straightforward matter to carry through in
detail the $-transformation defined by (13), (16), and
(17). Equation (1) will go over into a new Schrodinger
equation for the vector ® of the form

(E—50)d= £,

Mm

(18a)

where £, the new interaction Hamiltonian, will appear
as a power series in the coupling constant with the
leading term of second order; thus,

L=LOF L@ L oW .. (18b)

Both the second- and fourth-order terms, £ and £®,
respectively, will be diagonal in that subregion of Fock
space to which we have restricted ourselves on having
applied the lowest-order Tamm-Dancoff approxima-
tion; these terms accordingly do not couple the no-
meson and one-meson subspaces. The third-order term
£® is off-diagonal, but can be removed by a second
canonical transformation analogous to (13). However,
if we agree to restrict our considerations to terms which
are at most of fourth order in the coupling constant,
we need not bother with this second canonical trans-
formation since it will contribute terms of sixth and
higher order.

The no-meson and one-meson Fock subspaces are
now completely decoupled from one another to fourth
order. We are accordingly in a position to identify the
transformed two-nucleon (no-meson) Tamm-Dancoff
amplitude (which we now call ¢) with the two-particle
Schrédinger wave function for the system, and the
matrix element (£®+£®)y with the interaction
Hamiltonian. One finds, for the equation satisfied by ¢,
the following:

(B=Wog= (V@7 ta)g, (19)
where
VO =1(Ko/'K1o— KnK1d) (20a)
and
V60 =1(Koy/'K1o'Ko'K1o— 3K o/ K1’ KoK 10/
+3K 01’ K10K 01’ K10’ — K01K1¢'Ko1'K10').  (20b)

Equation (19) is a bona fide two-particle Schrodinger
equation with a Hermitian Hamiltonian since, to fourth
order at least, the possibility of coupling to the one-
meson subspace has been removed.

The interaction operators V® and V“® have a well-
defined physical meaning. Within the limitations of the
lowest-order Tamm-Dancoff approximation, the most
general type of nucleon-nucleon interaction consists in
the interchange of an arbitrary number of mesons
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between the two nucleons subject only to the proviso
that any given meson shall be absorbed before another
is created. In V® and V“  therefore, we exhibit
explicitly that part of the total nucleon-nucleon inter-
action which is contributed by one- and two-meson
interchanges, respectively, when there is, at most, one
meson in the field. Of course, V® and ¥V “® also contain
self-energy terms which we shall always discard.

It is instructive, at this point, to compare V® and
V@) with the corresponding second- and fourth-order
interactions which appear when one reduces the Tamm-
Dancoff equations to a single “two-particle” equation
by algebraic elimination of all amplitudes other than
the no-meson amplitude. The total “potential,”’ as
given by (12), has the form

Vep=Kou(E—W1)" K. 21

As it stands, it involves E. In order to eliminate this
dependence on the energy of the system, we make use
of an adaptation of the iteration procedure of Lévy®
and Klein.®

Let us first write out Eq. (12) in terms of a mo-
mentum-space representation. We obtain:

LE—Wo(P)Jo(P) =QZR (P|Ka|QLE-W1(Q) ]
' X (Q| K1o| R)¢o(R),

where we have used P and R to label the free-particle
no-meson states, and Q the free-particle one-meson
states. Assuming that the energy is small and the
coupling to high-momentum states is weak, we can
express the energy denominator in the right-hand side
of (22) in the following way:

LE-W.(Q)]
=—{[(W1(Q)—Wo(R)]-[E—-W,(R)J}*
B 1 o ( E—W,(R) n
T W(Q)—W(R) w0 \W(Q)—Wo(R)/

(22)

(23)

Upon substituting (23) into (22) and taking the over-all
coupling between the meson and nucleon fields to be
small, one is in a position to carry through a sequence
of successive iterations of the resultant equation by
replacing [ E— W, (R)J¢o(R), wherever it appears on the
right-hand side, by its value as given by the equation
itself. The result is to generate an interaction which is
no longer explicitly dependent on the energy and which
has the form of a power series in the coupling constant.
For the second- and fourth-order interactions, one
readily finds:

Vrp®=—KuKi/,
Voypa) = K01(K101K01K10,)’;

(24a)
(24b)

the meaning of a prime when affixed to an operator is
precisely as given in Eq. (17).
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We now observe that, not only is there a lack of cor-
respondence between the two sets of interactions as
given by (20a), (20b), (24a), and (24Db), but that Vp®
and Vrp®? are not even necessarily Hermitian. Accord-
ingly, one cannot generally identify Vyp®-+Vpp“® as
the potential (up to fourth order) which follows from
the lowest-order Tamm-Dancoff approximation.

Under certain limiting circumstances, however, this
identification can be justified. We recall that the inter-
action operators which we are considering here make
sense -only in the limit of small nucleon recoil and so
can be expressed as power series in u/M. Given a typical

interaction operator V, there are various ways of’

approximating it for small nucleon recoil momenta, and
we shall want to distinguish these possibilities carefully
from one another. In the fixed-source approximation, we
let the nucleon mass become infinitely large, so that all
nucleon recoil effects go out. In the adiabatic limit, on
the other hand, we retain the leading term of V in its
expansion in u/M ; the remaining terms accordingly con-
stitute nonadiabatic corrections. It is evident that, from
a practical standpoint, the difference between the
fixed-source and adiabatic approximations consists in
the treatment of nucleon-spin matrix elements, since
retardation effects are completely neglected in both
cases. Finally, by the nonrelativistic limit, we shall imply
the retention of all terms which are compatible with the
designation of M+-p*/2M as the energy of a free
particle.

