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with respect to g. The real difhculty in treating (C.24)
is that of extracting the self-energy and Green's function
renormalization from the last factor, without expanding
the log in a Taylor series. We have checked that the
first few terms are in agreement with the corresponding
expressions obtained by expanding our previous results
for the renormalization constants. We can recognize

the Green's function renormalization as a multiplicative
constant and the self-energy from its form

exp[ —sly(t —t') ].
It appears that the meson scattering can be obtained

in closed form from the p dependent terms, but we shall
omit any further discussion of this matter.
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High-energy nuclear reactions which depend strongly on nucleon position correlations in the nuclear
ground state are analyzed and shown to give evidence for the existence of marked correlation effects. The
following high-energy experiments are considered: nuclear photoeffect, meson absorption in nuclei, deuteron

pickup, proton-proton scattering in a nucleus, and meson production in proton-nucleus collisions. The cor-
responding cross sections depend on a nucleon momentum distribution which can be represented at high
energies by a single function giving reasonable agreement with all the experiments considered. This mo-

momentum distribution differs substantially from that for the shell model of the nucleus and thus provides
strong evidence for correlation in the nuclear ground-state wave function.

The transformation methods developed in previous papers are used to provide a uni6ed theory of the
above 6ve processes. The momentum distribution predicted by this theory is estimated by two methods
each of which gives close agreement with the experimentally determined function in the relevant energy
ranges.

I. INTRODUCTION

' 'N the last few years a considerable body of evidence
~ ~ has been accumulated which provides information
about the ground state of nuclei. This evidence comes

primarily from quite different types of experiment and
contains, as we shall show, upon first examination ap-
parent contradictions in the information given about
the ground state. One type of evidence, that perhaps is
best known, comes from the study of ground and low

excited states of nuclei and is encompassed in the very
successful shell model theory which has been useful and
accurate in predictions and understanding of nuclear

properties. We shall not attempt to summarize this
evidence on the theory here; we only comment that the
central feature of the shell model is the assumption that
nucleons move in the independent particle states of a
uniform potential. The success of the shell model as
usually formulated is very intimately connected with

this assumption since the existence of long mean free

paths and independent particle motion are rejections
of the absence of two-body interactions and of the
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absence of correlations in the ground-state wave
function.

The second body of evidence which has direct bearing
on the nuclear ground state comes from high-energy
experiments. It is the purpose of this paper to summarize
this evidence and show how it may be reconciled with
the knowledge of nuclear structure derived from low-

energy experiments. We consider the following reac-
tions: deuteron pickup, meson capture, high-energy
photonuclear effect, high-energy proton-nucleus col-
lisions, and meson production in high-energy proton-
nucleus collisions. These high-energy reactions are all
similar in that they provide in e8ect a method of ob-
servation with great resolving power since they allow us
to probe nuclear structure with particles of wavelength
less than the typical nucleon spacing in a nucleus. Con-
sequently we can expect to resolve details of the struc-
ture which, are not accessible to us if we restrict ourselves
to observations at low energy with particles of large
wavelength. As we shall see, the information we obtain
from the high-energy experiments is in contradiction
with the shell model as usually formulated and requires
a change in the interpretation of the low-energy nuclear
phenomena and their relation to the ground-state wave
function.

This new interpretation has been described in
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previous papers' and is further discussed in Sec. III
of the present paper with particular reference to the
high-energy experimental information which is de-
scribed in Sec. II.

In the first part of Sec. III we develop the formalism
required for relating the nuclear ground-state wave
function to the shell model wave function. In the second
part of Sec. II this formalism is utilized to give a unified
development of the theories of the nuclear photoeGect,
meson capture, and deuteron pickup. We find that the
cross sections for these processes depend on a momentum
distribution function in the same way as has previously
been stated, for example by Chew and Goldberger, '
provided that the energies involved are sufficiently
high. However, our momentum distribution function
differs in principle from that of Chew and Goldberger
because of our use of a diGerent form of the impulse
approximation which appears to have more general
validity (this method was first used by Heidmann').
Finally in Sec. III we note the cross section formulas for
high energy, for proton-proton scattering in nuclei and
meson production by protons bombarding nuclei, with
particular reference to their dependence on a momentum
distribution function.

In Sec. IV we apply the theory to the various experi-
ments. Since our momentum distribution appears in
the formulas for cross sections in the same way as that
used by previous authors, we are able to make use of
earlier analyses of experiments to determine the
momentum distribution from experiment. It is found
that these experiments can be fitted to reasonable
accuracy by a suitable Gaussian momentum distribu-
tion in the energy range 50 to 100 Mev. We compare
this experimental distribution with our theory in two
ways, one of these involves the use of a Hulthen wave
function for two nucleons, and the second is partly
phenomenologi. cal in that we insert an experimental
value for the two nucleon scattering matrix. It is found
that both these methods give a momentum distribution
in agreement with the experimental one in the relevant
energy range.

Finally in Sec. V we summarize our conclusions from
the evidence presented in this paper.

II. EXPERIMENTAI EVIDENCE

A. Deuteron Pickup

This process is the ejection by fast neutrons of fast
deuterons from nuclei4; the original theory was de-
veloped by Chew and Goldberger' and later modi6ed

'Brueckner, Levinson, and Mahmoud, Phys. Rev. 95, 217
(1954); K. A. Brueckner, Phys. Rev. 96, 508 (1954) and Phys.
Rev. 97, 1353 (1955);K. A. Brueckner and C. A. Levinson, Phys.
Rev. 97, 1344 (1955); R. J. Eden and N. C. Francis, Phys. Rev.
97, 1366 (1955).

