
P H YSICAL REVIEW VOLUM E 98, NUM 8 ER 1 AP R I L 1, 1955

Lower Limit for the Energy Derivative of the Scattering Phase Shift
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It is shown that the derivative of the scattering phase shift with respect to energy, ttr)/dE, must exceed a
certain limit if the interaction of scattered particle and scatterer vanishes beyond a certain distance. This
limitation of dr)/ttE is, fundamentally, a consequence of the principle of causality; it is derived, however,
from a property of the derivative matrix R.

HE cross section and its angular dependence, as
functions of energy, do not seem to determine in

general the phase shifts uniquely. ' It may be useful,
therefore, to derive certain general rules about the
energy dependence of phase shifts which may facilitate
the choice between the apparently equivalent sets of
phase shifts. The relations to be derived here are based,
fundamentally, on what has come to be called "the
principle of causality. "It states that the scattered wave
cannot leave the scatterer before the incident wave
has reached it. However, the calculation to be carried
out will make use of a single property of the derivative
matrix E. which was given already by Eisenbud and
the present writer. '

Before carrying out the very simple calculation, the
general nature of the result will be illustrated by means
of Kisenbud's interpretation of the energy derivative
of the phase shift as time delay. ' Let us consider, for
sake of simplicity, a scattering center of radius a, i.e.,
assume that the incident particle behaves like a free
particle outside a sphere of this radius. Let us consider
then an incident beam which is the superposition of two
monoenergetic beams of energy k(v+ v') and h(v —v'),
respectively. The corresponding wave numbers will be
denoted by k+k' and k k'. Hence, —

One sees that the outgoing wave is retarded by a stretch
2dt)/dk; it arrives at a point r 2drt/dk at th—e time it
would have arrived at r without the action of the scat-
tering center. The causality principle as formulated in
the first paragraph gives no upper value for the re-
tardation 2dt)/dk: if the particle is temporarily captured
by the scattering center, there is no reason for it not
being retained an arbitrarily long time. However, the
"retardation" cannot assume arbitrarily large negative
values, in classical theory it could not be less than —2a.
It will be seen that the wave nature of the particles does
permit some infringement of the relation

dtf/dk) —a. (2)

the scattering center. If rt jt)' and r)
—r)' are the phase

shifts which correspond to the energy values k(v+v')
and h(v —v'), the outgoing wave will be

.I, —r—1(ei(k+k')r i(v+v')t+—si(rt+vt')'y'out = 'tr

i(k k') r v'(v v—') t tsi (v—t rt')—3 (—1b)~e

The two waves of (1b) are in phase where

2k'r —2v't+4rt' =0,
i.e., where

r = —2))'/k'+ (v'/k') t = 2dt)/dk+ —(d v/dk) t (1c).

It will be shown that, nevertheless, (2) is essentially
preserved also in quantum theory. It does hold, in par-
ticular, for large k.

The relation (2) gives a simple physical interpretation
to the qualitative behavior of the energy dependence
of q. Close to resonances, where the incident particle
is in fact captured and retained for some time by the
scattering center, dt)/dk will assume large positive
values. On the other hand, dt)/dk will be close to —a
at energy values at which the incident particle hardly
enters the scatterer. One would expect (on the basis of
Liouville's theorem or the completeness relations) that
the two eRects, on the whole, balance each other, i.e.,
that the integral of drt/dE over the whole energy range
is close to zero, at least if the scattering can be de-
scribed by a nonsingular potential. This is indeed the
case: q=O at E= ~ and g= kr for E=O, where b is the
number of bound states. ' Hence, if the cross section

—1 t —i (k+k') ri(v+v') t, I i(k—-k') r (v v') t-) (1)——

2k'r+2v't=0. (1a)

Since v'/k'=dv/dk is the velocity of the particle, the
incident particle indeed moves with a velocity e toward

' See, e.g., the articles of Fermi, Metropolis, and Alei, Phys.
Rev. 95, 1581 (1954); de Hoffmann, Metropolis, Alei, and Bethe,
Phys. Rev. 95, 1586 (1954); and of R. L. Martin, Phys. Rev. 95,
1606 (1954) for the ambiguities in the case of pion-nucleon
scattering.

t E. P. Wigner and L. Eisenbud, Phys. Rev. 72, 29 (1947),
see (i) on page 35.

L. Eisenbud, dissertation, Princeton, June 1948 (unpublished).
4 Instead of the superposition of only two monoenergetic waves,

one can use a regular wave packet in this consideration; r in (1a)
and (1c) then becomes the coordinate of the center of mass of
that wave packet. 5 I am much indebted to Dr. V. Bargmann for this observation.