Returning to our comparison of (20a) and (20b) with
(24a) and (24b), we now notice that, for the case of the
second-order interaction, the Hermitian character of
Vrp® will be restored and the interaction itself will,
in fact, coincide with V® if retardation effects are
neglected."* However, the Hermitian property of Vyp®
is lost as soon as one takes into account nonadiabatic
corrections.!®

Insofar as the fourth-order interaction is concerned,
the situation is somewhat more complicated. Upon
neglect of retardation, we have

V) =1(Ko/'K1¢'Ko1'K10— Ko1K 10'Ko1'K10")

Wh]le VTD(4a)=K01,K101K01,K10, SO that the Hermitian
character of Vrp®® as well as its equivalence to V“®
requires that the operators Ko'Kio’ and Ko'Kio
commute with one another. In our consideration of
several cases of particular interest in Sec. III, we shall
see that this requirement is satisfied.!® These results

14 For we may then replace Wy by 2M, whence we have the
equality K011K10= —Kmel.

16 By way of illustration, see the detailed discussions of non-
adiabatic corrections to nuclear forces for the scalar and pseudo-
scalar theories as given by Lévy (reference 5) and Klein (reference
6); in particular, note that certain nonadiabatic terms appear
which are proportional to the difference of the kinetic energies of
the initial and final no-meson states and which are non-Hermitian
[see, e.g., Eq. (35) of reference 6]. Non-Hermitian terms will
also appear in the Bethe-Salpeter theory [see, e.g., Eq. (39) of
reference 11].

16 To see how this result follows, we note that, for the usual
meson theories, the operators Koi’K1o' and Koi'K1o, in the adia-
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suggest that, to lowest-order approximation in nucleon
recoil (adiabatic approximation), the solution of the
Tamm-Dancoff equations by canonical transformation
or by algebraic substitution will lead to equivalent
results.

III. APPLICATIONS
(a) Neutral Scalar Theory

By way of illustration of the formalism of the pre-
ceding section, let us evaluate V® and V®® for the
neutral scalar theory, assuming at first that we have
to deal with fixed point sources. The interaction Hamil-
tonian & will then read

K=12: ¢(r),

where f measures the strength of the coupling between
a point nucleon located at r; and the meson field ¢(r;);
the running index ¢ can assume but two values, 1 and 2.
Upon expanding ¢ in terms of plane waves in the
customary way, we have

()= 2w(k) T ak)e* +at(k)e ik ],

where w(k)= (u>+£%)* and where we have taken the
volume of the system to be unity; the coefficients a (k)
and at(k) are the usual meson absorption and emission
operators, respectively. From (25) and (26), it then
follows that

(25)

(26)

Ko= (K1) "= f X u[20(k) I a(k) Jor s e™mi5  (27)
in view of (17), one has also
Ko'=— (K1) =~ f X« 2[20(k) ]}
X[a(k)](u Z,‘ e“‘"". (28)

Now, as has already been noted,’* the second-order
interaction (20a), upon neglect of retardation effects,
can be simplified to read

V(Z) =K01’K10; (29)
if we use the bold-face notation V to distinguish the
matrix representatives of the nucleon-nucleon potential,
we then have ’

Vo= (0] V®|0)= (0] Kon'K10]0). (30)
It then follows from (27), (28), and (30), together with

(0] [a(k")Joi[a* (k)1 |0)
= (0]a(K)a'(k)|0)=0bx,x,

VO =— (P/Z)Zk[w(k)]_z 21 ; etk (ri—1j)

batic limit, will be stafic in that they will depend on the relative
coordinates of the two particles as well as their spins and isotopic
spins, and so can be expressed as a sum of invariant forms involv-
ing these variables [see, e.g., L. Eisenbud and E. P. Wigner,
Proc. Natl. Acad. Sci. 27, 281 (1941); D. Feldman, Phys. Rev.
92, 824 (1953)]. Under these circumstances, the required com-
mutativity is easily demonstrated.

(1)
(32)
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Upon dropping self-energy terms and converting the
summation over k into an integral (3_x— (2m)3 /" dk),
we obtain the well-known result!?

V@ = —f2(27r)‘3fdkw“2eik"= — (f2/47:")r“e"", (33a)

where r=r;—1,.

The corresponding fourth-order interaction V@@
= (0] V“2|0) can be easily evaluated in a similar way
from Eq. (20b). After an elementary calculation, one
finds

V(4a)=f4(27r)~sfdkw—2eik.rfdk/(w/)qeik'.:’

or

Veo = (f2/dmyr-te s (2/m) Kolur),  (33)

where K, is the zeroth-order Hankel function of imagi-
nary argument.'s

Now, the neutral scalar theory with fixed sources
serves as a particularly useful example since, for this
case, the interaction (33a) is known to be rigorously
correct to all orders in the coupling constant.’®* We can
therefore conclude, at least when the coupling constant
is small, that the lowest-order Tamm-Dancoff approxi-
mation is, in fact, not an improvement over the use of
second-order weak-coupling perturbation theory, for it
fails to include certain fourth-order terms which are of
the same order of magnitude as (and which, for the
case at hand, precisely cancel) those fourth-order terms
which are taken into account.?

To obtain the complete fourth-order interaction, we
must allow for the possibility of having two mesons
present in the field at the same time. Thus, let us extend
the lowest-order Tamm-Dancoff approximation by re-
taining the two-meson amplitude ¢, in addition to the
no-meson and one-meson amplitudes, ¢y and ¢, respec-
tively, which formed the basis of our previous con-
siderations. The generalization of the formalism of Sec.
IT to this case is essentially straightforward and is
carried through in the following way.