2 G. F. Chew and M. L. Goldberger, Phys. Rev. 77, 470 (1950).
~ J. Heidmann Phys. Rev. 80, 171 (1950).

The experimental evidence is that obtained by I. Hadley and
H. F. York, Phys. Rev. 80, 345 (1950); K. A. Brueckner and
W. Powell, Phys. Rev. 75, 1274 (1949).

by Heidmann. ' The phenomenon occurs in the following
manner: a fast neutron (90 Mev, for example) in
passing through a nucleus occasionally encounters a
proton with such a momentum that the relative mo-
mentum of the neutron and proton can be accom-
modated in the deuteron wave function. When this
occurs, it is possible for the neutron to "pickup" the
proton and emerge as a deuteron. It is apparent that the
probability of this process is a sensitive function of the
momentum distribution of the proton in the ground-
state wave function; consequently the empirical ob-
servations can be used to deduce properties of the wave
function. The theory as it has been developed is only
a Born approximation; the calculations of Chew and
Goldberger and of Heidmann are somewhat different
in form, but both agree on a simple dependence on the
ground-state wave function and probably can be used
to draw qualitative conclusions. The result given by
Chew and Goldberger is that the cross section depends
most strongly on a factor

where fr (r) is the initial wave function of the picked up
proton. Their analysis showed that the experiments
were consistent with

(2)

with cr'/2nz= (18) Mev. This distribution departs very
markedly from a Fermi gas or from an independent-
particle function in that a much stronger admixture of
high-momentum components is predicted. Thus the
pickup process is evidence for a strongly correlated
wave function.

B. Meson Capture from Low Bohr Orbits

This process was first observed by Panofsky' and has
since then been extensively studied. The theoretical
analysis' shows that it is possible, from a study of the
capture of x mesons at rest in light elements, particu-
larly in hydrogen, .deuterium, and carbon, to derive
some striking information about nuclear structure. The
interesting observed feature of the meson capture is
that while the reactions in deuterium,

s +D —+2n, m +D —+2N+y,

occur with a ratio of about 2:1; in carbon, the ratio of
the cross sections for the two processes

a +C ~ star, ~ +C —+ star+y

has changed to a number greater than 65. It is theo-
retically expected that the p emission, since it occurs

' Panofsky, Aamodt, and Hadley, Phys. Rev. 81, 565 (1951).
'Brueckner, Serber, and Watson, Phys. Rev. 84, 258 (1951),

referred to as SSW in the text.
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essentially as a one nucleon process

'll +P + 's+'7

will be only weakly affected by the other nucleons. It
is possible therefore to reach conclusions on the relative
transition rates for the nonradiative capture in deu-
terium and carbon (or in other light and medium heavy
nuclei).

The theory of the capture next is used to show that
the nonradiative capture rate is a sensitive measure of
the probability of 6nding two closely associated nucleons
in the ground state of the nucleus, since the capture
involves large momentum transfers and consequently
can take place only through the cooperative effect of at
least two nucleons. Qualitatively it is obvious that if in
heavy nuclei the nucleons were randomly distributed,
the probabilities of ending two nucleons close together
is small, and the meson capture rate would be small, in
contract to the effect observed. The result of a quan-
titative analysis of the various phenomena affecting the
radiative and nonradiative capture showed that the
nucleons are indeed highly correlated.

According to BSW, the transition rate depends on a
factor P(zA, ) which is the probability of finding two
nucleons with a separation z&„=h/Ap, where hp is the
momentum transferred to the two nucleons. For an
uncorrelated nucleus, P(zs„) is just the nuclear density
1/z, where s is the total volume (4/3)srssA. Thus it is
useful to define a correlation factor f by the equation

The analysis of BSW showed that f=35 and thus that
the wave function for the nuclear ground state must
depart very markedly from that for an uncorrelated
system. We will return to an alternative formulation of
this result later in Sec. IV.

C. Photonuclear Effect at High Energy

The cross section for the photoejection of high-energy
(50-200 Mev) protons from nuclei has been known for
some time to be much larger than would be given by an
independent-particle model. The presence of a large
high-energy component of fast protons indicates quite
unambiguously the existence of high-momentum com-
ponents in the ground-state wave function. The process
has been analyzed by Levinthal and Silverman~ and by
I.evinger, all in the dipole approximation. The former
authors show that the observed cross section is in good
agreement with the Chew-Goldberger' momentum dis-
tribution for the ground-state wave function. The
analysis of Levinger uses a somewhat different method
of calculation to which we will return later, but he also
concludes that the experiment shows the marked de-
parture at high-momentum values of the wave function
from that for an uncorrelated system.

' C. Levinthal and A. Silverman, Phys Rev. 82, 822 .(1951).' J. S. Levinger, Phys. Rev. 84, 43 (1951).