Both k' and v' are infinitesimally small so that (1) is a
substitute for a wave packet, 4 the center of which is at
the point where the two spherical waves of (1) are in

phase, i.e., where
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shows a resonance behavior, one will expect g to de-
crease slowly between resonances and increase fast at
resonances, increases and decreases almost exactly
balancing if considered over the whole energy spectrum,

In the present case, all quantities in (3c) are numbers
and logarithmic differentiation of (3c) with respect to
k gives

In order to derive a rigorous minimum value for
drl/dk, it will be necessary to assume that there is a
radius a outside of which the wave function is that of a
free particle. This 1s a somewhat artificial assumption
which will be hardly ever satisfied rigorously. One can,
therefore, expect that the condition (4b) to be derived
under this assumption will be violated occasionally.
However, if a is chosen reasonably large the violations
will be uncommon and will extend over narrow energy
intervals.

We define as internal region the inside of a sphere of
radius a and call the rest of space the external region.
The wave function f in the external region is then given
by

rg =I(r) e"~I*(r),— (3)

where I(r) is the radial part of an incoming spherical
wave (of arbitrary angular momentum), its conjugate
complex I*(r) is the outgoing wave; r) is called the
phase shift. For r) =0, f must be regular at r= 0, which
fixes the phase of I except for I's sign. ' We shall nor-
malize I so that

I(r)P(r)*—I(r)*I'(r) =2i . (3a)

I(r) then represents a wave with flux m/h. The prime
denotes the derivative with respect to r. Both I and q
also depend on the energy; we shall use, instead, the
wave vector k as variable and denote diGerentiation
with respect to k by a dot.

The value of the reciprocal logarithmic derivative E
of P, with respect to r, at r= a, becomes

The term proportional to R in (4) is

The last part follows from (3a). The partial fraction
expa, nsion' of R shows directly that R= (k'k/nz)dR/dZ)0 for k&0 so that omission of the term containing 3
will make the left side of (4) larger than the right side.
Elimination of R from the resulting inequality by
means of (3b) yields

drf/dk =r')) ,'Re[I'I-" II'*+'(I—I' I'I) e "v—'j. (4-b)

Re[. ~ .] denotes the real part of the expression con-
tained in the bracket. The computation leading from
(4) to (4b) involves the use of (3a) and the equation
obtained from it by diGerentiation with respect to k.'

It remains to point out that the partial fraction
expansion of R, though obtained in reference 2 by
direct calculation, has been shown~ to follow also from
the causality condition described at the beginning of
this note. This establishes the relation between (4b)
and the qualitative consideration based on Eisenbud's
early work. The connection becomes even clearer if
one inserts, into (4b), the expressions for I for l=0
or /=1:

Is(r)=k *e ~sr It(r)=k *[(kr) '+i]e ~"r (5)

These give, in the former case,

(3b) jp) —a+ (2k) ' sin2(rls+ka);

while, 'one has, in the latter case,

(5a)

The I, I', etc., without argument, denote the value of
the corresponding expression at r=u. Calculation of
e"& from (3a) yields

(3c)

It may be remarked, parenthetically, that this expres-
sion remains valid if, in addition to scattering, trans-
mutations are also possible. The left side has to be
replaced then by the collision matrix, R by the deriva-
tive matrix, and I, I', etc., by diagonal matrices, the
diagonal elements of which are the I(a), I'(a), etc., for
the channel to which the row of the collision matrix
refers.

It is necessary, in collision theory, to 6x also the sign of I(r)
in terms of the decomposition of the plane wave into spherical
waves. This is not necessary, however, for the derivation of (4b).

rir) —a+ (k'a) —'$1—cos2 (r}t+ka)]
—(2k) ' sin2(r}t+ka). (5b)

It will be noted that, as long as ku«1, these equa-
tions actually entail j&0 for a reasonably large interval
of t7. However, at very low k, (5b) merely expresses the
fact that qo and g~ are proportional to k and k', respec-
tively, without limiting the proportionality constant.