The states ¥ of our system can now be written as
three-component column matrices,

0
2.
with the normalization
[po] >+ 1|2+ [ p2]2=1. (35)

The free-field and interaction Hamiltonians, JC and X,

17 See, for example, G. Wentzel, Einfilrung in die Quanten-
theorie der Wellenfelder (Franz Denticke, Vienna, 1943), p. 44.

18 G. N. Watson, Theory of Bessel Functions (Cambridge Uni-
versity Press, Cambridge, 1945), second edition, pp. 78, 172; for
details of the integration procedure, see the appendix of the second
part of reference 5.

19 Reference 17, p. 46.

20 A similar argument has been given by Henley and Ruderman
(reference 9).

1463

respectively, will accordingly appear as three-by-three
matrices having the following forms:

We 0 O

jo= [ 0 W, 0 J (36a)
o 0 W,
0 Kun O

X= {KIO 0 K12 5 (36b)
0 Ku 0

those off-diagonal elements of & which correspond to a
direct coupling of the no-meson and two-meson Fock
subspaces are identically zero since, by hypothesis, X
is linear in the meson field variables.

We proceed as before to apply a canonical trans-
formation

V= (exp—18)d (13)
to the Schrédinger equation
(E—30) V=XV, 1)

where 8 is now chosen so as to remove the first-order
coupling between ¢o and ¢, and ¢; and ¢, ie., we
require that

—1[8,3¢ =K. (15)
By analogy with Egs. (16a) and (16b), we can write
$=—ix', (37a)
where
0 Ko O
XK'= {K w0 K. (37b)
0 Ko O

The operators K, (s,4=0,1,2) have the momentum-
space representations

(PIKSi,IQ)=(PIKst'Q)[Ws(P)_Wt(Q)]—I, (38)

where P and Q denote the momenta, spins, and isotopic
spins of free-particle s-meson and f-meson states,
respectively.

On carrying through the unitary transformation
defined by (13), (37), and (38), Eq. (1) will once again
go over into a new Schridinger equation for the vector
& of the form given by (18a) and (18b). However, unlike
our previous discussion, the new second-order inter-
action Hamiltonian will now no longer be diagonal, but
will, in fact, contain off-diagonal terms coupling the
no-meson and two-meson Fock subspaces directly, viz.,

(08(2))02: %(Kol'Klz— K01K12/),

(39)
(L£®)50=3 (K21’ K10— K21K10").

Accordingly, to fourth order in the coupling constant,
we have not as yet attained a complete decoupling of
the no-meson amplitude from all others.

Let us write £® as the sum of a diagonal and an
off-diagonal matrix which we denote by D and 0,
respectively; in particular, the only nonvanishing
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matrix elements of O are given by (39). Then, to remove
the off-diagonal terms (39) from the interaction Hamil-
tonian, we need to apply a second unitary transforma-
tion

&= (exp—1i7)E (40)

to (18a), where it is evident that 7 must be determined
so that

—i[T,3¢]=0.
This requirement will be satisfied if 7 is given by

T=—i¢,

(41)

(42a)

where the only nonzero matrix elements of ©" are
(O’)02= % (K011K12_ K01K12/)',

N1 ’ _ ne. (42b)
(0M)20=3%(K2'K10— K21K1o')';

the meaning of the primed operators is given by (38).

On carrying through the 7-transformation defined by
(40), (42), and (38), we obtain the Schrédinger equation
for the transformed vector =, viz.,

(E— 3)E=ME, (43a)
where

M=MD IO MO - - -, (43b)

and where the second-order term 9 ® has the form of
a diagonal three-by-three matrix. Although the third-
and fourth-order terms, M® and M@, contain off-
diagonal matrix elements, these will not contribute to
the fourth-order nucleon-nucleon interaction and so
can be ignored.

To fourth order in the coupling constant, therefore,
the new no-meson Tamm-Dancoff amplitude, which we
again denote by ¢, is completely decoupled from all the
others; hence, we identify the equation for ¢ with the
two-particle Schrédinger equation for the system in
which the matrix element (M@ 49N @) o, will appear as
the (Hermitian) interaction Hamiltonian. The result
is to find that ¢ satisfies

(B=Wop=(VO+VE+T®)g,  (44)

where explicit expressions for V® and V¢ have
already been given in Egs. (20a) and (20b), and where*

VD = @) L b, (45a)
with

V@)= % (Kot'K19' K91’ K10— 3K o) K12’ K 01K 10’

d +3K011K12K211K10,_K01K12/K21’K10’) (45b)
an

V@ = %[(Km’Ku~ K01K12')' (Km/Kw- K21K10’)

— (Ko’ K19— Ko1K 1) (Ko’ K10— K21 K1) ). (45¢)

21 The general expression for V@) can be readily shown to be
equivalent, in the adiabatic limit, to Vrp® = — Ko; (K12(K21K10")")’
which is the corresponding contribution to the fourth-order poten-
tial which is obtained by eliminating the one-meson and two-
meson amplitudes by algebraic substitution.
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Let us denote the entire fourth-order interaction by
V@ e,

OB ARER (0 (46)

Then, it is clear from our previous discussion that ¥ ¢
represents that part of the fourth-order interaction
which comes about from the interchange of two mesons
by the nucleons when there is never more than one
meson present in the field. On extending the lowest-
order Tamm-Dancoff approximation so as to allow
for the simultaneous presence of two mesons in the
field, we obtain an additional contribution to the fourth-
order potential which we have called V@, The sum of
these two contributions yields V® which is clearly
equivalent to the usual perturbation-theoretic result.
Returning to the neutral scalar theory with fixed
sources and making use of the additional relations

K= (Ka)'=f 21 20(k) 1
XLa(k) 12 2 ; e mi,

(47)
Ki/=— (K21,)T= “f Zk 2|:2‘*’(k):|—i
XLa(k) ] 2i e,

and

(0]a(k)a(k")a’ (k")a' (k") | 0)

=081, kO, k' 0k, Wbk, ke, (48)

one finds easily that
V@) = — (f2/4r)2r e+ (2/m)Ko(ur) = — V4 (49a)
and V=0, (49b)

Hence, as anticipated, the two-meson contribution
V@ to the fourth-order potential precisely cancels the
one-meson contribution V¢ as given by (33b), i.e.,

V& =0. (50)

This then reaffirms our previous statement that, when
one deals with essentially weak coupling, perturbation
theory seems to yield a better result than the Tamm-
Dancoff approximation.