D. Proton-Nucleus Scattering and Meson
Production in Proton-Nucleus Collision

These processes,

p+ nucleus ~ nucleus+ p',

p+ nucleus —& nucleus+ s,
can be used to give quite quantitative indications of the
departures of the ground-state nuclear wave function
from that of an independent particle model. In these
cases a contribution to the cross section comes from each
component of the nucleus ground-state momentum dis-
tribution. Thus if the cross section for the elementary
process involving free nucleons is known, then the
observed cross section is a function only of the mo-
mentum distribution. The analyses of Henley' and of
Wolff" show that the momentum distribution is deter-
mined with fair accuracy, and is fitted well by a Gaussian

(3)

where n' is such that the mean kinetic energy is 19.3
Mev. This distribution does not depart as strongly
from an uncorrelated wave function as does the wave
function used by Chew and Goldberger'; the difference,
however, is still very marked, as is shown in Fig. 1.

E. Summary of Experimental Results

All the experiments discussed in this section are
similar in that phenomena are observed which depend
strongly on strong correlation effects in the coordinate
space wave function or, equivalently, on an appreciable
admixture of high momentum components in the
momentum space wave function. Thus it is evident that
the nuclear ground-state wave function cannot describe
nucleons moving as independent particles, and reinter-
pretation of the independent particle model is necessary.
In the next section we shall show how this can be done
in the general case, using the techniques and concepts
we have developed for treating the nuclear ground
state. We shall also make detailed applications to speci-
fic cases of particular interest.

III. GENERAL THEORY

A. General Description of Method

The processes considered in the previous section
have an important common feature; an appreciable con-
tribution to the cross sections comes from an initial
nuclear ground state in which at least one nucleon has
a high momentum. We make the physical assumption
that this high momentum is the result of strong inter-

' E. M. Henley, Phys. Rev. 85, 204 (1952); this paper lists the
relevant experimental references,

's P. A. Wolfi, Phys. Rev. 87, 434 (1952); see also the experi-
mental results given by Cladis, Bess, and Mayer, Phys. Rev. Si,
425 (1952)„
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Fro. 1.Momentum distribution G(k) of 8 neutrons and 8 protons
in the independent-particle states of a square well with infinite
walls and of a harmonic oscillator well. For comparison the
Gaussian distribution of Eq. (3) is also given.

actions between a pair of nucleons; indeed the experi-
ments" seem to verify this assumption. Consequently
the ejection of a fast nucleon by the photoprocess, by
meson capture or as a member of the deuteron in
deuteron pickup, will usually be associated with the
ejection of another fast nucleon which was originally
paired with the directly ejected particle. Thus the
process corresponds to ejection of a fast pair of nucleons
from the ground state, with the residual nucleus only
weakly excited. This assumption (or a stronger assump-
tion) is explicit or implicit in the theory of all the high-
energy processes we have considered.

It is at this point that the usefulness of the high-
energy processes in the study of nuclear structure is
particularly apparent. As we will see in the following
development of the theory, if the ground-state function
is weakly correlated as for a Fermi gas or an inde-
pendent particle model, then the matrix elements will

vanish in the former case or be very small in the latter
case. Since the predominant low-momentum com-
ponents in the wave function make very little or no
contribution to the matrix elements, the importance of
the high momentum components is greatly enhanced
and hence it is possible to get detailed information
about this aspect of the wave function. Before pro-
ceeding to the theory of these processes, we shall first

"Byfield, Kessler, and Lederman, Phys. Rev. 86, 17 (1952);
see also reference 16.The effect of correlations involving more than
two nucleons will become apparent only in the high-energy tail
of the spectrum of the ejected nucleons, this will not influence
appreciably the total cross sections of the processes we consider.

make some brief remarks on the nature of the ground-
state wave function and in particular on our inter-
pretation of the shell model and its reconciliation with
the simultaneous success of the shell model and with
the high-energy phenomena which interest us.

It is well known from both experiment and theory
that the nucleon-nucleon interactions are strong and
short ranged. Consequently if the same forces act when
nucleons are immersed in a many-body medium, one
will very naturally expect to observe under appropriate
experimental conditions very appreciable correlations
in the nuclear wave function. On the other hand, the
success of the shell model has often been assumed to
indicate that the two-body forces in nuclear matter are
in fact much, weaker and long-ranged and can lead in
an excellent approximation to a uniform Hartree field
acting on the nucleons. The origin of this effect might
be, for example, a strongly nonlinear behavior of the
meson fields so that a very large damping eGect modifies
and smooths out the forces in nuclear matter. This
eGect can arise from many-body forces or from a non-
linearity in the meson field equations. In either case the
effective potential felt by one nucleon would not have
the rapidly varying spatial dependence which would
result if the two-body forces remained strong, and a
uniform potential would be a good approximation. A
direct consequence would then be that the nuclear wave
function would be weakly correlated, in disagreement
with the high-energy experiments we are analyzing. It
is also perhaps worth commenting here that the
theoretical expectations for the character of the two-
body and many-body interactions also strongly suggest
that the strong two-body forces are still effective in a
medium of nuclear density.

Thus we must adopt a picture of strong two-body
nuclear potentials and modify our views of the shell
model. The concepts and techniques which we have
developed are discussed in detail in other papers'; the
essential points may be summarized in the following
way. We require that the shell model (or independent
particle) wave function be a description not of nuclear
motion but of a "collective particle" motion, the actual
nucleon wave function being generated from the "shell
model" wave function by a transformation. This trans-
formation has (among other effects) the effect of
introducing correlations and hence high momentum com-
ponents into the wave function. Under certain condi-
tions the behavior of the shell model "particles" is very
nucleon-like, but this approximate identification is not
generally valid. We see, in fact, a complete breakdown
of the approximate description in the region of strong
correlations or high momenta, where the departure of
the simple shell model states from actual nuclear states
becomes particularly marked. Stated in other terms, a
consequence of our description of the nucleus is that the
departure of shell model states from nuclear states is
not very appreciable if observations of the state are
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made which depend only on averages over space or
time intervals which are large compared with charac-
teristic correlation distances or Quctuation frequencies
in the state. In the other extreme, observations at high
frequencies or short wavelengths readily detect the
departure of the ground state from that for an uncor-
related system.