Naturally, the proper limitation of u constitutes the
principal difFiculty in using (4b) to select the actual

7 In addition to Eisenbud's doctoral dissertation, see W. Schutzer
and J. Tiomno, Phys. Rev. 83, 249 (1951) and, in particular
N. G. Van Kampen, Phys. Rev. 89, 1072 (1953);91, 1267 (1953).
Also J. S. Toll, doctoral dissertation, Princeton University, 1952
(unpublished), and the more recent article of Gell-Mann, Gold-
berger, and Thirring, Phys. Rev. 95, 1612 (1954).This article also
contains references to the early literature.
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phase shifts among the sets which reproduce the cross
section. An estimate of a can be obtained only from an
at least qualitative theory of the nature of the inter-
action. It is commonly believed, for instance, that the
pion-nucleon scattering proceeds via absorption and
re-emission of the pion by the nucleon. If this is the
case, e will be of the order of the pion Compton wave-
length, i.e., Is/tsc. However, it would be quite diiIicult
to tell to what extent tt=2k/tsc is a permissible choice

or whether it is necessary to assume a=3Pi/ttc or an
even larger a, giving less and less stringent forms to
(4b). An alternative form of applying the relations of
this paper, which might be somewhat more free of this
ambiguity, would be to plot II., as calculated from (3b),
against the energy and to judge whether any possible
deviation of the R obtained this way from a regular E.
function can be blamed on having assumed a too low
value for u.
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The polarization formulas for the general reaction a+9 —+ c+d
are given in a compact form and specialized for the scattering of
polarized nucleon beams at unpolarized targets. These targets may
have arbitrary spin, possibly being different before and after
collision. An interesting quantity in this problem is the polariza-

tion of the scattered nucleon beam. On the basis of general in-

variance properties of the transition matrix, this polarization is

expressed by the polarization of the incoming nucleon beam and

the relative momenta before and after collision. The invariant
coeKcients in this relation are functions of energy and scattering

angle only; they are given in terms of the parameters of the transi-
tion matrix.

By using these formulas, it is shown that with triple scattering
experiments one can obtain two new relations between the
parameters of the transition matrix at fixed energy and angle.
Quadruple scattering leads to two further relations. These relations
represent information in addition to the differential cross section
and the polarization resulting from unpolarized beams. The re-
sults are specialized for targets of spin zero and spin one-half,
where in the latter case also the scattering of identical particles is
discussed brieQy.

I. INTRODUCTION

A BEAM of identical free particles with equal
momentum represents in general a quantum-

mechanical mixture, i.e., a classical statistical ensemble
of difterent pure states. ' %e can characterize such an
ensemble by the contributing pure states 0 and their
relative abundance W(%), where gs W(4) = 1.Accord-

ing to the usual rules of probability the expectation
value of any operator co in this beam is given by

(to)b,. ——Ps,W(%) (e,toe).

Decomposing 0' with respect to a complete set of or-
thogonal eigenstates Cs, %=gras(%')Cs, we can write
this expectation value in the form

( ) --=Tr(p )=Z(E W(+)a'(+)a *(+))(C, @;).
ittb

Here p is the density matrix' of the beam. If the par-
ticles have spin s and differ only by their spin state,
then p is a Hermitian 2s+1 by 2s+1 matrix in spin-
space. From the normalization of the state vectors to
one follows Trp=1.

It is useful to expand the density matrix in terms of
*Research supported by the U. S. Atomic Energy Commission.
' J. von Neumann, Mothematische Grundlugee der Quumtem-

mechanih (Springer, Berlin, 1932 and Dover Publications, New
York, 1943),p. 174; and H. VVeyl, Theory of Groups @ed Quantum
Mechanics (Dover Publications, New York, 1931),p. 78.

a complete set of (2s+1)' basic Hermitian matrices
co& in spin space, ' which obey the relation

Tr(a&&(u") = (2s+1)5„„.

These M& are related to the irreducible spin tensor
moments TI,«), where q is the rank of the tensor and
k(~ k~ &q&2s) indicates its components. "The tensor
moments are not Hermitian operators as the ~l", but
they transform directly according to the representation
S«) of the three dimensional rotation group. Using
the Hermitian matrices cv& we can express the density
matrix by the expectation values of all basic matrices
u& in the beam:

(2@+1}2

P= -—Z (~-o)b.. ~o.
2s+ 1

We say a beam is completely unpolarized if the ex-
pectation values of all tensor moments and therefore
all operators co& vanish, except the expectation value of
the zero rank tensor To('& =co'= 1.

s See, for example, U. Fano, Phys. Rev. 90, 577 (1953); and
F. Coester and J. M. Jauch, Helv. Phys. Acta 26, 3 (1953); these
papers contain further references.' E. Wigner, Gruppentheorie und ochre Anwendung auf die
Quantenmechanih der Atomspehtren (F. Vieweg, Braunschweig,
1953 and Edwards Brothers, Ann Arbor, 1944), p. 263.

4 G. Racah, Phys. Rev. 62, 442 (1942).