Two additional remarks are appropriate at this point,
and they both concern the term V. In the first place,
it is evident that, for the case at hand, we have assumed
fixed point-source nucleons from the very beginning so
that the ladder corrections V“® to the second-order
potential are adiabatic and static. Nevertheless, various
authors, 619 when they have treated the Tamm-Dancoff
equations by algebraic elimination of all amplitudes
except for the two-nucleon amplitude, have referred to
the corresponding contributions to the over-all potential
as “nonadiabatic and velocity-dependent’ corrections.
In point of fact, this nomenclature is misleading.
Indeed, it is clear, from our earlier discussion, that we
would have obtained precisely the same result for V¢
had we used Vrp“® [Eq. (24b)] as the starting point
of our considerations instead of V“» [Eq. (20b)] since
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the nucleons are taken to be at rest. It must be stressed
that the iteration procedure which was used to deduce
the general form of V7p®® goes through in exactly the
same way even if one deals with fixed sources, provided
one takes care not to approximate the energy of the
system E which appears explicitly in Vrp [Eq. (21)]
by 2M.

Secondly, it has been argued, particularly by Brueck-
ner and Watson,!® that the iteration procedure which
was used to express Vrp in the form of a power series is
invalid, and that one ought in fact not expand the
energy denominator in Vzp at all. Then, one would
expect that the total potential, to fourth order, would
be better approximated by omitting the term V“®
altogether, so that one would be left with the net inter-
action V®4V¢b) instead of V®. However, since V@
is also known to be the exact result for the neutral scalar
theory with fixed sources, this procedure of dropping
the “nonadiabatic velocity-dependent” corrections is
suspect, at least when the coupling is weak.? In any
case, it is clear that, within the framework of the
method of canonical transformations, there appears to
be no justification for treating V) on a different footing
from the contributions V#» which appear upon intro-
duction of the two-meson amplitude.

We shall complete our discussion of the neutral scalar
theory by considering to what extent the fixed-source
potential [Egs. (33a) and (50)] must be modified so as
to constitute the complete nonrelativistic interaction.
Now, for an attractive Yukawa potential of the type
(33a), the nucleon velocities », in a bound system like
the deuteron, will be of the order of u/M. Also, the bind-
ing energy is small compared to u?/M so that the mean
kinetic energy is of the order of the depth of the poten-
tial well, i.e., u?/ M~ (f*/4w)u. Hence we have v~pu/M
~f*/4r.

To obtain an interaction which is consistent with the
retention of terms of order u?/M for the kinetic energy
of the nucleons, we consequently need to compute the
second-order interaction V® more carefully and look
for nonadiabatic corrections which are of order u/M
with respect to the adiabatic potential given by (33a).
The fourth-order potential is already given correctly
by (50). It is therefore sufficient to confine our con-
siderations to the equation

(E—=Wop=V®g,

with V@ given by (20a).
The interaction Hamiltonian X will now be of the
form

(D

=1 [ ardus; (52)

here, 4 is the nucleon field variable and 1_@=1Q1"y4. The
latter quantities are conveniently expanded in terms
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of plane waves, leading to the usual expressions

4

(=X le b(pM)u(ph)e® 7, (53a)
? A=
—_ 4

Y()=2 ;1 bt (pA)a(pN)e 2, (53b)
? A

where b(p\) and bt(p\) are the nucleon absorption and
emission operators, respectively, and where #(p\) is
the free-particle Dirac spinor which is characterized by
the momentum p and spin-energy index \. For defi-
niteness, let A=1,2 and A=3,4 denote positive- and
negative-energy solutions, respectively. The #(p\) are
normalized so that

é 17 (BN 14y (BN) =B, - (54)

Upon substituting (26) and (53) into (52), we find that
Ko and Ky are given by

Ko=(K)t=f Zk . )‘zzl [ (2w (k) T (p+kN)

Xu(pN)[6' (p+KkN)b (pN)a (k) Jor;

we have restricted the possible values of the spin-energy
indices to 1 and 2 since only positive-energy spinors are
relevant in the calculation of the second-order inter-
action. Similarly, we have

(55)

Kol =—(Ku)' ==/ _ §:=1[2w<k>3—*

X[w(®)+E(p)— E(p+k) I'@(p+kN)u(p))
X Lo (p-+kN)b (pN)a (k) Jos,

where E(p)= (M>+p%)%.
Now, in momentum space, Eq. (51) will have the
form

[E—E1)—E(2)]¢(1,2)
=% 2(1,21 V(z)l (314)¢(3’4))

(56)

(57)

where, for brevity, we have simply written ¢ for p.
The factor 3 which appears on the right-hand side of
(87) arises on account of the fact that we are dealing
with a system of two identical particles.? The mo-