We next shall summarize the necessary formalism
which we need in the following discussions. For further
details of notation and explanation the reader should
refer to previous papers. ' The nuclear ground-state
wave function 4'p(A) is in general a complicated func-
tion of the coordinates of the nucleons and contains
marked correlations as a result of the strength of the
two body interactions. It is related to the "shell-model"
or "independent particle" wave function Cp(A) by a
transformation function or "model operator" Ii, i.e.,

4'p(A) =PC p(A).

Since C»(A) is a weakly correlated function (a degen-
erate Fermi gas for the lowest energy state), F has the
effect of introducing correlations into the wave function.
Clearly, therefore, explicit knowledge of the trans-
formation P and thus of the wave function +p(A) is
necessary in our problem, depending as it does on the
correlations in the wave function. This is in marked
contrast to determination of the ground-state energy,
for example, where only the transformed Hamiltonian
(the independent particle Hamiltonian) need be known
and there are no departures of the particle (not nucleon)
motion from independent particle motion.

The explicit form of the transformation, which has
been used successfully in the considerations of other
ground-state properties, is given by the following set of
coupled equations:

1
P=1+-Z I'tP't,

the uniform potential V. is dehned by

Vc 2 Z tcir& (10)

where 3„; is the diagonal part of 3;;.
Some features of these results and of the transforma-

tion F are easily seen. The incoherent or nondiagonal
operators I;, cause transitions from the uncorrelated
independent-particle state C»(A); the effect is closely
analogous to an inelastic scattering of particles a pair
at a time out of the Fermi gas to excited states. Con-
sequently the departures of the wave function Vp(A)
from C p(A) are very closely related to the details of the
inelastic scattering of nucleon by nucleon and thus to
the strength and range of the two-body potentials.

We shall in the following parts of this section make
explicit applications of these principles to the high-
energy phenomena we have summarized in the previous
section. Where the development follows the work done
by other authors, we shall abbreviate the discussion
where this can be conveniently done.

where er; is the charge moment for the ith proton. We
approximate to the final state wave function by making
use of our physical assumption that two of the nucleons
have high momenta so the wave function is approxi-
mately separable, i.e., we assume

B. Application to Speci6c Phenomena

(1) Nuclear Photoegect

The cross section for the production of high-energy
protons by y radiation of a nucleus in dipole approxi-
rnation is obtained from the matrix element Hof given
by

(
+pf ( +f (A) 2 er" A+p(A)

i=1

e,(A) =e, (1,2)e,(A —2). (12)

P';=1+- Z It~Firn,
e Lm/i j

(6)

where the "energy denominator" e is

e=Ep —Q T; V„—
and the energy eigenvalue Eo is determined by

(Ep—Q T;—V.)Cp(A) =0.

The quantities I;; and V, are simply related to the
two-body scattering operators 3,; which are defined by
the equations:

t;; =v;;+n, ;(1/e) t;;,

where v;; is the potential between nucleons i and j.The
operators I;; are those parts of the t;; which are non-
diagonal with respect to the nuclear states; finally, the

We suppose that nucleon "1"is a proton; the associated
nucleon "2" must then be a neutron since the contri-
bution from two protons is zero in the dipole approxi-
mation. The assumption of a product wave function is
equivalent to the neglect of corrections due to antisym-
metrization between the high-momentum and low-
momentum particles, but Nr(1, 2) and%'r(A —2) will be
separately antisymmetrized. With a Anal wave function
of this form we can neglect contributions to Hof from
terms not involving the position r~ associated with
proton 1.

We may use the method of partial closure to eliminate
the wave function 0'~(A —2) from the cross section
provided that the rest of the matrix element depends
only weakly on the energies of excitation E~ of the
residual nucleus. This will be the case if the energies of
the ejected particles are high; it is also possible to
correct approximately for the error made in the closure
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sum by altering the energy conservation law to include
a mean excitation energy Ey,. i.e., we can set

&p+ E,= fpP/220+ fp2'/2222+ Er) (13)

where Ey can either be estimated or regarded as a
phenomenological parameter. Making this approxi-
mation, we find

We have replaced I;; by t,; in Ii since here only oG-

diagonal matrix elements contribute to the cross section.
The wave function Cp(1,2, ,A) can be written (treat-
ing neutrons and protons separately):

(16)

PlH„l =ZX I dr, ", dr,
J

X 4'g*(1,2)err A%'p(1, 2, ,A)dridr2, (14)

the factor of SZ coming from the number of ways of
choosing the protons (1) and neutrons (2). This result
also neglects interference terms which is consistent with
our assumptions about the separability of the Final state
wave function. In this matrix element the final wave
function can be determined with considerable accuracy
since it is probably safe to assume that this is simply
given by the solution to the two-body problem at high
energy neglecting the eBects of the nuclear medium.
Thus only the initial wave function is unknown and its
speciFications largely determines the matrix element and
the cross section.

It might be pointed out at this point that in the
assumptions we have just made in treating the final

states, the possible attenuation by nuclear collision of
the outgoing proton wave have been neglected. One
consequence of this assumption is that the calculated
cross section will depend on the total number of protons
in the nucleus, i.e., that it is a volume effect. The best
evidence for this assumption comes from the photoeffect
itself' and also from the process of meson capture in
nuclei as studied by Byfield, Kessler, and I ederman. "
We shall in this section and also in discussing the re-
maining phenomena neglect the possibility of absorption
of the outgoing particles and as a consequence over-
estimate the cross sections by a factor depending on the
process considered. The appropriate correction factor
can usually be estimated without difficulty.

The wave function +p(A) defined by Eqs. (4) and

(5) to (10) is extremely dificult to give explicitly
because of its very complicated dependence on the
incoherent operators I;;. If, however, we are willing to
assume that the necessary correlation is largely a result
of two-body interactions, then we can approximate to
the function F by expanding it to First order in I;;.
Consequently we cannot expect fully quantitative
knowledge of the wave function in the important high-
momentum region, although the error introduced is
probably not enough to alter the order of magnitude
of the result. In this approximation, we take

ep(1,2, ,A)=l 1+—P f;g lCp(1, 2, ,A). (15)

with C p' (3, ,A) normalized to unity. Only the terms
involving r& and r& will make any important contri-
bution to the cross section, hence after integrating over
the variables r3 r~ we get

1
QlHprls=z)v Q ) +r*(1,2)er,

g(Z1V) ~

.AFtpyi(1)@„(2)drrdr2, (17)

where / is summed over proton and m over neutron
states, and

F12 1+(1/8) f12.

We define a quantity x& '(1,2) by the equation

xt-'(1)2) =F»ei(1)4-(2) (19)

(the prime distinguishes this from a symmetrized form
used later) . Then xi„'(1,2) will give the high-momentum
components for the nucleons 1 and 2 in the nucleus. It
is important to note that our approximation method is
based on the fact that only high-momentum com-
ponents will give large contributions to the matrix
element so that it has been possible to neglect terms in
Eq. (15) which do not refer to particles 1 and 2. For
these reasons it would be misleading to regard xt '(1,2)
as a kind of two-body wave function in the nucleus. "
We get now

&IHpr I'=2 mr*(1,2)err Ax, '(1,2)dridr2 . (20)

This can be compared (see Levingers) with the deuteron
photoeffect, for which

r~ 2

l Hpr l'= ) &f*(1,2)err A+n(1, 2)drtdr2, (21)

where VD(1,2) denotes the deuteron wave function.
Thus a comparison of the experimentally determined

matrix elements for the photodisintegration of the
nucleus (with fast proton ejection) and of the deuteron
can be used to give us rather directly a relation between
the deuteron and ground-state wave functions. This
technique is particularly useful if we do not wish (or
are unable) to give explicitly the final two-particle wave
function 4'r*(1,2) since this enters very nearly as a

' A function analogous to our x&,„('~) is introduced on physical
grounds by Levinger (reference 8) following a method of Heid-
mann (reference 3).
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common factor into both matrix elements tEqs. (20)
and (21)].

(2) Meson Capture

The operator describing the absorption of a meson

by a nucleon can be written' "
ag(1)+bo i Vg(1), (22)

where r~ denotes the coordinate of the nucleon which
absorbs the meson, and p(1) denotes the meson field at
ri. If we assume the meson to be in an S state, P(1) will

be sufficiently slowly varying over the nucleus that we
can replace it by some mean value Pp, and similarly
replace VP(1) by a mean gradient written VPp.

The matrix element for meson absorption in the
nucleus is given by

the deuteron wave function Vii(1,2). This method was
used by BSW' in their analysis.

(3) Deuteron Pictpupi4

The Born approximation matrix element for this
process is

Hot=(+t(0, 1,2)@r(A—2), V(rp —ri)e'k' "4'p(A)). (29)

Then following the same techniques as those used in the
previous paragraphs, we can bring this to the form

g(Hpt~'= ~ drs ' dry 4'r*(0,1,2)V(rp —ri)

Xe'"' "F224 p(1, ,A)dr pdridr2 . (30)

Hpf=g;(Vt(A), {&p+b(r, Vgp}"&o(A)). (23) If we assume

drp dr~ 4f*(1,2) (Fist0o)
f

Hence

XF12co(1,2, ,A)dridr2 . (26)

2 f' f 2

Q ~
Hof

~ Q I @f (1 2) (Fistgo)Xi (1,2)dridr2

(2&)

where the x& (1,2) is properly antisymmetrized, i.e.,

xi (1,2)=(1/v2)Fr2{$/(1)p (2)—Q (1)Q/(2)). (19a)

It is useful to compare this with the corresponding
process for meson absorption in the deteron for which

2

lHoP I'= )I C,*(1,2)(Frsteo)eD(1, 2)dr, dr2 . (28)

One result is that it is possible, if we wish to interpret
the operator (F»t8p) as a phenomonological meson
absorption operator, to use the experiment to deduce
relationships between the nuclear wave function and

' See, for example, K. A. Brueckner and K. M. Watson, Phys.
Rev. 83, 1 (1951).

We assume as with the photoeGect that two nucleons in
the final state have high momenta and hence their wave
function is separable from that for the residual (A-2)
nucleons. Then

@f(A)=+f(1,2)@r(A —2).