2 In making the transcription from (51) to (57), we expand ¢
in terms of the complete set of two-nucleon free-particle states
g ,7) where these, in turn, can be defined by the relation
W (,7)=b" ()b ()W vac. However, since ¥(z,7) and ¥ (4,7) are not
mdependent of one another but, in fact, satisfy ¥( ],1)= —¥(3,7),
we set ¢=2i~; ¢(4,7)¥(3,5) where it is assumed that the single-
particle states are ordered. On substitution into (51), we then find

[E-E(1)—EQ2)16(1,2)=2354(1,2| V®[3,4)6(3,4). (57)

Alternatively, we may put ¢=13%2; ; ¢(;,7)¥(2,7) with ¢(j,i)=
—¢(%,7), in which case we are led to the form given in the text.
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mentum-space representation of the second-order
nucleon-nucleon potential V® will accordingly be deter-
mined by requiring that

2 (1,2[V®[3,4)¢(3,4)
=3 2(1,2[V®[34)$(3,4)

=5 2 (12| K/’ K10— Ko1K 1’| 3,4)9(3,4).  (58)
3,4

The explicit evaluation of the matrix element
(1,2| V@[ 3,4), including nonadiabatic corrections, pro-
ceeds in a rather straightforward way upon insertion of
(55) and (56) into (58) along with application of (31)
and the analogous relation

(1,2[67 (40 ()b (1) (3) | 3,4)
= (8;10;72— 0;20;71) (3:3057a— 0:4013)  (59)

(ignoring self-energy terms, as always). The final result
is to find®

(PA, 2| VO | pit+kAs, pa—k\y)

- _5(51;)3[wZ(k)—EEU)ll)—E(I’l*mZ

1
+ (pik1)
w?(k)—[E(p2) — E(ps— k)

Xu(pr+kNs)aE(paro)u(pe— ko).

(60)

It is now immediately evident from (60) that, in the
adiabatic limit, one will simply regain the fixed-source
second-order potential (33a); also, that the first non-
vanishing nonadiabatic corrections are of order (u/M)?
with respect to the adiabatic potential.* Accordingly,
the nonrelativistic interaction is given completely by
(33a).

(b) Charge-Symmetric Ps-Ps Theory

In this subsection we shall consider the nuclear-force
problem for the case of greatest physical interest, viz.,
the charge-symmetric pseudoscalar theory with pseudo-
scalar coupling. The interaction Hamiltonian is then

2 A similar result has been derived by M. Jean, Compt. rend.
232, 2045 (1951), using Schwinger’s covariant perturbation theory.

2¢Tn Lévy’s discussion of this problem (reference 5), there do
appear nonadiabatic corrections which are of order u/M with
respect to the fixed-source potential (and which we have alluded
to earlier in reference 15); these terms are discarded, however,
when it is shown, by means of a variational principle, that they
lead to corrections to the adiabatic coupling constant which are
of order (u/M ).
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given by

K=1iG f Arysragal, (61)

where G is the coupling constant, v; is the Dirac matrix
Yryevsys, and the 7, (@=1, 2, 3) are the usual isotopic-
spin matrices. The meson field components ¢, now
constitute a vector in isotopic-spin space, while the
nucleon field variable 4 is an eight-component Dirac
spinor. We adopt the convention that the index «a is
to be summed from 1 to 3 whenever it appears twice
in an expression.

In point of fact, we shall find it more convenient to
work with the equivalent form

R=x@)L 5@ .. . (623.)

with
K0 = (G2/21) f drdlgegen (62b)
K@ = (G/2M) f drife- (Véa)7el,  (62c)

which is obtained from (61) upon application of the
Dyson-Foldy transformation.?® The pseudoscalar inter-
action is thus equivalent to the sum of the pair and
pseudovector interactions, X®” and X(*”, respec-
tively, plus other terms of order (G/2M)? which will not
influence any of the following considerations and which
will accordingly be completely ignored.

Now, it is evident from (62) that the leading second-
and fourth-order terms of the nucleon-nucleon potential
will be proportional to (G*/4w)(u/2M)* and (G?/4r)?
X (u/2M)?, respectively. If we assume that the coupling
constant is large, say, G*/4r~10,2® we would expect
the fourth-order interaction to predominate over that
of the second order.?” We shall accordingly take for the
nonrelativistic nucleon-nucleon potential the leading
fourth-order interaction, which goes as (G?/4w)?(u/2M)?,
plus correction terms of order (G?/4w)(u/2M)? and
(G*/4m)*(u/2M)3;?® terms which involve powers of G
higher than the fourth will not be considered.

We shall now need to extend our previous formalism
somewhat since the interaction Hamiltonian (62)
involves the meson field both linearly and bilinearly.
For the Schrodinger equation, we have

(E—3)¥= (X*+X )P, (63)

25 See, for example, S. D. Drell and E. M. Henley, Phys. Rev.
88, 1053 (1952).

26 Bethe, Dyson, Mitra, Ross, Salpeter, Schweber, Sundaresen,
and Visscher, Phys. Rev. 90, 372 (1953).

27 H. A. Bethe, Phys. Rev. 76, 191 (1949); K. M. Watson and
J. V. Lepore, Phys. Rev. 76, 1157 (1949).

28 If we take the perturbation-theoretic approach seriously so
that the dominant term in the potential is the leading fourth-
order interaction, then, to have a bound system like the deuteron,
one can estimate roughly that G2/4r~4(M /u)*. This is in accord
with the order of magnitude of the coupling constant assumed in
the text and justifies, formally, the selection of terms to be
retained in the nonrelativistic potential.
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where the state vector ¥ of the system is once again
represented by a three-component column matrix (34)
and the free-field Hamiltonian 3C appears as a diagonal
three-by-three matrix (36a). On the other hand, the
pair and pseudovector interaction Hamiltonians will
have the following structure:

0 0 Ko
R = [ 0 Ku 0 }, (64&)
Ky O 0
0 Knu O
K@) = [Km 0 Klg} . (()4b)
0 Ku O

In (64a) we have dropped the matrix elements Ko and
Ks,; the former contains self-energy terms only, while
the latter will not contribute to the nuclear force until
the sixth order.