Write Hp for the operator agp+b/ri Vgp, and let

+r(1,2) =FiÃr(1, 2),

where Ct(1,2) denotes a plane wave state for the two
outgoing nucleons. Then, using partial closure to
eliminate +f(A —2) and transforming Vo(A), we get
for the nucleon pair (1,2):

where
(0 1 2) —e/Kirp+rr)/2$(r r )erkr ~ rr (31)

@p(0 1) eiK(ro+rrl/2y(rp ri)

is the deuteron wave function, we obtain

2 2

+~Hot~'= —p e '"""e 'k"rrxi„(1,2)dridr2

(32)

2

f~*(r)V(r)er(k —K/sl ~ rdr (33)

(4) Proton Proton Scatteri-ng in Nuclei and Meson
Prodlcfi orI, by I'rotors Bombarding Ãsclei

For a high-energy incident proton ejecting a second
proton from a nucleus it is a good approximation to
suppose that the incident proton collides only with the
one nuclear particle. "The same approximation can be
made in considering the production of mesons by a
proton colliding with a nucleus. ' lt is worth noting that
both, these processes are possible if the second proton
(nucleon) was not bound in the nucleus but was free.
This has the eGect that for a limited range of the
momenta of the outgoing particles a large contribution
to the cross section will come from considering the

14 The theory in this paragraph is similar to that of Heidmann
(reference 3) except (1) we derive the correlations in the ground
state wave function by transformation theory which allows for the
effects of the nuclear medium whereas Heidmann obtains them as
physical grounds, and (2) we use partial closure to eliminate the
final state.

The first factor corresponds to the momentum distri-
bution for nucleons 1 and 2 in the nucleus. In our nota-
tion nucleon 1 is picked up and goes o6 as part of the
deuteron +p (0,1) and nucleon 2 is a recoil nucleon which
we have represented by a plane wave. The second factor
can be evaluated by substituting an explicit form for
the relative coordinate part p(r) of the deuteron wave
function and using the Schrodinger equation to rewrite
V(r) in terms of the binding energy and momenta.
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nucleus to be a Fermi gas, i.e., from taking the unit
term in Eq. (5) which gives the transformation of the
a Fermi gas, i.e., from taking the unit term in Eq. (5)
which gives the transformation of the Fermi gas wave
function to the actual nuclear wave function. However,
if one looks instead at momentum regions which require
a large momentum value for the proton initially in the
nucleus, the principal contribution to these cross sec-
tions will come from matrix elements obtained by
methods analogous to those considered in the previous
sections. These involve the quantity x& (1,2) and lead
to a cross section which depends on a known factor (or
one which can be found by comparison with experiment)
and the momentum distribution. The analysis of p-p
scattering in the nucleus has been given by Wolff, "and
that of meson production in the nucleus by Henley. '
We will not repeat these calculations using our methods
as they would involve a lengthy analysis of approxima-
tions which are made by physical arguments. However,
for comparison we note the formula for the relevant
cross section given by Wolff and by Henley.

For proton-proton scattering in the nucleus, WolG"
obtains the cross section for an incoming proton of
momentum p and final nucleons of momentum q and s:
d'cr AM' dk

2 i cV(k)
d~dq A4p " (2~)'

most strongly on the ground-state wave function
through a term

2 f
f(k„k,) =—g (2~j-'e-"i'ie-'"'~

Xxl (rlr2)dridr2 (36)

where k~ and k2 are the final momenta of the two fast
ejected nucleons and x& is, in the region of high
momenta, an approximation to the initial wave function
of the two nucleons. This result can be brought to a
simpler form if we introduce relative and center-of-mass
coordinates and further assume that

(r r )—~ &xi (ri r )ei(&i+&m) (rg+r2i/2 (37)

This is equivalent to the reasonable assumption that
the center-of-mass moves with the momenta charac-
teristic of the Fermi gas and that the departures from
a Fermi gas occur only in the dependence on the relative
coordinate. Making this approximation we find

2 2

f(ki,kg)= —P (2s) le '~"' "»""xi (r)dr
A' i

X5(ki+k~ —ki —k„), (38)

where k= (q+s —k) and 1V(k) is the momentum dis-
tribution for a nucleon in the nucleus. The detailed
form of X(k) as predicted by our method will be dis-
cussed in the next section.

The cross section for the creation of a x meson of
momentum q is given by Henley':

(~~ +~,~ +~„)'=E(2 )*v—~j'8(k +k —k —k„), (39)

a further simplification is possible if we assume (as we
have previously) that k&, k»)k&, k and consequently
that the momentum conservation gives approximately
ki ———k2. In this approximation we can also relax the
restrictions arising from momentum conservation and
sum freely over /, ns. This is related to the approximation
made in using partial closure and as there we can
introduce a correction by altering the energy conser-
vation law to take account of a mean excitation of the
residual nucleus.

We thus are led (dropping the delta function) to the
final result

d'a-~'(s+) 1
I

d'0 (p- p)
Z Sg

dTdQq 80 ~ dTdQq

d' (P—N)l
+ (A —Z) va p(k)dk, (35)

dTdQ~

where p(k) is the momentum distribution for the struck
nucleon in the nucleus, and 0 (p —p), 0 (p —I) denote the
cross sections for collisions of free nucleons; vo and e„
represent the relative velocities of the target nucleus
and nucleon with respect to the incident nucleon; T is
the meson kinetic energy.

p
e—ik& ~ rl 2

g(k,)=f(k, ,
—k,)=—P x,„(r)dr . (40)

A2 &m 4 (27r)'*

The summation over the A'/2 pairs of states lm is
equivalent (with the factor 2/A') to averaging over a
Fermi gas. This result is now closely analogous to the
results used by Chew-Goldberger, Levinthal-Silverman,
Henley, and Wolff, who have all deduced a dependence
of the cross section on a factor which they call the
Fourier transform of the wave function of the single

IV. APPLICATION OF THE THEORY TO EXPERIMENT

A. Dependence of the Theoretical Cross Sections on
a Momentum Distribution in the Nucleus

ln discussing the high-energy phenomena, we have
shown that in each case the matrix element depends

2M l q
Xg~ p' —q2 —(p+k —il)' — fl;& ~, (34) where we have replaced the Kronecker delta function

E. (2s)' giving total-momentum conservation by the Dirac delta
function, using the relation
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particle involved; i.e., they introduce a function Jli'(k)

~—ik r i2

lV(k) = y(r)dr,
(2m) '

(41)
50-

where g(r) is assumed to be the particle wave function.
Our result differs however in that kg„(r) is a function
depending on the relative coordinate for a pair of
nucleons and in that an average is to be carried out
over the initial state of the two ejected nucleons.

l0-

E(k) =exp( —k'/n') (n'x&) ', (42)

B. Determination of the Function g(k)
from Experiment

We shall not attempt to make explicit calculations
for the various phenomena; instead we shall make use
of the empirical determinations of the function E(k)
which have been made. In the case of deuteron pickup, "
proton-proton scattering in nuclei, ' and meson produc-
tion by protons as nuclei, ' it has been shown that a
function

0.5

E (Mev)
II I

0 40 80

berger

I

l20
with n'/2m=14 Mev gives a satisfactory fit to the
experiments. We have also made an analysis of the
photoproton data similar to that made by Levinthal
and Silverman' using this Gaussian distribution. The
results are shown in Fig. 2 which indicates that the
shape of the predicted distribution agrees well with
experiment. The magnitude of the predicted cross
sections is considerably larger than the results of
Levinthal and Silverman~ and a factor of 10 has been
introduced to renormalize the predicted cross section.
The discrepancy is not so large, however, if comparison
is made with the results of Keck" and Walker' which
are a factor of 5 to 7 larger. Consequently we conclude
that the Gaussian momentum distribution which is
identical with that used in the other analyses also ap-
proximately 6ts the photoproton data, at least as well

as the accuracy of the treatment would lead one to
expect.

The remaining process of meson capture can also be
easily brought into a form which allows comparison
with the assumed Gaussian distribution. This is most
simply done if we make use of the result of BSW which
shows that the ratio

f
2

j e 's'p(r)dr e—'s 'lt D (r)d r &&2.39, (43)

"The use of a Gaussian distribution to 6t deuteron pickup has
been tested by Henley (see reference 9)."J.Keck, Phys. Rev. 85, 410 (1952)."D.Walker, Phys. Rev. 81, 634 (1951).

where fn(r) is the deuteron wave function and p is the
momentum carried off by one nucleon Lp (Mp)'*).
Using for Po a Hulthen wave function with standard

FIG. 2. Theoretical predictions for the photoproton process
based on a Chew-Goldberger and on the Gaussian distribution of
Eq. (3). The experimental data are taken from the paper of
Levinthal and Silverman (see reference 7). The theoretical results
are normalized to the experiments at 41.5 Mev by a factor of 0.75
for the Chew-Goldberger and 0.15 for the Gaussian.

parameters, and taking for p(r) a normalized Gaussian
Xs exp( —P'r'/2) it is possible to determine a value for
p'/2M which agrees with the empirically determined
ratio. The result is that p'/2M&&14. 4 Mev which
agrees very well with the results of the other experi-
ments.

We therefore can well represent the results of all of
the experiments by the same momentum distribution.
Returning to our definition of g(k) PEq. (40)j, we thus
find that if our theory predicts correctly the result,

e—%p I 2

.x~-(r)« =&- exp( —p'/~'), (44)gs im & (2s-)f

for high values of the momentum p (corresponding to
energy per particle of 75 to 150 Mev), then we can also
expect to Gnd good agreement with the high-energy
experiments.

C. Calculation of Momentum Distribution

In this section we shall attempt to determine the
function g(k) de6ned in Eq. (40). As we shall show,
there are two rather diferent methods which lead to
essentially the same result. Let us consider the function
xq„(r), which is the wave function for the relative
coordinate r. We first approximate this in a manner
similar to that used by Levinger and by Heidmann,
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(44), we find

O.I

2 (4a.)' A ' (P'—ns)
g(p)= —2 —— ( +~, )-.

A' ™(2-)' ~ -(p'+~') (p'+-)

0.05

0.0t

0.005

l00

We approximate to the average over the Fermi gas hy
using Levinger's result ((n'+ki ') ')s„=4/kr', where kf
is the maximum momentum in the Fermi gas. This
result)s given in Fig. 3 together with the Gaussian.

The second method which we use makes use to a
greater extent of knowledge of the scattering cross
sections. We go back to the original definition of xi (r)
and write

A 2 1
I ( 1

g(1)=——2 —
i

e "'~ r 1+-«'
I

tt A' ~m (2n.)' " E e )
)&gi (r')dr'dr . (49)

FIG. 3. Calculated momentum distributions for particles in the
nucleus compared with the empirically derived Gaussian of Eq.
(3).The results of the two methods discussed in the text are given,
labelled Hulthen for the result of Eq. (48) and t' for the result of
Eq. (52).