We proceed next to apply a series of canonical trans-
formations so as to decouple the no-meson amplitude
¢o from ¢ and ¢s. Since the pair term is the larger of the
two interaction terms, we first set

= (exp—iR)®, (65)

where ® is chosen so as to eliminate the off-diagonal
part of X@7” from the interaction Hamiltonian; we
therefore take

0 0 Ko
®R=—2{ 0 0 O |.

Ky 0 O

(66)

On carrying through the unitary transformation
defined by (65) and (66), we find that & satisfies the
equation

(E— 30)d= £, (67a)

where

L=REILRpPIL LOL LD ..., (67b)

we denote by Xp®” the diagonal part of the pair
interaction. The third- and fourth-order terms, £®
and £®, involve the pair interaction once and twice,
respectively; in particular, the fourth-order two-pair
contribution to the nuclear force is already completely
contained in £®,

In order to obtain the fourth-order one-pair inter-
action as well as the second-order potential, we apply a
second transformation of the form

&= (exp—1i8)=E, (68)

where 8 is given by (37a) and (37b), thereby removing
K@ from the interaction Hamiltonian. The resultant
equation satisfied by = will then have the form

(E—30)E= @ROFMO4IMO4- . )2, (69)
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While 9@ still contains off-diagonal matrix elements
[they are, in fact, precisely the same as those listed in
(39)], their removal, by a third canonical transforma-
tion, will only serve to lead to a contribution to the
potential of order (G?/4w)*(u/2M)*. Tt is also once again
clear that the off-diagonal matrix elements contained
in M® and M@ will not affect the fourth-order nuclear
force at all. Accordingly, we can conclude that, to the
order of interest in the calculation of the nonrelativistic
nuclear force, the new no-meson Tamm-Dancoff am-
plitude ¢ is completely decoupled from all the others
so that the equation satisfied by ¢ can be identified as
the two-particle Schrodinger equation for the system
[the interaction Hamiltonian will be given by
(M@ 491 ®) 4o ]. After an elementary calculation, one
finds that this equation is given by

(E—=Wop=(VOLVE V@) (70)
where
VO=1(Ko/'K1:—KouK1'), (71a)
V) =5 (Koo' Koo— Ko2K20'), (71D)
V= — (Ko/'K1iK 1+ Kot' K 15K 2’ + Koo' Ko1K 10').
(71¢)

It is evident that V¢ and V' involve the pair inter-
action twice and once, respectively. All three terms in
(71) are, of course, Hermitian.?

In proceeding to apply (71) to the charge-symmetric
ps-ps theory, we shall find it convenient, at first, to
treat the interaction Hamiltonian (62) in the fixed-
source approximation. We can then write

R = (G2/2M)Zz ¢a(ri) ¢a(ri),

(72)
RO = (G/2M)T; 0P+ ¥ a1 7al®.
Next, we expand ¢, in a Fourier series, viz.,
9o (1) =2x[20(R) [ aa(k)e™ *+aot (K)e= %], (73)
whereupon we may write
Ko, 1= (K1, n)'=1(G/2M )§[2w(k)]‘*
X [aa (k) T n1 & (000K ralOgieors,
z (14)

K,n. ntl= (K,n+l, n)f—‘: _i(G/ZM)Zk 2[2‘*’(]@)]_;
X[aa(k)Jn, nr1 2 (0 k) 7ol Deik-rs;

2 If one eliminates the one-meson and two-meson amplitudes
from the Tamm-Dancoff equations by algebraic substitution, one
finds, for the fourth-order potential, Vyp®e)=—KqK,y' and
Vrp® =Ko (K11K10')' +Ko1 (K12K 50') + Koz (K21K10')’. It is then
clear that, in the adiabatic limit, these expressions will agree with
those for V) and V“ which are given in the text.
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also,

Kop= (K20)'= (G¥/4M) g, (we') 7}

X[aa(k)ae (k") Jos 3 ikt ri)

: (75)
Koo =~ (Kar)' = = (G/43) T (a4 )

X [ta(K)aa(k) oz 3= €306+ 55
and finally '
Ku=(G/2M) % (we) " aa! (K) a2 (k) Ju
XE etxi; (76)

in (76), we have discarded a self-energy term.

It is now a straightforward matter to insert (74)-(76)
into (71) and so obtain the desired nuclear force; it is
also necessary to make use of (31) and (48), suitably
generalized for the charge-symmetric theory. One then
finds directly, for the second-order nuclear force,

V& =—(G/2M)*(z® - 2 @) (27)3
Xfdk(o'(”-k)(c<2)-k)w—2eik-r

= (@/47) (M) (9 59) (a0 ¥)
X (6@ -v)(rle); (77a)

for the fourth-order two-pair interaction,!?

Vi) = —3(G2/2M)*(2w)~8
X fdkdk’ [ww’ (w-o') leitets) -x

= —3(G*/4m)*(u/2M)*
XL (2/m) (u?)K1(2ur)1;

and for the fourth-order one-pair interaction,

Vb =—6(G2/2M)(G/2M)*(2w) 8

(77b)

X fdkdkl (k . k/) (ww’)—zei(k-l-k’) .r

=6(G*/4r)2(2M) [V (rle )
=6(G*/4m)* (u/2M )L 14- (ur) " P wr?) e . (77¢)

It will be noticed that the fourth-order potential
V@) V@ which has been derived here in the fixed-
source approximation, is in agreement with Lévy’s
result (see second part of reference 5) as modified by
Klein.5:3

3 That the Lévy-Klein potential can be deduced by applying
perturbation theory in the limit of fixed point sources has also
been noted by S. D. Drell and K. Huang, Phys. Rev. 91, 1527
(1953) and by K. J. Le Couteur, Report of the Birmingham Con-
ferenc)e on Nuclear Physics, 1953, Birmingham, England (unpub-
lished).
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In order to complete our discussion of the nonrela-
tivistic nuclear force, we need to investigate the non-
adiabatic corrections of order u/M with respect to the
leading fourth-order two-pair term. For this purpose,
we return to the original form of the pair interaction
K@ as given by (62b), and, by analogy with (57), use,
as our point of departure, the Schrodinger equation

[E-EM)—-E@2)]¢(1,2)=3% %(1,21 V@[3,4)6(3,4),
(78)

where V@ is given by (71b). The fourth-order two-
pair potential V“ can therefore be identified from the
expression

> (1,2]V69[3,4)6(3,4)
L 212V [30(3,4)

:-;i‘ Z (1,2 ! Koz'Kgo“‘Koszo, I 3,4)¢(34) (79)
3.4

If we insert (53), appropriately generalized to take
into account the isotopic-spin formalism, and (73) into
(62b), we find

4

Koy=(Kn)'=(G/4M) 3 2 [w(R)o(®)]™?

Wk, k7 A N =1
X7 (p+k+kN)u(p))
X6 (p+k+k\)b(pN) ae (K)aa (k') Joz,  (80)

and
4

Ko=—(Ka)'=—(@/4M) £ ¥ [w(Bo®)T?

X [w(k)+w(k)+E(p)— E(p+k+k)]
Xt (p+k-+k\)u(pA)[6' (p+k+k'\')
X b(p)\)aa (k)d,,, (k,)]02;

\ is now an isotopic-spin spin-energy index which, for
positive energies, we have taken to range from 1 to 4.
Then, upon substituting (80) and (81) into (79), we
obtain, after a brief calculation,

(81

(Pih1, P2A2| V49 | pi+Khs, pa—KAy)

) G Loy
1
% l Lw(B)+w(B) P—[E(p1)— E(pi+K)

1
I [w(k)+w(k’)]2—[E(P2)—E(pz—K)]”}

Xa(pAr)u(pr+Khs) i (paho)u(pa—KNs).  (82)
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It will now be noticed that, in the adiabatic limit,
(82) simply goes over into the form (77b) which was
derived in the fixed-source approximation. It is also
evident, from the form of the energy denominators in
(82), that the nonadiabatic corrections which are of
order u/M with respect to the leading two-pair terms
vanish.® We are hence justified in identifying the fixed-
source potential (77) as the nonrelativistic interaction
for the ps-ps theory (apart from the question of
radiative corrections which we have consistently ig-
nored); as is well known, this potential is wholly
inadequate on account of the near-cancellation of the
attractive two-pair term V@@ by the repulsive one-pair
term V) 3

(¢c) Charge-Symmetric Ps-Pv Theory

As a final illustration, we consider briefly the charge-
symmetric pseudoscalar theory with pseudovector
coupling. This case is of particular interest for the
nuclear-force problem in view of the accumulation of
evidence pointing toward the suppression of the effects
of the pair term (62b) in ps-ps theory when radiative
and higher-order corrections are taken into account®;
under these circumstances, we have left the pseudo-
vector interaction (62c) which we now rewrite as

%= (g/u) f drifo- (Vga)ral (83)

where the coupling constants g and G are connected by
the relation g=G(u/2M).

The calculation of the nonrelativistic nuclear force
for the ps-pv theory can now be carried through in a
manner which is quite analogous to our previous dis-
cussion of the neutral scalar theory. First, we estimate
that a~u/M~g?/4m, so that we shall need to compute
the second- plus fourth-order nuclear force in adiabatic
(or fixed-source) approximation, as well as the non-
adiabatic corrections of order u/M with respect to the
leading term in the second-order potential.

In the fixed-source limit, the interaction Hamiltonian
is given by

K= (g/m)2: 09V ga(r:)7ad. (84)
The second- and fourth-order potentials may therefore
be calculated by inserting (74) into (20) and (45). The

3 In Klein’s treatment of this problem (reference 6), one does
encounter nonvanishing nonadiabatic corrections of order u/M
with respect to the leading fourth-order potential (and also the
second-order potential); these terms are dropped, however, after
Klein invokes a variational-principle argument similar to that
noted in reference 24.