Using a relative momentum plane wave function for
@i,performing the integrations, and making use of the
fact that the energy denominator "e"is simply E ps/M—
if we neglect interactions of the final particles, we find

i.e., we write for the 5-wave part of the function

1 sin(kr+6)
x,„(r)=— f(r)—

sinb
Lr(~ +&,„')f7,

which is correctly normalized in the nuclear volume e.
1/a is the scattering length; f(r) is a function which is
equal to one at the origin and depends in detail on the
explicit choice of the potential. At small distances this
can also be written as

A 2
g(p) =——& L(1 lflk, „)/(z —p/ss)7'. (So)

v A' im (2m)s

This can be evaluated in a very simple way if we assume
that (y(tiki ) depends only on the momentum dif-
ference (as it would in Born approximation for ex-
ample) and determine it experimentally. Making this
assumption and making use of the relation between t
and the scattering cross'section,

xi-(r) = Le " —f(r) 7/L—r(~'+&i-')'7 («)
we find

(4m ) 'd~(y —ki„)
P(p —ki„)=

i

—
i

dn

For our simple example we take for f(r) the result
appropriate to a Hulthen function

A 1 (4nr) 'd (y)
g(1i)=-

a (2a.)s &Ps) dQ
(52)

f(r) =e e"—(47)

We use the Hulthen function for the following reasons:
(i) the Hulthen function gives a cross section which is
of approximately the correct magnitude at the high
energies we consider, (ii) the major contribution to the
cross section from the Hulthen potential comes from
5-wave scattering, (iii) a repulsive core potential would
require calculations for at least one higher partial
wave since the S-wave is anomalously small in the
energy region of interest. In addition it would lead to
a result which would be very sensitive to the potential
shape in the region of the core boundary where little is
known about its detailed form.

Inserting the wave function of Eq. (46) into Eq.

where we have made use of p'/M))E and pi &(p to
carry out the summation. To evaluate this result, we
take the average differential scattering cross section at
9G degrees in the center-of-mass system for neutron-
proton and proton-proton collisions, choosing an energy
which gives the correct momentum transfer. The result
is given rn Fig. 3.

It is apparent that either of the methods we have
used gives essentially the same results and that the
agreement with the empirically derived Gaussian dis-
tribution is satisfactory over the energy range of pri-
mary interest. Therefore we can, as emphasized in the
first part of this section, conclude that these methods
will give correct order-of-magnitude predictions for the
high-energy phenomena we have described.
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V. CONCLUSIONS

We have analyzed evidence derived from a variety
of high-energy experiments which has bearing on the
problem of nuclear structure. This evidence is par-
ticularly signi6cant since it is for these (or similar)
processes that the possible departure of the nuclear
ground-state wave function from an independent-
particle wave function is most apparent. The result
predicted uniformly by the group of quite diverse
experiments which we have examined is that the nuclear
ground-state wave function must have a very marked
admixture of high-momentum components and hence
must depart quite appreciably from an independent-
particle-model wave function. Consequently it follows
that the usual assumptions of the shell-model theory
of the nucleus, that the particles move independently
in a uniform potential, cannot be other than very
approximately correct.

To investigate quantitatively the general conclusion
drawn from experiment, we have made use of methods
recently developed by us in other studies of the nucleus.
These methods lead to a nuclear model which appears
to agree well with many general details of the structure
of the nucleus and also with the detailed properties
predicted by the shell model, but does not assume the
existence of the independent nucleon motion. An essen-
tial assumption of this method is that the nuclear forces
acting between nucleons in dense nuclear matter are
still very nearly the same as those acting between free
nucleons and hence very strong and short ranged. An
immediate consequence of this assumption is that the
presence of marked correlation effects in the nuclear
wave function is to be expected. Conversely, the experi-
mental observation of such correlation effects implies

directly that the strong two-body forces have not been
"damped out" by nonlinear eGects or cancelled by
many-body eGects.

In applying this nuclear theory to the study of the
high-energy phenomena, we h,ave made several sim-
plifying assumptions to bring the theory into easily
manageable form. The most important assumption
made is that in the very-high-momentum region the
eGects which interest us are primarily due to the in-
timate association of pairs of nucleons. In this form our
methods are analogous to those used by Heidmann and
by Levinger although their origin and interpretation is
rather diGerent. The final expressions for the momentum
distribution have been evaluated by making use of two
quite diGerent approximations which give results in
reasonable agreement with each other and with the
momentum distribution derived from experiment. It is
to be emphasized that the theoretical predictions are
very sensitive to the choice of the two-body interaction,
which we have assumed to be identical with that acting
on free particles. Thus we have shown not only that
appreciable correlation effects are present but also
that the presence of other nucleons in the dense nuclear
matter cannot appreciably modify the two-body inter-
actions.

In conclusion we would like to remark that although
we have in this paper emphasized the departure of the
nuclear wave function from an independent nuclear
wave function, the great importance of the departure
is manifested only in the specific high-energy processes
(or similar cases) we have considered. As we have
pointed out in other papers, the eGects are not nearly
so pronounced in many low-energy phenomena where
the independent particles of the shell model can be
identified more closely with nucleons.