# See, for example, Fig. 2 in Drell and Huang’s paper (ref-
erence 30).

3 For a summary of the case for pair suppression, see A. Klein,
Phys. Rev. 95, 1061 (1954).
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result for the second-order force has already been listed
in Eq. (77a). For the fourth-order interaction, we find

Vo) = (g/ )4 (3—220) - 1) (2)-8 f dkdk’

X{(k-k)—[e®- (kXk)J[e®- (kXk')]}
X2 (o) Btk x
= (2/4m)(3— 22V - = ®)
X{(v-v)2=[e®- (vXV)][e® (VX V')]}
Xrte#r(2/m)Ko(ur') ) =r;  (852)

Vi) = Va0~ g/ (2 [ ke

X{2(x®-x®) (k-K')2+3[o® - (kXk')]
X[o®- (kXk') JJo2(w’)Beitkti) -«
== Vi §(¢/4m)u({2(z® - =) (v - V')
+3Le®- (VX V) JLe®- (vX V)]

Xrte# (2/m)Ko(ur))’ =r; (85b)

V=3 g/ (2m) [ il (2000 -50) (-

+3Lo®- (kxK)TLo®- (kxK) ]}
X (w— o) [P (o )2 o) T e it =
A (25 (79
+30o®- (FX¥)Te® - (vX¥)])
(/2 1k () DKL ur-7)]

——31’_16_”(2/#)]{0(#7’/)})#=r. (85¢c)
It is evident from (45) that V4o represents that part
of the fourth-order potential which is contained in the
lowest-order Tamm-Dancoff approximation; on the
other hand, V¢ =Y@")4V®'") makes its appearance
when we allow for the presence of two mesons in the
field.

The total fourth-order potential V® =V¢e)4y©d)
which evidently is the perturbation-theoretic result, has
been derived by many authors.®?:3 It contains a strong
repulsive force in triplet-even states which makes this
potential quite unsuitable for a description of the

34 Taketani, Machida, and Ohnuma, Progr. Theoret. Phys.
Japan 6, 638 (1951); K. Nishijima, Progr. Theoret. Phys. Japan
6, 815, 911 (1951); J. L. Lopes and R. P. Feynman, Symposium
on New Research Techniques in Physics (Academia Brasileira de
Ciencias, Rio de Janeiro, 1954), p. 251.
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deuteron, say. Brueckner and Watson, in their dis-
cussion of the nuclear-force problem for ps-pv theory,
have suggested that the fourth-order interaction is
better approximated by the term V®®, in which case
the repulsion, mentioned above, is turned into an
attraction. However, this procedure is difficult to justify
in the light of our previous discussion of the neutral
scalar theory [immediately following Eq. (50)].

Finally, we need to consider the nonadiabatic cor-
rections of order u/M with respect to the second-order
potential (77a). For this purpose, we can essentially
take over the results of our earlier calculation for the
neutral scalar theory [Eq. (51) ff.] suitably modified
for the ps-pv theory. The final result is to find?®

35 This result has been obtained previously by L. Van Hove,
Phys. Rev. 75, 1519 (1949).
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(DM, P2 V@ | pitEs, po—E)y)

B _2(5)2(51;)3lw2<k)—EE(p1;~E<vl+k)32

1
' wz(k)—[E(pz)—E(pz—k)]J
Xul (piry) (o k) rart (pr+-Ts)

Xt (p2\o) (0 k) 7ae(pa—kNs).  (86)
It is clear from (86) that the nonadiabatic corrections
of order u/M vanish so that the nonrelativistic potential
for ps-pv theory is given by the fixed-source calcu-
lation [ (77a) and (85)].%
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Renormalization prescriptions are given for the covariant integral equations of meson-nucleon scattering,
taking into account the difficulties of overlapping divergences. The covariant wave equations, corresponding
to the iteration of second-order irreducible processes, are solved approximately and renormalized in closed
form (in the case of the pseudoscalar theory with pseudoscalar coupling). The S-phase shifts corresponding
to the states of isotopic spin 1/2 and 3/2 are computed, and their variation with energy is compared with
experiment. The only parameter which can be adjusted is the meson-nucleon coupling constant G. It is
found that a good agreement with experiment is obtained when G?/47r=7.5. The possibility of this agreement
being purely coincidental cannot be ruled out, but other interpretations of this result are discussed.

I. INTRODUCTION

N a foregoing paper,! a covariant treatment of
meson-nucleon scattering has been presented, which
permits, in principle, the elimination of special re-
normalization difficulties arising in this problem. The
main result was that—once the wave integral equation
corresponding only to the finite processes is solved—it
is possible to express and to renormalize in closed form
all the remaining contributions to the scattering cross
sections.?
The renormalization prescriptions which have to be
applied to the closed expressions yielded by the theory
were, however, incorrectly stated in that paper,® mainly

* Work supported in part by the U. S. Atomic Energy Com-
mission.

1 On leave of absence from the University of Paris, Paris,
France.

L M. Lévy, Phys. Rev. 94, 460 (1954). This paper will be, in
the following, referred to as (I). References to its equations will
be given as Eq. (I,---).

2 This applies, of course, only to the special divergences men-
tioned above. The “normal” radiative corrections must be handled
by means of the well-known methods of Feynman and Dyson.

3 The correct results were stated without proof in a note added
in proof to paper (I). Most of the results contained in Sec. I of

because the difficulties coming from the so-called “over-
lapping” divergences* were not properly taken into
account. Fortunately, it is possible to reformulate
those prescriptions without losing the advantage of
having a closed expression for the corresponding part
of the renormalized S-matrix elements. This reformula-
tion is given in Sec. IT of the present paper.

Once this formal work has been done, however, there
still remains the problem of actually calculating the
scattering differential cross sections, in order to compare
them with experiment. The first difficulty, here, is that
the kernel of the partial wave-equation corresponding
to the finite processes is still expressed as a series of
powers of the large coupling constant G. This series
does not seem easy to sum, and its first few terms do
not appear to yield a good approximation. However,

the present paper have already been reported in a letter from the
author to Prof. N. M. Kroll, which has been reproduced, together
with the answer from N. M. Kroll, in an Appendix to the Pro-
ceedings of the Fourth Annual Rochester Con ference on High Energy
Physics (University of Rochester, Rochester, 1954). Our special
thanks are due to Prof. N. M. Kroll for this interesting corre-
spondence.
4 A. Salam, Phys. Rev. 82, 217 (1951).



